A Polysaccharide-Based Oral-Vaccine Delivery System and Adjuvant for the Influenza Virus Vaccine
<p>Characterization of InAc-Inf-A-NPs: (<b>A</b>) the mean particle size distribution was measured using DLS; (<b>B</b>) Zeta potential shows the surface charge of InAc-Inf-A-NPs a slightly negative or neutral (−0.9 ± 0.2 mV); (<b>C</b>) the morphology of InAc-Inf-A-NPs were spherical particles with a diameter of ~500 nm as shown by scanning electron microscopy (SEM).</p> "> Figure 2
<p>Efficacy of InAc-NPs in preventing premature release of the encapsulated antigen. InAc-NPs containing Fluoresceine Sodium dye as the encapsulated antigen were dispersed in DI Water, Simulated Gastric Fluid (SGF), or Simulated Intestinal Fluid (SIF). Suspension was incubated in an orbital shaker at a speed of 100 rpm at 37 °C for 24 h. Fluorescein concentration in the supernatant solution at different time points was measured by fluorimeter and % cumulated release was calculated by comparing its fluorescent intensity with 100% release of Fluoresceine Sodium from NPs dissolved in 100% acetone or DMF.</p> "> Figure 3
<p>InAc-FITC-Ova-NPs uptake by murine macrophages. The InAc-FITC-Ova-NPs or PLGA-FITC-Ova-NPs each with 25 µg equivalent to FITC-Ova were incubated with wild-type macrophages. After 1 h incubation, the cells were analyzed by flow cytometry for the number of cells having the antigen (FITC-Ova, green fluorescence) and the relative amount of antigen per cell by mean fluorescent intensity (MFI).</p> "> Figure 4
<p>Fold change in Inf-A specific IgG (panel (<b>A</b>)) and IgA (panel (<b>B</b>)) in the serum following oral vaccination. BALB/c mice were vaccinated by oral administration of saline, Influenza A peptide alone in saline, or Influenza A peptide encapsulated in InAc-NPs (InAc-Inf-A-NPs). Two doses were given at one-week intervals. Blood was collected on day 0, day 7, and day 35 post-first vaccination. Panel (<b>A</b>) shows fold change in Inf-A-specific IgG tier at day 0, day 7-, and 35 days post-first vaccination while Panel (<b>B</b>) shows fold change in Inf-A-specific IgA tiers in serum at 35 days post-first vaccination. * Shows a significant difference at a 95% level of significance (<span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>The concentration of total IgA (panel (<b>A</b>)) and Inf-A specific IgA (panel (<b>B</b>)) in the tissues following oral vaccination. BALB/c mice were orally vaccinated with two doses of saline, Influenza A peptide alone in saline, or InAc-Inf-A-NPs one week apart. Following five weeks of the first vaccination, the mice were sacrificed, and the tissues such as ileum (small intestine), lungs, and spleen were collected. Collected tissue samples were homogenized in protease inhibitor and normalized for equal protein concentration followed by measuring the concentration of total IgA (panel (<b>A</b>)) and influenza virus A specific IgA (panel (<b>B</b>)) by sandwich ELISA. * shows a significant difference at a 95% level of significance (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Hemagglutination inhibition (HI) titer following oral vaccination. BALB/c mice were orally vaccinated with two doses of saline, Influenza A peptide alone in saline, or InAc-Inf-A-NPs one week apart. After five weeks of the first vaccination, mice were sacrificed, and tissues were collected. The tissue samples were homogenized in protease inhibitor and supernatants of these homogenates were analyzed for the functionality of Influenza A virus-specific antibodies using HI assays. * shows a significant difference at a 95% level of significance (<span class="html-italic">p</span> < 0.05 in HI titer in tissue homogenates.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cells and Animals
2.3. InAc-Influenza A Nanoparticles (InAc-Inf-A-NPs) Formulation
2.4. Analysing the Morphology of InAc-Inf-A-NPs Using a Scanning Electron Microscope (SEM)
2.5. Analysing the Size and Charge of InAc-Inf-A-NPs Using Dynamic Light Scattering (DLS)
2.6. Quantification of Encapsulated Influenza A Nucleoprotein (Inf-A Peptide) in InAc-Inf-A-NPs
2.7. Determining the Stability of InAc-NPs in Gastric Fluids
2.8. Determining the Internalization of InAc-NPs by Murine Macrophages
2.9. Analyzing the Efficacy of InAc-Inf-A-NPs as a Vaccine Adjuvant and an Oral Vaccine Delivery System in Stimulating an Immune Response
2.10. Quantifying the Concentrations of Influenza A-Specific IgG and IgA in Serum Samples
2.11. Quantifying the Total IgA and Influenza A-Specific IgA Concentrations in Tissue Samples from the Small Intestine (Ileum), Lungs, and Spleen
2.12. Hemagglutination Inhibition Assay (HI Assay) to Measure Influenza-A-Specific Antibodies in the Ileum and Lungs
2.13. Statistical Analysis
3. Results
3.1. Physicochemical Characterization of the InAc Polymer and Vaccine Formulation
3.2. InAc-NPs: A Promising Nano-Delivery System for Oral Vaccine Delivery
3.3. InAc-NPs Enhanced the Internalization of Antigens by Murine Macrophages
3.4. InAc-Inf-A-NPs Induced a Strong Antigen-Specific Antibody Response in Serum
3.5. InAc-Inf-A-NPs Induced a Strong Secretory (sIgA) Antibody Response in the Intestine and Lungs
3.6. InAc-Inf-A-NPs Significantly Enhanced Virus-Specific Hemagglutination Inhibition (HI) Titer in Lungs and Intestine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajput, M.K.S.; Kesharwani, S.S.; Kumar, S.; Muley, P.; Narisetty, S.; Tummala, H. Dendritic Cell-Targeted Nanovaccine Delivery System Prepared with an Immune-Active Polymer. ACS Appl. Mater. Interfaces 2018, 10, 27589–27602. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kesharwani, S.S.; Kuppast, B.; Bakkari, M.A.; Tummala, H. Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses. J. Control Release 2017, 261, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Foged, C. Nanoparticles for mucosal vaccine delivery. In Nanoengineered Biomaterials for Advanced Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2020; pp. 603–646. [Google Scholar]
- Freihorst, J.; Ogra, P.L. Mucosal immunity and viral infections. Ann. Med. 2001, 33, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Jazayeri, S.D.; Lim, H.X.; Shameli, K.; Yeap, S.K.; Poh, C.L. Nano and Microparticles as Potential Oral Vaccine Carriers and Adjuvants Against Infectious Diseases. Front. Pharmacol. 2021, 12, 682286. [Google Scholar] [CrossRef] [PubMed]
- Bergelson, J.M. Virus interactions with mucosal surfaces: Alternative receptors, alternative pathways. Curr. Opin. Microbiol. 2003, 6, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Neutra, M.R.; Pringault, E.; Kraehenbuhl, J.-P. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu. Rev. Immunol. 1996, 14, 275–300. [Google Scholar] [CrossRef]
- Fragoso-Saavedra, M.; Vega-López, M.A. Induction of mucosal immunity against pathogens by using recombinant baculoviral vectors: Mechanisms, advantages, and limitations. J. Leukoc. Biol. 2020, 108, 835–850. [Google Scholar] [CrossRef]
- Holmgren, J.; Svennerholm, A.-M. Vaccines against mucosal infections. Curr. Opin. Immunol. 2012, 24, 343–353. [Google Scholar] [CrossRef]
- Li, Y.; Jin, L.; Chen, T. The effects of secretory IgA in the mucosal immune system. BioMed Res. Int. 2020, 2020, 2032057. [Google Scholar] [CrossRef]
- Lamichhane, A.; Azegami, T.; Kiyono, H. The mucosal immune system for vaccine development. Vaccine 2014, 32, 6711–6723. [Google Scholar] [CrossRef]
- Van der Weken, H.; Cox, E.; Devriendt, B. Advances in oral subunit vaccine design. Vaccines 2021, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.H.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm. 2013, 447, 75–93. [Google Scholar] [CrossRef] [PubMed]
- Kunisawa, J.; Kurashima, Y.; Kiyono, H. Gut-associated lymphoid tissues for the development of oral vaccines. Adv. Drug Deliv. Rev. 2012, 64, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Pavot, V.; Rochereau, N.; Genin, C.; Verrier, B.; Paul, S. New insights in mucosal vaccine development. Vaccine 2012, 30, 142–154. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, S.; Wang, Y. Recent advances in the production of recombinant subunit vaccines in Pichia pastoris. Bioengineered 2016, 7, 155–165. [Google Scholar] [CrossRef]
- Behmard, E.; Soleymani, B.; Najafi, A.; Barzegari, E. Immunoinformatic design of a COVID-19 subunit vaccine using entire structural immunogenic epitopes of SARS-CoV-2. Sci. Rep. 2020, 10, 20864. [Google Scholar] [CrossRef]
- Moyle, P.M.; Toth, I. Modern Subunit Vaccines: Development, Components, and Research Opportunities. ChemMedChem 2013, 8, 360–376. [Google Scholar] [CrossRef]
- Muley, P.; Kumar, S.; El Kourati, F.; Kesharwani, S.S.; Tummala, H. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route. Int. J. Pharm. 2016, 500, 32–41. [Google Scholar] [CrossRef]
- Bakkari, M.A.; Valiveti, C.K.; Kaushik, R.S.; Tummala, H. Toll-like receptor-4 (TLR4) agonist-based intranasal nanovaccine delivery system for inducing systemic and mucosal immunity. Mol. Pharm. 2021, 18, 2233–2241. [Google Scholar] [CrossRef]
- Kumar, S.; Kesharwani, S.S.; Kuppast, B.; Rajput, M.; Ali Bakkari, M.; Tummala, H. Discovery of inulin acetate as a novel immune-active polymer and vaccine adjuvant: Synthesis, material characterization, and biological evaluation as a toll-like receptor-4 agonist. J. Mater. Chem. B 2016, 4, 7950–7960. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Erdogan, A.; Rao, S.S. How to assess regional and whole gut transit time with wireless motility capsule. J. Neurogastroenterol. Motil. 2014, 20, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, L.; Syedbasha, M.; Vogt, D.; Hollenstein, Y.; Hartmann, J.; Linnik, J.E.; Egli, A. An optimized hemagglutination inhibition (HI) assay to quantify influenza-specific antibody titers. JoVE (J. Vis. Exp.) 2017, 130, e55833. [Google Scholar]
- Zuniga, E.I.; McGavern, D.B.; Oldstone, M.B.A. Antigen Presentation. In Encyclopedia of Virology, 3rd ed.; Mahy, B.W.J., Van Regenmortel, M.H.V., Eds.; Academic Press: Oxford, UK, 2008; pp. 121–126. [Google Scholar] [CrossRef]
- Muschaweckh, A.; Buchholz, V.R.; Fellenzer, A.; Hessel, C.; König, P.A.; Tao, S.; Tao, R.; Heikenwälder, M.; Busch, D.H.; Korn, T.; et al. Antigen-dependent competition shapes the local repertoire of tissue-resident memory CD8+ T cells. J. Exp. Med. 2016, 213, 3075–3086. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Moon, H.B.; Kim, K.; Lee, K.Y. Antigen dose governs the shaping of CTL repertoires in vitro and in vivo. Int. Immunol. 2006, 18, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.J.; Suh, H.; Li, A.V.; Ockenhouse, C.F.; Yadava, A.; Irvine, D.J. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc. Natl. Acad. Sci. USA 2012, 109, 1080–1085. [Google Scholar] [CrossRef]
- Irvine, D.J.; Swartz, M.A.; Szeto, G.L. Engineering synthetic vaccines using cues from natural immunity. Nat. Mater. 2013, 12, 978–990. [Google Scholar] [CrossRef]
- Trombetta, C.M.; Remarque, E.J.; Mortier, D.; Montomoli, E. Comparison of hemagglutination inhibition, single radial hemolysis, virus neutralization assays, and ELISA to detect antibody levels against seasonal influenza viruses. Influenza Other Respir. Viruses 2018, 12, 675–686. [Google Scholar] [CrossRef]
- Comin, A.; Toft, N.; Stegeman, A.; Klinkenberg, D.; Marangon, S. Serological diagnosis of avian influenza in poultry: Is the haemagglutination inhibition test really the ‘gold standard’? Influenza Other Respir. Viruses 2013, 7, 257–264. [Google Scholar] [CrossRef]
- Levine, M.M. Can needle-free administration of vaccines become the norm in global immunization? Nat. Med. 2003, 9, 99–103. [Google Scholar] [CrossRef]
- Kwong, K.W.-Y.; Xin, Y.; Lai, N.C.-Y.; Sung, J.C.-C.; Wu, K.-C.; Hamied, Y.K.; Sze, E.T.-P.; Lam, D.M.-K. Oral Vaccines: A Better Future of Immunization. Vaccines 2023, 11, 1232. [Google Scholar] [CrossRef]
- Sensoy, I. A review on the food digestion in the digestive tract and the used in vitro models. Curr. Res. Food Sci. 2021, 4, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Doran, S.; Jones, K.L.; Andrews, J.M.; Horowitz, M. Effects of meal volume and posture on gastric emptying of solids and appetite. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 275, R1712–R1718. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.; Hugot, J.P.; Barreau, F. Peyer’s Patches: The Immune Sensors of the Intestine. Int. J. Inflam. 2010, 2010, 823710. [Google Scholar] [CrossRef] [PubMed]
- Dumitriu, S.; Dumitriu, S. Polymeric Biomaterials; Marcel Dekker: New York, NY, USA, 1994. [Google Scholar]
- Afinjuomo, F.; Abdella, S.; Youssef, S.H.; Song, Y.; Garg, S. Inulin and Its Application in Drug Delivery. Pharmaceuticals 2021, 14, 855. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, J.A.; Pereira, M.C. PLGA Based Drug Carrier and Pharmaceutical Applications: The Most Recent Advances. Pharmaceutics 2020, 12, 903. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.L.; Soema, P.C.; Slütter, B.; Ossendorp, F.; Jiskoot, W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum. Vaccines Immunother. 2016, 12, 1056–1069. [Google Scholar] [CrossRef]
- Reed, S.G.; Hsu, F.-C.; Carter, D.; Orr, M.T. The science of vaccine adjuvants: Advances in TLR4 ligand adjuvants. Curr. Opin. Immunol. 2016, 41, 85–90. [Google Scholar] [CrossRef]
- Skjesol, A.; Yurchenko, M.; Bösl, K.; Gravastrand, C.; Nilsen, K.E.; Grøvdal, L.M.; Agliano, F.; Patane, F.; Lentini, G.; Kim, H.; et al. The TLR4 adaptor TRAM controls the phagocytosis of Gram-negative bacteria by interacting with the Rab11-family interacting protein 2. PLoS Pathog. 2019, 15, e1007684. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Syed, R.; Alshehri, M. Size-Dependent Phagocytic Uptake and Immunogenicity of Gliadin Nanoparticles. Polymers 2020, 12, 2576. [Google Scholar] [CrossRef]
- Petrova, V.N.; Russell, C.A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 2018, 16, 47–60. [Google Scholar] [CrossRef]
- Tan, M.P.; Tan, W.S.; Mohamed Alitheen, N.B.; Yap, W.B. M2e-Based Influenza Vaccines with Nucleoprotein: A Review. Vaccines 2021, 9, 739. [Google Scholar] [CrossRef]
- Crowe, S.R.; Miller, S.C.; Shenyo, R.M.; Woodland, D.L. Vaccination with an acidic polymerase epitope of influenza virus elicits a potent antiviral T cell response but delayed clearance of an influenza virus challenge. J. Immunol. 2005, 174, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Vemula, S.V.; Sayedahmed, E.E.; Sambhara, S.; Mittal, S.K. Vaccine approaches conferring cross-protection against influenza viruses. Expert Rev. Vaccines 2017, 16, 1141–1154. [Google Scholar] [CrossRef] [PubMed]
- Epstein, S.L.; Kong, W.P.; Misplon, J.A.; Lo, C.Y.; Tumpey, T.M.; Xu, L.; Nabel, G.J. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine 2005, 23, 5404–5410. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Kang, J.O.; Kim, J.Y.; Jung, H.E.; Lee, H.K.; Chang, J. Single mucosal vaccination targeting nucleoprotein provides broad protection against two lineages of influenza B virus. Antivir. Res. 2019, 163, 19–28. [Google Scholar] [CrossRef]
- Leroux-Roels, I.; Waerlop, G.; Tourneur, J.; De Boever, F.; Maes, C.; Bruhwyler, J.; Guyon-Gellin, D.; Moris, P.; Del Campo, J.; Willems, P.; et al. Randomized, Double-Blind, Reference-Controlled, Phase 2a Study Evaluating the Immunogenicity and Safety of OVX836, A Nucleoprotein-Based Influenza Vaccine. Front. Immunol. 2022, 13, 852904. [Google Scholar] [CrossRef]
- Leroux-Roels, I.; Willems, P.; Waerlop, G.; Janssens, Y.; Tourneur, J.; De Boever, F.; Bruhwyler, J.; Alhatemi, A.; Jacobs, B.; Nicolas, F.; et al. Immunogenicity, safety, and preliminary efficacy evaluation of OVX836, a nucleoprotein-based universal influenza A vaccine candidate: A randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Infect. Dis. 2023, 23, 1360–1369. [Google Scholar] [CrossRef]
- Soema, P.C.; Kompier, R.; Amorij, J.-P.; Kersten, G.F. Current and next generation influenza vaccines: Formulation and production strategies. Eur. J. Pharm. Biopharm. 2015, 94, 251–263. [Google Scholar] [CrossRef]
- Mestecky, J.; Russell, M.W.; Jackson, S.; Brown, T.A. The human IgA system: A reassessment. Clin. Immunol. Immunopathol. 1986, 40, 105–114. [Google Scholar] [CrossRef]
- Leong, K.W.; Ding, J.L. The Unexplored Roles of Human Serum IgA. DNA Cell Biol. 2014, 33, 823–829. [Google Scholar] [CrossRef]
- Loh, R.K.; Vale, S.; McLean-Tooke, A. Quantitative serum immunoglobulin tests. Aust. Fam. Physician 2013, 42, 195–198. [Google Scholar] [PubMed]
- Externest, D.; Meckelein, B.; Schmidt, M.A.; Frey, A. Correlations between antibody immune responses at different mucosal effector sites are controlled by antigen type and dosage. Infect. Immun. 2000, 68, 3830–3839. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, B.; Tomela, K.; Olejnik-Schmidt, A.; Mackiewicz, A.; Schmidt, M. Secretory IgA in Intestinal Mucosal Secretions as an Adaptive Barrier against Microbial Cells. Int. J. Mol. Sci. 2020, 21, 9254. [Google Scholar] [CrossRef] [PubMed]
- Reber, A.; Katz, J. Immunological assessment of influenza vaccines and immune correlates of protection. Expert. Rev. Vaccines 2013, 12, 519–536. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.E.; Lund, O.; Nielsen, M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006, 2, 2. [Google Scholar] [CrossRef]
- Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017, 45, W24–W29. [Google Scholar] [CrossRef]
Time (Minutes) | Flow Rate (mL/min) | Mobile Phase-A | Mobile Phase-B |
---|---|---|---|
0.0 | 0.7 | 80.0% | 20.0% |
5.0 | 0.7 | 25.0% | 75.0% |
10.0 | 0.7 | 80.0% | 20.0% |
S.No. | Treatment Groups | Mean Fluorescence Intensity |
---|---|---|
1. | Media | 5678.48 ± 346.15 |
2. | PLGA-FITC-Ova-NPs | 21,828.27 ± 2018.09 * |
3. | InAc-FITC-Ova-NPs | 160,497.5 ± 17,382.03 *,** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valiveti, C.K.; Rajput, M.; Thakur, N.; Momin, T.; Bhowmik, M.; Tummala, H. A Polysaccharide-Based Oral-Vaccine Delivery System and Adjuvant for the Influenza Virus Vaccine. Vaccines 2024, 12, 1121. https://doi.org/10.3390/vaccines12101121
Valiveti CK, Rajput M, Thakur N, Momin T, Bhowmik M, Tummala H. A Polysaccharide-Based Oral-Vaccine Delivery System and Adjuvant for the Influenza Virus Vaccine. Vaccines. 2024; 12(10):1121. https://doi.org/10.3390/vaccines12101121
Chicago/Turabian StyleValiveti, Chaitanya K., Mrigendra Rajput, Neelu Thakur, Tooba Momin, Malabika Bhowmik, and Hemachand Tummala. 2024. "A Polysaccharide-Based Oral-Vaccine Delivery System and Adjuvant for the Influenza Virus Vaccine" Vaccines 12, no. 10: 1121. https://doi.org/10.3390/vaccines12101121
APA StyleValiveti, C. K., Rajput, M., Thakur, N., Momin, T., Bhowmik, M., & Tummala, H. (2024). A Polysaccharide-Based Oral-Vaccine Delivery System and Adjuvant for the Influenza Virus Vaccine. Vaccines, 12(10), 1121. https://doi.org/10.3390/vaccines12101121