Current Insights into Porcine Bocavirus (PBoV) and Its Impact on the Economy and Public Health
<p>Geographical distribution of PBoV. Map is created with Mapchart [<a href="#B36-vetsci-11-00677" class="html-bibr">36</a>].</p> "> Figure 2
<p>Phylogenetic tree of PBoV and related viruses based on the complete genome sequences. The tree was constructed using the Neighbor-Joining method with 1000 bootstrap replicates. Bootstrap values greater than 50% are shown at the branch nodes. The tree includes various BoV strains from different hosts, including humans, pigs, dogs, cats, cows, and gorillas. The scale bar represents the number of nucleotide substitutions per site. The phylogenetic tree reveals the relationships between PBoV and other bocaviruses. Notably, PBoV is closely related to other bocaviruses, including feline bocavirus and bovine bocavirus.</p> "> Figure 3
<p>The genome structure of PBoV (adapted from [<a href="#B71-vetsci-11-00677" class="html-bibr">71</a>]). The PBoV genome of approximately 5.3 bb contains three ORFs that encode for four proteins (NS1, NP1, VP1, and VP2).</p> ">
1. Introduction
2. Discovery and Classification
3. Genome Structure
4. Main Diagnostic Methods
5. Pathogenesis and Public Health Importance of PBoV
6. Economic Impact and Prevention
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Res. Int. 2020, 137, 109341. [Google Scholar] [CrossRef]
- Augère-Granier, M.L. The EU Pig Meat Sector. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/652044/EPRS_BRI(2020)652044_EN.pdf (accessed on 4 June 2024).
- Ito, S.; Bosch, J.; Martínez-Avilés, M.; Sánchez-Vizcaíno, J.M. The Evolution of African Swine Fever in China: A Global Threat? Front. Vet. Sci. 2022, 9, 828498. [Google Scholar] [CrossRef]
- Simmonds, L. Croatian Pig Farming Industry Threatened with Collapse? Available online: https://total-croatia-news.com/news/business/croatian-pig-farming/ (accessed on 2 June 2024).
- Grgić, I.; Levak, V.; Zrakić, M. Croatian competitiveness in the production of pig meat before joining the EU. In Proceedings of the AAEM 10th International Conference, Skopje, Republic of Macedonia, 12–14 May 2016. [Google Scholar]
- OEC. Pig Meat in Croatia. Available online: https://oec.world/en/profile/bilateral-product/pig-meat/reporter/hrv (accessed on 5 July 2024).
- Drew, T.W. The emergence and evolution of swine viral diseases: To what extent have husbandry systems and global trade contributed to their distribution and diversity? Rev. Sci. Tech. OIE 2011, 30, 95–106. [Google Scholar] [CrossRef]
- Nathues, H.; Alarcon, P.; Rushton, J.; Jolie, R.; Fiebig, K.; Jimenez, M.; Geurts, V. Cost of porcine reproductive and respiratory syndrome virus at individual farm level–An economic disease model. Prev. Vet. Med. 2017, 142, 16–29. [Google Scholar] [CrossRef]
- Baekbo, P.; Kristensen, C.S.; Larsen, L.E. Porcine Circovirus Diseases: A review of PMWS. Transbound. Emerg. Dis. 2012, 59, 60–67. [Google Scholar] [CrossRef]
- Vidigal, P.M.; Mafra, C.L.; Silva, F.M.; Fietto, J.I.; Júnior, A.S.; Almeida, M.R. Tripping over emerging pathogens around the world: A phylogeographical approach for determining the epidemiology of Porcine circovirus-2 (PCV-2), considering global trading. Virus Res. 2012, 163, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Gaudreault, N.N.; Madden, D.W.; Wilson, W.C.; Trujillo, J.D.; Richt, J.A. African Swine Fever Virus: An Emerging DNA Arbovirus. Front. Vet. Sci. 2020, 7, 215. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, J.; Zhu, S.K.; Meng, Q.F.; Lin, Z.X.; Chen, R.; Qian, A.D. Genetic analysis of three porcine bocaparvoviruses and identification of a natural recombinant breakpoint in NS1. Arch. Virol. 2017, 163, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lu, Y.; Ku, S.L.X.; Liu, X.; Memon, A.M.; He, Q.; Bi, D.; Meng, X. Co-infection with porcine bocavirus and porcine circovirus 2 affects inflammatory cytokine production and tight junctions of IPEC-J2 cells. Virus Genes 2018, 54, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Safamanesh, S.; Azimian, A.; Shakeri, A.; Ghazvini, K.; Amel Jamehdar, S.; Khosrojerdi, M.; Youssefi, M. Detection of porcine bocavirus from a child with acute respiratory tract infection. Pediatric Infect. Dis. J. 2018, 37, e338–e339. [Google Scholar] [CrossRef]
- Keros, T.; Jemeršić, L.; Toplak, I.; Prpić, J. The silent spread of Porcine Bocavirus in Croatian pigs: Should we be concerned? Acta Vet. Hung. 2017, 65, 565–573. [Google Scholar] [CrossRef]
- Blomström, A.L.; Belák, S.; Fossum, C.; McKillen, J.; Allan, G.; Wallgren, P.; Berg, M. Detection of a novel porcine boca-like virus in the background of porcine circovirus type 2 induced postweaning multisystemic wasting syndrome. Virus Res. 2009, 146, 125–129. [Google Scholar] [CrossRef]
- Manteufel, J.; Truyen, U. Animal bocaviruses: A brief review. Intervirology 2008, 51, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Zhai, S.; Yue, C.; Wei, Z.; Long, J.; Ran, D.; Lin, T.; Yuan, S. High prevalence of a novel porcine bocavirus in weanling piglets with respiratory tract symptoms in China. Arch. Virol. 2010, 155, 1313–1317. [Google Scholar] [CrossRef]
- Cheng, W.X.; Li, J.S.; Huang, C.P.; Yao, D.P.; Liu, N.; Cui, S.X.; Jin, Y.; Duan, Z.J. Identification and nearly full-length genome characterization of novel porcine bocaviruses. PLoS ONE 2010, 5, e13583. [Google Scholar] [CrossRef] [PubMed]
- Cadar, D.; Cságola, A.; Lőrincz, M.; Tombácz, K.; Kiss, T.; Spînu, M.; Tuboly, T. Genetic detection and analysis of porcine bocavirus type 1 (PoBoV1) in European wild boar (Sus scrofa). Virus Genes 2011, 43, 376–379. [Google Scholar] [CrossRef]
- McKillen, J.; McNeilly, F.; Duffy, C.; McMenamy, M.; McNair, I.; Hjertner, B.; Millar, A.; McKay, K.; Lagan, P.; Adair, B.; et al. Isolation in cell cultures and initial characterisation of two novel bocavirus species from swine in Northern Ireland. Vet. Microbiol. 2011, 152, 39–45. [Google Scholar] [CrossRef]
- Csagola, A.; Lorincz, M.; Cadar, D.; Tombacz, K.; Biksi, I.; Tuboly, T. Detection, prevalence and analysis of emerging porcine parvovirus infections. Arch. Virol. 2012, 157, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Vlasakova, M.; Leskova, V.; Sliz, I.; Jackova, A.; Vilcek, S. The presence of six potentially pathogenic viruses in pigs suffering from post-weaning multisystemic wasting syndrome. BMC Vet. Res. 2014, 10, 221. [Google Scholar] [CrossRef] [PubMed]
- Pfankuche, V.M.; Bodewes, R.; Hahn, K.; Puff, C.; Beineke, A.; Habierski, A.; Osterhaus, A.D.M.E.; Baumgärtner, W. Porcine bocavirus infection associated with encephalomyelitis in a pig, Germany. Emerg. Infect. Dis. 2016, 22, 1310–1312. [Google Scholar] [CrossRef]
- Conceicao-Neto, N.; Theuns, S.; Cui, T.; Zeller, M.; Yinda, C.K.; Christiaens, I.; Heylen, E.; Van Ranst, M.; Carpentier, S.; Nauwynck, H.J.; et al. Identification of an enterovirus recombinant with a torovirus-like gene insertion during a diarrhea outbreak in fattening pigs. Virus Evol. 2017, 3, vex024. [Google Scholar] [CrossRef]
- McMenamy, M.; McKillen, J.; McNair, I.; Duffy, C.; Blomström, A.L.; Charreyre, C.; Welsh, M.; Allan, G. Detection of a porcine boca-like virus in combination with porcine circovirus type 2 genotypes and Torque teno sus virus in pigs from postweaning multisystemic wasting syndrome (PMWS)-affected and nonPMWS-affected farms in archival samples from Great Britain. Vet. Microbiol. 2013, 164, 293–298. [Google Scholar] [PubMed]
- Saekhow, P.; Ikeda, H. Prevalence and genomic characterization of porcine parvoviruses detected in Chiangmai area of Thailand in 2011. Microbiol. Immunol. 2014, 59, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.G.; Park, S.J.; Nguyen, V.G.; Chung, H.C.; Kim, A.R.; Park, B.K. Molecular detection and genetic analysis of porcine bocavirus in Korean domestic swine herds. Arch. Virol. 2014, 159, 1487–1492. [Google Scholar] [CrossRef]
- Zhang, W.; Sano, N.; Kataoka, M.; Ami, Y.; Suzaki, Y.; Wakita, T.; Ikeda, H.; Li, T.C. Virus-like particles of porcine bocavirus generated by recombinant baculoviruses can be applied to sero-epidemic studies. Virus Res. 2016, 217, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Jacob, D.M.; Lee, C.Y.; Arshad, S.S.; Selvarajah, G.T.; Bande, F.; Ong, B.L.; Ooi, P.T. First molecular detection of porcine bocavirus in Malaysia. Trop. Anim. Health Prod. 2018, 50, 733–739. [Google Scholar] [CrossRef]
- Cheung, A.K.; Wu, G.; Wang, D.; Bayles, D.O.; Lager, K.M.; Vincent, A.L. Identification and molecular cloning of a novel porcine parvovirus. Arch. Virol. 2010, 155, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Schirtzinger, E.E.; Suddith, A.W.; Hause, B.M.; Hesse, R.A. First identification of porcine parvovirus 6 in North America by viral metagenomic sequencing of serum from pigs infected with porcine reproductive and respiratory syndrome virus. Virol. J. 2015, 12, 170. [Google Scholar] [CrossRef]
- Ndze, V.N.; Cadar, D.; Csagola, A.; Kisfali, P.; Kovacs, E.; Farkas, S.; Ngu, A.F.; Esona, M.D.; Dan, A.; Tuboly, T.; et al. Detection of novel porcine bocaviruses in fecal samples of asymptomatic pigs in Cameroon. Infect. Genet. Evol. 2013, 17, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Amimo, J.O.; Njuguna, J.; Machuka, E.; Okoth, E.; Djikeng, A. First complete genome sequences of porcine bocavirus strains from East Africa. Genome Announc. 2017, 5, e00093-17. [Google Scholar] [CrossRef]
- Aryal, M.; Liu, G. Porcine Bocavirus: A 10-Year History since Its Discovery. Virol Sin. 2021, 36, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Mapchart. Available online: https://www.mapchart.net/world.html (accessed on 8 October 2024).
- International Committee on Taxonomy of Viruses: ICTV. Available online: https://ictv.global/report/chapter/parvoviridae/parvoviridae/bocaparvovirus (accessed on 4 June 2024).
- Cotmore, S.F.; Agbandje-McKenna, M.; Canuti, M.; Chiorini, J.A.; EisHubinger, A.M.; Hughes, J.; Mietzsch, M.; Modha, S.; Ogliastro, M.; Penzes, J.J.; et al. ICTV virus taxonomy profile: Parvoviridae. J. Gen. Virol. 2019, 100, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.P.; Woo, P.C.Y.; Tse, H.; Fu, C.T.Y.; Au, W.K.; Chen, X.C.; Tsoi, H.W.; Tsang, T.H.F.; Chan, J.S.Y.; Tsang, D.N.C.; et al. Identification of novel porcine and bovine parvoviruses closely related to human parvovirus 4. J. Gen. Virol. 2008, 89, 1840–1848. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Shan, T.; Wang, C.; Côté, C.; Kolman, J.; Onions, D.; Gulland, F.M.; Delwart, E. The fecal viral flora of California sea lions. J. Virol. 2011, 85, 9909–9917. [Google Scholar] [CrossRef]
- Kapoor, A.; Mehta, N.; Dubovi, E.J.; Simmonds, P.; Govindasamy, L.; Medina, J.L.; Street, C.; Shields, S.; Lipkin, W.I. Characterization of novel canine bocaviruses and their association with respiratory disease. J. Gener. Virol. 2012, 93, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Pesavento, P.A.; Leutenegger, C.M.; Estrada, M.; Cofey, L.L.; Naccache, S.N.; Samayoa, E.; Chiu, C.; Qiu, J.; Wang, C.; et al. A novel bocavirus in canine liver. Virol. J. 2013, 10, 54. [Google Scholar] [CrossRef]
- Lau, S.K.P.; Woo, P.C.Y.; Yeung, H.C.; Teng, J.L.L.; Wu, Y.; Bai, R.; Fan, R.Y.Y.; Chan, K.H.; Yuen, K.Y. Identifcation and characterization of bocaviruses in cats and dogs reveals a novel feline bocavirus and a novel genetic group of canine bocavirus. J. Gener. Virol. 2012, 93, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.F.F.; Mesquita, J.R.; Nascimento, M.S.J.; Kondov, N.O.; Wong, W.; Reuter, G.; Knowles, N.J.; Vega, E.; Esona, M.D.; Deng, X.; et al. Feline fecal virome reveals novel and prevalent enteric viruses. Vet. Microbiol. 2014, 171, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, L.; Deng, X.; Kapusinszky, B.; Pesavento, P.A.; Delwart, E. Faecal virome of cats in an animal shelter. J. Gener. Virol. 2014, 95, 2553–2564. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Y.; Li, W.; Fan, Z.; Jiang, L.; Lin, Y.; Fu, X.; Shen, Q.; Sun, Z.; Wang, X.; et al. A novel bocavirus from domestic mink. China Virus Genes 2016, 52, 887–890. [Google Scholar] [CrossRef]
- Wu, Z.; Ren, X.; Yang, L.; Hu, Y.; Yang, J.; He, G.; Zhang, J.; Dong, J.; Sun, L.; Du, J.; et al. Virome analysis for identifcation of novel mammalian viruses in bat species from Chinese Provinces. J. Virol. 2012, 86, 10999–11012. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Li, Z.; Yang, F.; Zheng, J.; Feng, Y.; Guo, H.; Li, Y.; Wang, Y.; Su, N.; Zhang, F.; et al. Virome profling of bats from myanmar by metagenomic analysis of tissue samples reveals more novel mammalian viruses. PLoS ONE 2013, 8, e61950. [Google Scholar]
- Lau, S.K.P.; Ahmed, S.S.; Yeung, H.C.; Li, K.S.M.; Fan, R.Y.Y.; Cheng, T.Y.C.; Cai, J.P.; Wang, M.; Zheng, B.J.; Wong, S.S.Y.; et al. Identifcation and interspecies transmission of a novel bocaparvovirus among diferent bat species in China. J. Gener. Virol. 2016, 97, 3345–3358. [Google Scholar] [CrossRef]
- Lau, S.K.P.; Yeung, H.C.; Li, K.S.M.; Lam, C.S.F.; Cai, J.P.; Yuen, M.C.; Wang, M.; Zheng, B.J.; Woo, P.C.; Yuen, K.Y. Identifcation and genomic characterization of a novel rat bocavirus from brown rats in China. Infect. Genet. Evol. 2017, 47, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Lanave, G.; Martella, V.; Farkas, S.L.; Marton, S.; Fehér, E.; Bodnar, L.; Lavazza, A.; Decaro, N.; Buonavoglia, C.; Bányai, K. Novel bocaparvoviruses in rabbits. Vet. J. 2015, 206, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Allander, T.; Tammi, M.T.; Eriksson, M.; Bjerkner, A.; Tiveljung-Lindell, A.; Andersson, B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc. Natl. Acad. Sci. USA 2005, 102, 12891–12896. [Google Scholar] [CrossRef]
- Arthur, J.L.; Higgins, G.D.; Davidson, G.P.; Givney, R.C.; Ratclif, R.M. A novel bocavirus associated with acute gastroenteritis in Australian children. PLoS Pathog. 2009, 5, e1000391. [Google Scholar] [CrossRef] [PubMed]
- Ao, Y.; Duan, Z. Novel primate bocaparvovirus species 3 identifed in wild macaca Mulatta in China. Virol. Sin. 2020, 35, 34–42. [Google Scholar] [CrossRef]
- Williams, S.H.; Che, X.; Garcia, J.A.; Klena, J.D.; Lee, B.; Muller, D.; Ulrich, W.; Corrigan, R.M.; Nichol, S.; Jain, K.; et al. Viral diversity of house mice in New York City. mBio 2018, 9, e01354-17. [Google Scholar] [CrossRef] [PubMed]
- Abinanti, F.R.; Warfeld, M.S. Recovery of a hemadsorbing virus (HADEN) from the gastrointestinal tract of calves. Virology 1961, 14, 288–289. [Google Scholar] [CrossRef]
- Mitra, N.; Cernicchiaro, N.; Torres, S.; Li, F.; Hause, B.M. Metagenomic characterization of the virome associated with bovine respiratory disease in feedlot cattle identifed novel viruses and suggests an etiologic role for infuenza D virus. J. Gener. Virol. 2016, 97, 1771–1784. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Wang, D.; Fang, L.; Ma, J.; Song, T.; Zhang, R.; Chen, H.; Xiao, S. Complete coding sequences and phylogenetic analysis of porcine bocavirus. J. Gener. Virol. 2011, 92, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Shan, T.; Lan, D.; Li, L.; Wang, C.; Cui, L.; Zhang, W.; Hua, X.; Zhu, C.; Zhao, W.; Delwart, E. Genomic characterization and high prevalence of bocaviruses in swine. PLoS ONE 2011, 6, e17292. [Google Scholar] [CrossRef]
- Lau, S.K.P.; Woo, P.C.Y.; Yip, C.C.Y.; Li, K.S.M.; Fu, C.T.Y.; Huang, Y.; Chan, K.H.; Yuen, K.Y. Co-existence of multiple strains of two novel porcine bocaviruses in the same pig, a previously undescribed phenomenon in members of the family Parvoviridae, and evidence for inter- and intra-host genetic diversity and recombination. J. Gen. Virol. 2011, 92, 2047–2059. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.Y.; Lau, S.K.P.; Tsoi, H.W.; Patteril, N.G.; Yeung, H.C.; Joseph, S.; Wong, E.Y.M.; Muhammed, R.; Chow, F.W.N.; Wernery, U.; et al. Two novel dromedary camel bocaparvoviruses from dromedaries in the Middle East with unique genomic features. J. Gener. Virol. 2017, 98, 1349–1359. [Google Scholar] [CrossRef]
- Kumar, D.; Chaudhary, S.; Lu, N.; Duf, M.; Hefel, M.; McKinney, C.A.; Bedenice, D.; Marthaler, D. Metagenomic next-generation sequencing reveal presence of a novel ungulate bocaparvovirus in alpacas. Viruses 2019, 11, 701. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Zheng, M.; Liu, Z.; Yuan, J.; Zhao, J.; Shen, Q.; Fan, Z.; Jiang, L.; Yang, S. Genome sequence of a porcine bocavirus detected in feces of domestic minks in China. Genome Announc. 2017, 5, e01170. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.P.; Syed, S.A.; Hoi-Wah, T.; Hazel, C.Y.; Kenneth, S.M.L.; Rachel, Y.Y.F.; Pyrear, S.H.Z.; Candy, C.C.L.; Carol, S.F.L.; Kelvin, K.F.C.; et al. Bats host diverse parvoviruses as possible origin of mammalian dependoparvoviruses and source for bat–swine interspecies transmission. J. Gen. Virol. 2017, 98, 3046–3059. [Google Scholar] [CrossRef]
- Zhang, C.; Song, F.; Xiu, L.; Liu, Y.; Yang, J.; Yao, L.; Peng, J. Identification and characterization of a novel rodent bocavirus from different rodent species in China. Emerg. Microbes Infect. 2018, 7, 48. [Google Scholar] [CrossRef]
- Yang, W.Z.; Yu, J.M.; Li, J.S.; Cheng, W.X.; Huang, C.P.; Duan, Z.J. Genome characterization of a novel porcine bocavirus. Arch. Virol. 2012, 157, 2125–2132. [Google Scholar] [CrossRef] [PubMed]
- Böhmer, A.; Schildgen, V.; Lüsebrink, J.; Ziegler, S.; Tillmann, R.L.; Kleines, M.; Schildgen, O. Novel application for isothermal nucleic acid sequence-based amplification (NASBA). J. Virol. Methods 2009, 158, 199–201. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, J.; Wang, W.L.; Song, S.W.; Zhu, S.K.; Meng, Q.F.; Yu, F.; Li, C.P.; Liu, N.; Luan, W.M. A TaqMan-based real-time PCR assay for the detection of ungulate bocaparvovirus 2. J. Virol. Methods 2018, 261, 17–21. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, A.Y.; Cheng, F.; Guan, W.; Johnson, F.B.; Qiu, J. Molecular characterization of infectious clones of the minute virus of canines reveals unique features of bocaviruses. J. Virol. 2009, 83, 3956–3967. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.L.; Cui, J.T.; Qiao, H.; Li, X.S.; Li, X.K.; Chen, H.Y. Detection and genetic characteristics of porcine bocavirus in central China. Arch. Virol. 2021, 166, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Sun, H.; Wang, Y. Porcine Bocavirus: Achievements in the Past Five Years. Viruses 2014, 6, 4946–4960. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, G.; Opriessnig, T.; Wang, Z.; Yang, Z.; Jiang, Y. Development and validation of a multiplex conventional PCR assay for simultaneous detection and grouping of porcine bocaviruses. J. Virol. Methods 2016, 236, 164–169. [Google Scholar] [CrossRef]
- Li, B.; Ma, J.J.; Xiao, S.B.; Zhang, X.H.; Wen, L.B.; Mao, L.; Ni, Y.X.; Guo, R.L.; Zhou, J.M.; Lv, L.X.; et al. Development of a loop-mediated isothermal amplification method for rapid detection of porcine boca-like virus. J. Virol. Methods 2013, 179, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Liu, G.; Opriessnig, T.; Wang, Z.; Yang, Z.; Jiang, Y. Rapid detection and grouping of porcine bocaviruses by an EvaGreen((R)) based multiplex real-time PCR assay using melting curve analysis. Mol. Cell. Probes 2016, 30, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liang, L.; Zhou, L.; Zhao, K.; Cui, S. Concurrent infections of pseudorabies virus and porcine bocavirus in China detected by duplex nanoPCR. J. Virol. Methods 2015, 219, 46–50. [Google Scholar] [CrossRef]
- Zheng, L.L.; Cui, J.T.; Han, H.Y.; Hou, H.L.; Wang, L.; Liu, F.; Chen, H.Y. Development of a duplex SYBR Green based real-time PCR assay for detection of porcine epidemic diarrhea virus and porcine bocavirus3/4/5. Mol. Cell Probes 2020, 51, 101544. [Google Scholar] [CrossRef]
- Shan, T.; Li, L.; Simmonds, P.; Wang, C.; Moeser, A.; Delwart, E. The fecal virome of pigs on a high-density farm. J. Virol. 2011, 85, 11697–11708. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; You, F.F.; Chen, X.J.; Chen, Y.X.; Wen, Y.Q.; Chen, Q. Detection and phylogenetic analysis of porcine bocaviruses carried by murine rodents and house shrews in China. Trans. Bound. Emerg. Dis. 2018, 66, 259–267. [Google Scholar] [CrossRef]
- McNair, I.; McNeilly, F.; Duffy, C.; McKillen, J.; McMenamy, M.; Welsh, M.; Allan, G. Production, characterisation and applications of monoclonal antibodies to two novel porcine bocaviruses from swine in Northern Ireland. Arch. Virol. 2011, 156, 2157–2162. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.K.; Zhang, J.L.; Gu, W.Y.; Hou, L.S.; Yuan, G.F.; Chen, S.J.; Fan, J.H.; Zuo, Y.Z. Seroprevalence of porcine bocavirus in pigs in north-central China using a recombinant-NP1-protein-based indirect ELISA. Arch. Virol. 2019, 164, 2351–2354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hu, R.; Tang, X.; Wu, C.; He, Q.; Zhao, Z.; Chen, H.; Wu, B. Occurrence and investigation of enteric viral infections in pigs with diarrhea in China. Arch. Virol. 2013, 158, 1631–1636. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Qiao, M.; Gong, S.; Tian, L.; Li, C.; Qiao, J.; Meng, D.; Wu, Y.; Cai, K.; Zhang, Z.; et al. Molecular detection and genetic diversity of porcine bocavirus in piglets in China. Acta Virol. 2018, 62, 343–349. [Google Scholar] [CrossRef]
- Piewbang, C.; Wardhani, S.W.; Phongroop, K.; Lohavicharn, P.; Sirivisoot, S.; Kasanul, T.; Techangamsuwan, S. Naturally acquired feline bocavirus type 1 and 3 infections in cats with neurologic deficits. Transbound. Emerg. Dis. 2022, 69, e3076–e3087. [Google Scholar] [CrossRef]
- Blinkova, O.; Rosario, K.; Li, L.; Kapoor, A.; Slikas, B.; Bernardin, F.; Breitbart, M.; Delwart, E. Frequent detection of highly diverse variants of cardiovirus, cosavirus, bocavirus, and circovirus in sewage samples collected in the United States. J. Clin. Microbiol. 2009, 47, 3507–3513. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.T.; Taylor, J.; Kuypers, J.; Magaret, A.; Wald, A.; Zerr, D.; Englund, J.A. Detection of bocavirus in saliva of children with and without respiratory illness. J. Clin. Microbiol. 2009, 47, 4131–4132. [Google Scholar] [CrossRef]
- Karuppannan, A.K.; Opriessnig, T. Possible risks posed by single-stranded DNA viruses of pigs associated with xenotransplantation. Xenotransplantation 2018, 25, e12453. [Google Scholar] [CrossRef] [PubMed]
- Rikhotso, M.C.; Kabue, J.P.; Ledwaba, S.E.; Traore, A.N.; Potgieter, N. Prevalence of human bocavirus in africa and other developing countries between 2005 and 2016: A potential emerging viral pathogen for diarrhea. J. Trop. Med. 2018, 7875482. [Google Scholar] [CrossRef]
- Vicente, D.; Cilla, G.; Montes, M.; Pérez-Yarza, E.G.; Pérez-Trallero, E. Human bocavirus, a respiratory and enteric virus. Emerg. Infect. Dis. 2007, 13, 636–637. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhao, L.; Sun, Y.; Qian, Y.; Liu, L.; Jia, L.; Zhang, Y.; Dong, H. Detection of a bocavirus circular genome in fecal specimens from children with acute diarrhea in Beijing, China. PLoS ONE 2012, 7, e48980. [Google Scholar] [CrossRef]
- Schildgen, V.; Malecki, M.; Tillmann, R.L.; Brockmann, M.; Schildgen, O. The human bocavirus is associated with some lung and colorectal cancers and persists in solid tumors. PLoS ONE 2013, 8, e68020. [Google Scholar] [CrossRef]
- Barber, E.; Leedom Larson, K. Porcine Bocavirus. Swine Health Information Center and Center for Food Security and Pubic Health. 2016. Available online: http://www.cfsph.iastate.edu/pdf/shic-factsheet-porcine-bocavirus (accessed on 8 October 2024).
- Rodrigues da Costa, M.; García Manzanilla, E.; Diana, A.; van Staaveren, N.; Torres-Pitarch, A.; Boyle, L.A.; Calderón Díaz, J.A. Identifying challenges to manage body weight variation in pig farms implementing all-in-all-out management practices and their possible implications for animal health: A case study. Porc. Health Manag. 2021, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- European Commission—Food Safety. Available online: https://food.ec.europa.eu/animals/live-animal-movements/porcine-animals_en (accessed on 11 December 2024).
- European Commission—Trade. Available online: https://policy.trade.ec.europa.eu/eu-trade-relationships-country-and-region/exporters-stories/germany-battling-barriers-enabling-exports-pork-south-korea_en (accessed on 11 December 2024).
- GOV.UK—Imports and EU Policy Team. Available online: http://apha.defra.gov.uk/documents/bip/ovs-notes/2024-24.pdf (accessed on 11 December 2024).
Country | Year of Identification | Sample Source | Age Categories | References |
---|---|---|---|---|
Sweden | 2009 | Lymph nodes | weaners | [16,17] |
China | 2010 | Fecal samples | weaners | [18] |
USA | 2010 | Lung, lymph nodes, spleen | unknown | [31] |
Ireland | 2011 | Spleen | piglets, weaners, sows | [21] |
Romania | 2011 | Lymph nodes, lung, kidney, liver, spleen, tonsil | piglets, yearlings, adults wild boar | [20] |
Hungary | 2012 | Fecal samples, blood serum samples, organ tissues, fetuses, semen | weaners | [22] |
Croatia | 2013 | Fecal samples | fatteners | [15] |
Cameroon | 2013 | Fecal samples | piglets | [33] |
UK | 2014 | Lung, liver, kidney, spleen, lymph nodes, serum samples | unknown | [26] |
Thailand | 2014 | Tonsil | rearing pigs | [27] |
Korea | 2014 | Serum and fecal samples, saliva | weaners | [28] |
Czech Republic | 2014 | Lymph nodes, liver, spleen | piglets, weaners, fatteners | [23] |
Slovakia | 2014 | Lymph nodes, liver, spleen | piglets, weaners, fatteners | [23] |
Mexico | 2015 | Serum samples | unknown | [32] |
Germany | 2016 | Lung, lymph nodes | weaners | [24] |
Japan | 2017 | Tonsil | unknown | [29] |
Uganda | 2017 | Fecal samples | unknown | [34] |
Kenya | 2017 | Fecal samples | unknown | [34] |
Slovenia | 2017 | Fecal samples | unknown | [15] |
Belgium | 2018 | Fecal samples | fatteners | [25] |
Malaysia | 2018 | Mesenteric lymph node, submandibular lymph node, inguinal lymph node, spleen, tonsil, lung, kidney, liver | piglets, weaners | [30] |
Host | Species | Virus Name | Abbreviation | References |
---|---|---|---|---|
family Canidae | Carnivore bocaparvovirus 1 | Canine minute virus; minute virus of canines | CnMV; MVC | [39,40] |
Carnivore bocaparvovirus 2 | Canine bocavirus 2 | CBoV2 | [41] | |
Carnivore bocaparvovirus 7 | Canine bocavirus 3 | CBoV3 | [42] | |
family Felidae | Carnivore bocaparvovirus 3 | Feline bocavirus 1 | FBoV1 | [43] |
Carnivore bocaparvovirus 4 | Feline bocaparvovirus 2 | FboV2 | [44] | |
Carnivore bocaparvovirus 5 | Feline bocaparvovirus 3 | FBoV3 | [45] | |
family Mustelidae | Carnivore bocaparvovirus 6 | Mink bocavirus 1 | MiBoV1 | [46] |
family Vespertilionidae | Chiopteran bocaparvovirus 1 | Myotis myotis (bat) bocavirus 1 | BtBoV1 | [47] |
Chiopteran bocaparvovirus 2 | Bat bocavirus WM40 | BtBoVwM40 | [48] | |
Chiopteran bocaparvovirus 3 | Bat bocavirus XM30 | BtBoVxm30 | [49] | |
Chiopteran bocaparvovirus 4 | Miniopterus schreibersii bat bocavirus | BtBoV2 | [40] | |
Chiopteran bocaparvovirus 5 | Rousettus leschenaultia bocaparvovirus 1 | RIBoV | [50] | |
family Leporidae | Lagomorph bocaparvovirus 1 | Rabbit bocaparvovirus | RBoV | [51] |
family Otariidae | Pinniped bocaparvovirus 1 | California sea lion bocavirus 1 | CsIBoV1 | [40] |
Pinniped bocaparvovirus 2 | California sea lion bocavirus 3 | CsIBoV3 | [40] | |
family Hominidae | Primate bocaparvovirus 1 | Human bocavirus 1 and 3 | HBoV1, 3 | [52] |
Primate bocaparvovirus 2 | Human bocavirus 2 and 4 | HBoV2, 4 | [53] | |
family Cercopithecidae | Primate bocaparvovirus 3 | Macca mulatta bocaparvovirus | MmBoV | [54] |
family Muridae | Rodent bocaparvovirus 1 | Rat bocavirus | RBoV | [50] |
Rodent bocaparvovirus 2 | Murine bocavirus | MuBoV | [55] | |
family Bovidae | Ungulate bocaparvovirus 1 | Bovine parvovirus 1 | BPV1 | [56] |
Ungulate bocaparvovirus 6 | Bovine bocaparvovirus 2 | BBoV2 | [57] | |
family Suidae | Ungulate bocaparvovirus 2 | Porcine bocavirus 1 | PBoV1 | [16] |
Ungulate bocaparvovirus 3 | Porcine bocavirus SX | PBoVsx | [58] | |
Ungulate bocaparvovirus 4 | Porcine bocavirus H18 | PBoVh18 | [59] | |
Ungulate bocaparvovirus 5 | Porcine bocavirus 3 | PBoV3 | [60] | |
family Camelidae | Ungulate bocaparvovirus 7 | Dromedary camel bocaparvovirus 1 | DBoV1 | [61] |
Ungulate bocaparvovirus 8 | Dromedary camel bocaparvovirus 2 | DBoV2 | [61] | |
Ungulate bocaparvovirus 9 | Vicugna pacos bocaparvovirus | VpBoV | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prpić, J.; Keros, T.; Božiković, M.; Kamber, M.; Jemeršić, L. Current Insights into Porcine Bocavirus (PBoV) and Its Impact on the Economy and Public Health. Vet. Sci. 2024, 11, 677. https://doi.org/10.3390/vetsci11120677
Prpić J, Keros T, Božiković M, Kamber M, Jemeršić L. Current Insights into Porcine Bocavirus (PBoV) and Its Impact on the Economy and Public Health. Veterinary Sciences. 2024; 11(12):677. https://doi.org/10.3390/vetsci11120677
Chicago/Turabian StylePrpić, Jelena, Tomislav Keros, Margarita Božiković, Magda Kamber, and Lorena Jemeršić. 2024. "Current Insights into Porcine Bocavirus (PBoV) and Its Impact on the Economy and Public Health" Veterinary Sciences 11, no. 12: 677. https://doi.org/10.3390/vetsci11120677
APA StylePrpić, J., Keros, T., Božiković, M., Kamber, M., & Jemeršić, L. (2024). Current Insights into Porcine Bocavirus (PBoV) and Its Impact on the Economy and Public Health. Veterinary Sciences, 11(12), 677. https://doi.org/10.3390/vetsci11120677