Neoantigen Identification and Dendritic Cell-Based Vaccines for Lung Cancer Immunotherapy
<p>Schematic view of how tumor-specific antigens (neoantigens) initiate both innate and adaptive immune responses. Macrophages and natural killer (NK) cells participate in the innate response, directly targeting tumor cells. DCs present neoantigens via MHC class I molecules to activate cytotoxic T lymphocytes (CTLs), inducing tumor cell destruction. Simultaneously, DCs present antigens via MHC class II to T helper lymphocytes, prompting a cytokine release that amplifies CTL and B-cell activity. This intricate interplay unleashes a robust adaptive immune response, bolstered by various effectors like cytokines, macrophages, and NK cells. DC vaccines directly deliver neoantigen to DCs, facilitating antigen presentation to T cells and fostering a vigorous immune reaction against tumors. This orchestrated immune response, mediated by CTLs, T helper cells, B cells, and other effectors, underpins effective anti-tumor immunity, crucial for combating cancer progression(created with BioRender.com).</p> "> Figure 2
<p>Blockades of immune checkpoints such as PD1, CTLA-4, TIM-3, LAG-3, and TIGIT have been shown to improve the effectiveness of DC therapy. However, excessive activation of these checkpoints can actually hinder the function of DCs and dampen the anti-tumor immune responses. Various factors, including immune blockades and other elements, have an impact on the efficacy of DC therapy. Additionally, the failure and suppression of DC therapy can be influenced by factors like the tumor microenvironment (TME), immune tolerance, DC maturation, route of administration, and patient selection.</p> "> Figure 3
<p>Schematic illustration of NeoAg lung cancer immunotherapy. The NeoAgs are isolated from lung cancer patient blood cells and tumor tissue. In silico methods identify major population NeoAgs. Immunotherapies like cancer vaccines use NeoAgs. Peptides, DNA, RNA, and DCs make up these cancer vaccines. In silico-generated NeoAgs are given to lung cancer patients, but personalized NeoAgs are given to the same patient. Cytokines, monoclonal antibodies against CD3 and CD28, and other reagents induce T-cell proliferation from a patient’s peripheral blood or tumor tissues. Co-culturing T cells with primed APCs and genetically engineering immune cells with TCRs or CARs produces NeoAgs-specific T lymphocytes. After T-cell expansion, lymphodepleted patients receive T-cell products to stimulate an immune response against tumors.</p> ">
Abstract
:1. Introduction
2. Immunotherapy in Lung Cancer
2.1. Genetic Vaccine
2.1.1. DNA Vaccines
2.1.2. RNA Vaccines
2.2. Virus-Based Vaccines/Recombinant Viral Vectors
2.3. DC-Based Vaccines/Cell-Based Vaccines
3. Current Progress in Cancer Vaccine Delivery Systems
3.1. Antigen Delivery Systems
3.2. Nanoparticles as Vaccine Delivery Systems
3.3. Immune Blockade
4. Ongoing Challenges in the Development of Lung Cancer Immunotherapy and Therapeutic Cancer Vaccines
5. Common Cancer Antigens in Lung Cancer
5.1. Personalized Vaccines Targeting Neoantigens
5.1.1. Target Selection and Validation
5.1.2. Identifying Immunogenic Neoantigens
6. DC-Based Immunotherapy in Lung Cancer
6.1. Dendritic Cell-Based Therapy in NSCLC
6.2. DC/Cytokine-Induced Killer (CIK) Cells Therapy in NSCLC
6.3. Activated Killer T Cells (AKT)—DC Therapy in NSCLC
6.4. DC-Based Therapy in SCLC
7. Limitations of Vaccines Based on Neoantigens
8. Conclusions
9. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Primers 2021, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Kaumaya, P.T. B-cell epitope peptide cancer vaccines: A new paradigm for combination immunotherapies with novel checkpoint peptide vaccine. Future Oncol. 2020, 16, 1767–1791. [Google Scholar] [CrossRef] [PubMed]
- Antonarelli, G.; Corti, C.; Tarantino, P.; Ascione, L.; Cortes, J.; Romero, P.; Mittendorf, E.; Disis, M.; Curigliano, G. Therapeutic cancer vaccines revamping: Technology advancements and pitfalls. Ann. Oncol. 2021, 32, 1537–1551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, Q.; Li, K.; Yin, H.; Zheng, J.N. Composite peptide-based vaccines for cancer immunotherapy. Int. J. Mol. Med. 2015, 35, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Amara, S.; Tiriveedhi, V. The five immune forces impacting DNA-based cancer immunotherapeutic strategy. Int. J. Mol. Sci. 2017, 18, 650. [Google Scholar] [CrossRef] [PubMed]
- Coulie, P.G.; Van den Eynde, B.J.; Van Der Bruggen, P.; Boon, T. Tumour antigens recognized by T lymphocytes: At the core of cancer immunotherapy. Nat. Rev. Cancer 2014, 14, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Goedegebuure, S.; Gillanders, W.E. Preclinical and clinical development of neoantigen vaccines. Ann. Oncol. 2017, 28, xii11–xii17. [Google Scholar] [CrossRef]
- Gatti-Mays, M.E.; Redman, J.M.; Collins, J.M.; Bilusic, M. Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations. Hum. Vaccines Immunother. 2017, 13, 2561–2574. [Google Scholar] [CrossRef]
- Tiptiri-Kourpeti, A.; Spyridopoulou, K.; Pappa, A.; Chlichlia, K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol. Ther. 2016, 165, 32–49. [Google Scholar] [CrossRef] [PubMed]
- Gasser, M.; Waaga-Gasser, A.M. Therapeutic antibodies in cancer therapy. Adv. Exp. Med. Biol. 2016, 917, 95–120. [Google Scholar] [PubMed]
- Robson, N.C.; Hoves, S.; Maraskovsky, E.; Schnurr, M. Presentation of tumour antigens by dendritic cells and challenges faced. Curr. Opin. Immunol. 2010, 22, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Harashima, N.; Kajigaya, S.; Yokoyama, H.; Cherkasova, E.; McCoy, J.P.; Hanada, K.-i.; Mena, O.; Kurlander, R.; Abdul, T. Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J. Clin. Investig. 2008, 118, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Savina, A.; Amigorena, S. Phagocytosis and antigen presentation in dendritic cells. Immunol. Rev. 2007, 219, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Melief, C.J. Cancer immunotherapy by dendritic cells. Immunity 2008, 29, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.J.; Svensson-Arvelund, J.; Lubitz, G.S.; Marabelle, A.; Melero, I.; Brown, B.D.; Brody, J.D. Cancer vaccines: The next immunotherapy frontier. Nat. Cancer 2022, 3, 911–926. [Google Scholar] [CrossRef] [PubMed]
- Barbier, A.J.; Jiang, A.Y.; Zhang, P.; Wooster, R.; Anderson, D.G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 2022, 40, 840–854. [Google Scholar] [CrossRef] [PubMed]
- Bravo Montenegro, G.; Farid, S.; Liu, S.V. Immunotherapy in lung cancer. J. Surg. Oncol. 2021, 123, 718–729. [Google Scholar] [CrossRef]
- Saxena, M.; van der Burg, S.H.; Melief, C.J.M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021, 21, 360–378. [Google Scholar] [CrossRef]
- Lopes, A.; Vandermeulen, G.; Préat, V. Cancer DNA vaccines: Current preclinical and clinical developments and future perspectives. J. Exp. Clin. Cancer Res. 2019, 38, 156. [Google Scholar] [CrossRef] [PubMed]
- Occhipinti, S.; Sponton, L.; Rolla, S.; Caorsi, C.; Novarino, A.; Donadio, M.; Bustreo, S.; Satolli, M.A.; Pecchioni, C.; Marchini, C. Chimeric Rat/Human HER2 Efficiently Circumvents HER2 Tolerance in Cancer PatientsChimeric HER2 Vaccines Overcome Cancer Patient’s T-cell Dysfunction. Clin. Cancer Res. 2014, 20, 2910–2921. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Dai, T.; Wei, Y.; Zhang, L.; Zheng, M.; Zhou, F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct. Target. Ther. 2020, 5, 237. [Google Scholar] [CrossRef]
- Paston, S.J.; Brentville, V.A.; Symonds, P.; Durrant, L.G. Cancer vaccines, adjuvants, and delivery systems. Front. Immunol. 2021, 12, 627932. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Hoai, T.; Pezzutto, A.; Westermann, J. Gene gun Her2/neu DNA vaccination: Evaluation of vaccine efficacy in a syngeneic Her2/neu mouse tumor model. Methods Mol. Biol. 2022, 2521, 129–154. [Google Scholar]
- Trimble, C.; Lin, C.-T.; Hung, C.-F.; Pai, S.; Juang, J.; He, L.; Gillison, M.; Pardoll, D.; Wu, L.; Wu, T.-C. Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine 2003, 21, 4036–4042. [Google Scholar] [CrossRef]
- Shetty, K.; Ott, P.A. Personal neoantigen vaccines for the treatment of cancer. Annu. Rev. Cancer Biol. 2021, 5, 259–276. [Google Scholar] [CrossRef]
- Kranz, L.M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K.C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Benjamin, R.; Kim, M.; Conry, R.; Curiel, D. Optimization of methods to achieve mRNA-mediated transfection of tumor cells in vitro and in vivo employing cationic liposome vectors. Cancer Gene Ther. 1994, 1, 245–252. [Google Scholar]
- Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.-P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017, 547, 222–226. [Google Scholar] [CrossRef]
- Matsushita, H.; Vesely, M.D.; Koboldt, D.C.; Rickert, C.G.; Uppaluri, R.; Magrini, V.J.; Arthur, C.D.; White, J.M.; Chen, Y.-S.; Shea, L.K. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 2012, 482, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Larocca, C.; Schlom, J. Viral vector-based therapeutic cancer vaccines. Cancer J. 2011, 17, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Hollingsworth, R.E.; Jansen, K. Turning the corner on therapeutic cancer vaccines. Npj Vaccines 2019, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.S.; Villadangos, J.A. Regulation of antigen presentation and cross-presentation in the dendritic cell network: Facts, hypothesis, and immunological implications. Adv. Immunol. 2005, 86, 241–305. [Google Scholar] [PubMed]
- Terbuch, A.; Lopez, J. Next generation cancer vaccines—Make it personal! Vaccines 2018, 6, 52. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Roche, P.A. Macropinocytosis in phagocytes: Regulation of MHC class-II-restricted antigen presentation in dendritic cells. Front. Physiol. 2015, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Berzofsky, J.A.; Terabe, M.; Oh, S.; Belyakov, I.M.; Ahlers, J.D.; Janik, J.E.; Morris, J.C. Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J. Clin. Investig. 2004, 113, 1515–1525. [Google Scholar] [CrossRef]
- Steinman, R.M.; Dhodapkar, M. Active immunization against cancer with dendritic cells: The near future. Int. J. Cancer 2001, 94, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Nestle, F.O. Dendritic cell vaccination for cancer therapy. Oncogene 2000, 19, 6673–6679. [Google Scholar] [CrossRef]
- Hsu, F.J.; Benike, C.; Fagnoni, F.; Liles, T.M.; Czerwinski, D.; Taidi, B.; Engleman, E.G.; Levy, R. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 1996, 2, 52–58. [Google Scholar] [CrossRef]
- Donninger, H.; Li, C.; Eaton, J.W.; Yaddanapudi, K. Cancer vaccines: Promising therapeutics or an unattainable dream. Vaccines 2021, 9, 668. [Google Scholar] [CrossRef] [PubMed]
- Hailemichael, Y.; Dai, Z.; Jaffarzad, N.; Ye, Y.; Medina, M.A.; Huang, X.-F.; Dorta-Estremera, S.M.; Greeley, N.R.; Nitti, G.; Peng, W. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat. Med. 2013, 19, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Khong, H.; Overwijk, W.W. Adjuvants for peptide-based cancer vaccines. J. Immunother. Cancer 2016, 4, 56. [Google Scholar] [CrossRef] [PubMed]
- Walter, E.; Dreher, D.; Kok, M.; Thiele, L.; Kiama, S.G.; Gehr, P.; Merkle, H.P. Hydrophilic poly (DL-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells. J. Control. Release 2001, 76, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Serda, R.E. Particle platforms for cancer immunotherapy. Int. J. Nanomed. 2013, 8, 1683–1696. [Google Scholar] [CrossRef] [PubMed]
- Chittasupho, C.; Lirdprapamongkol, K.; Kewsuwan, P.; Sarisuta, N. Targeted delivery of doxorubicin to A549 lung cancer cells by CXCR4 antagonist conjugated PLGA nanoparticles. Eur. J. Pharm. Biopharm. 2014, 88, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.-Y.; Luan, X.; Xu, J.-R.; Liu, Y.-R.; Lu, Q.; Wang, C.; Liu, H.-J.; Gao, Y.-G.; Chen, H.-Z.; Fang, C. Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis. Biomaterials 2014, 35, 3060–3070. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, C.; Zhang, Y.; Zhen, X.; Wu, W.; Jiang, X. Delivery of platinum (IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles. Biomaterials 2014, 35, 6439–6453. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.-F.; Jie, M.-M.; Li, B.-S.; Hu, C.-J.; Xie, R.; Tang, B.; Yang, S.-M. Peptide-based treatment: A promising cancer therapy. J. Immunol. Res. 2015, 2015, 761820. [Google Scholar] [CrossRef]
- Bosteels, V.; Maréchal, S.; De Nolf, C.; Rennen, S.; Maelfait, J.; Tavernier, S.J.; Vetters, J.; Van De Velde, E.; Fayazpour, F.; Deswarte, K. LXR signaling controls homeostatic dendritic cell maturation. Sci. Immunol. 2023, 8, eadd3955. [Google Scholar] [CrossRef]
- Prasad, V.; Kaestner, V. Nivolumab and pembrolizumab: Monoclonal antibodies against programmed cell death-1 (PD-1) that are interchangeable. Proc. Semin. Oncol. 2017, 55, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.T.; Lee, J.Y.; Lim, H.; Lee, S.H.; Moon, Y.J.; Pyo, H.J.; Ryu, S.E.; Shin, W.; Heo, Y.-S. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lipson, E.J.; Drake, C.G. Ipilimumab: An Anti-CTLA-4 Antibody for Metastatic MelanomaIpilimumab for Metastatic Melanoma. Clin. Cancer Res. 2011, 17, 6958–6962. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.J.; Moreno, V.; Bang, Y.-J.; Hong, M.H.; Patnaik, A.; Trigo, J.; Szpurka, A.M.; Yamamoto, N.; Doi, T.; Fu, S. Blocking TIM-3 in treatment-refractory advanced solid tumors: A phase Ia/b study of LY3321367 with or without an anti-PD-L1 antibody. Clin. Cancer Res. 2021, 27, 2168–2178. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.; Parisi, C.; Barlesi, F. Anti-TIGIT therapies for solid tumors: A systematic review. ESMO Open 2023, 8, 101184. [Google Scholar] [CrossRef] [PubMed]
- Tagliamento, M.; Bironzo, P.; Novello, S. New emerging targets in cancer immunotherapy: The role of VISTA. ESMO Open 2020, 4, e000683. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Ciuleanu, T.-E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 2018, 378, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.; Kim, T.W.; Bendell, J.; Argilés, G.; Tebbutt, N.C.; Di Bartolomeo, M.; Falcone, A.; Fakih, M.; Kozloff, M.; Segal, N.H. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): A multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2019, 20, 849–861. [Google Scholar] [CrossRef]
- Hung, A.L.; Maxwell, R.; Theodros, D.; Belcaid, Z.; Mathios, D.; Luksik, A.S.; Kim, E.; Wu, A.; Xia, Y.; Garzon-Muvdi, T. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology 2018, 7, e1466769. [Google Scholar] [CrossRef]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, A.; Maji, A.; Potdar, P.D.; Singh, N.; Parikh, P.; Bisht, B.; Mukherjee, A.; Paul, M.K. Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol. Cancer 2023, 22, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Li, Q.; Zhang, R.; Xie, L.; Shu, Y.; Gao, S.; Wang, P.; Su, X.; Qin, Y.; Wang, Y.; et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct. Target. Ther. 2021, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- First Line IRESSA™ Versus Carboplatin/Paclitaxel in Asia. Available online: https://clinicaltrials.gov/study/NCT00322452 (accessed on 28 April 2024).
- CCL21-Gene Modified Dendritic Cell Vaccine and Pembrolizumab in Treating Patients With Stage IV Non-small Cell Lung Cancer. Available online: https://clinicaltrials.gov/study/NCT03546361 (accessed on 28 April 2024).
- Personalized DC Vaccines in Non Small Cell Lung Cancer. Available online: https://clinicaltrials.gov/study/NCT05195619 (accessed on 28 April 2024).
- Wu, Y.L.; Chu, D.T.; Han, B.; Liu, X.; Zhang, L.; Zhou, C.; Liao, M.; Mok, T.; Jiang, H.; Duffield, E.; et al. Phase III, randomized, open-label, first-line study in Asia of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer: Evaluation of patients recruited from mainland China. Asia Pac. J. Clin. Oncol. 2012, 8, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Personalized DC Vaccine for Postoperative Cancer. Available online: https://clinicaltrials.gov/study/NCT04147078 (accessed on 28 April 2024).
- Study of Autologous CIK Cell Immunotherapy Combination With PD-1 Inhibitor and Chemotherapy in the Advanced NSCLC. Available online: https://clinicaltrials.gov/study/NCT03987867 (accessed on 28 April 2024).
- Anti-PD-1 Alone or Combined With Autologous Cell Therapy in Advanced NSCLC. Available online: https://clinicaltrials.gov/study/NCT03360630 (accessed on 28 April 2024).
- CIK Cell Transfusion Plus Gefitinib As Second Or Third-Line Treatment for Advanced Adenocarcinoma Non-Small Cell Lung Cancer. Available online: https://clinicaltrials.gov/study/NCT01871480 (accessed on 28 April 2024).
- MK2206 and Erlotinib Hydrochloride in Treating Patients With Advanced Non-Small Cell Lung Cancer Who Have Progressed After Previous Response to Erlotinib Hydrochloride Therapy. Available online: https://clinicaltrials.gov/study/NCT01294306 (accessed on 28 April 2024).
- Safety and Efficacy of DC-CIK in Patients With Advanced Non-Small-Cell Lung Cancer With Bone Metastases. Available online: https://clinicaltrials.gov/study/NCT02688686 (accessed on 28 April 2024).
- Neoantigen-primed DC Vaccines Therapy for Refractory Lung Cancer. Available online: https://clinicaltrials.gov/study/NCT03871205 (accessed on 28 April 2024).
- Combination Immunotherapy-Ipilimumab-Nivolumab-Dendritic Cell p53 Vac-Patients With Small Cell Lung Cancer (SCLC). Available online: https://clinicaltrials.gov/study/NCT03406715 (accessed on 28 April 2024).
- Personalized DC Vaccine for Lung Cancer. Available online: https://clinicaltrials.gov/study/NCT02956551 (accessed on 28 April 2024).
- Frankiw, L.; Baltimore, D.; Li, G. Alternative mRNA splicing in cancer immunotherapy. Nat. Rev. Immunol. 2019, 19, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C.; Fu, L. Neoantigens: Promising targets for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, R.; Cadieux, E.L.; Salgado, R.; Bakir, M.A.; Moore, D.A.; Hiley, C.T.; Lund, T.; Tanić, M.; Reading, J.L.; Joshi, K. Neoantigen-directed immune escape in lung cancer evolution. Nature 2019, 567, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, A.M.; Stopfer, L.; Lee, S.; Gaglia, G.; Sandel, D.; Santagata, S.; Lin, N.U.; Trepel, J.B.; White, F.; Jacks, T. Rebalancing protein homeostasis enhances tumor antigen presentation. Clin. Cancer Res. 2019, 25, 6392–6405. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, V.; Smith, K.N.; Forde, P.M.; Niknafs, N.; Bhattacharya, R.; White, J.; Zhang, T.; Adleff, V.; Phallen, J.; Wali, N. Evolution of neoantigen landscape during immune checkpoint blockade in non–small cell lung cancerdynamics of neoantigen landscape during immunotherapy. Cancer Discov. 2017, 7, 264–276. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, C.; Zhai, Z.; Deng, Z.-y.; De Jonge, H.R.; Wu, X.; Ruan, Z. Uridine attenuates obesity, ameliorates hepatic lipid accumulation and modifies the gut microbiota composition in mice fed with a high-fat diet. Food Funct. 2021, 12, 1829–1840. [Google Scholar] [CrossRef]
- Kreiter, S.; Vormehr, M.; Van de Roemer, N.; Diken, M.; Löwer, M.; Diekmann, J.; Boegel, S.; Schrörs, B.; Vascotto, F.; Castle, J.C. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015, 520, 692–696. [Google Scholar] [CrossRef]
- Lee, M.Y.; Jeon, J.W.; Sievers, C.; Allen, C.T. Antigen processing and presentation in cancer immunotherapy. J. Immunother. Cancer 2020, 8, e001111. [Google Scholar] [CrossRef]
- DePeaux, K.; Delgoffe, G.M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol. 2021, 21, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef]
- Hao, J.-J.; Lin, D.-C.; Dinh, H.Q.; Mayakonda, A.; Jiang, Y.-Y.; Chang, C.; Jiang, Y.; Lu, C.-C.; Shi, Z.-Z.; Xu, X. Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma. Nat. Genet. 2016, 48, 1500–1507. [Google Scholar] [CrossRef]
- Levine, A.J.; Jenkins, N.A.; Copeland, N.G. The roles of initiating truncal mutations in human cancers: The order of mutations and tumor cell type matters. Cancer Cell 2019, 35, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Deng, L.; Jackson, K.R.; Talukder, A.H.; Katailiha, A.S.; Bradley, S.D.; Zou, Q.; Chen, C.; Huo, C.; Chiu, Y. Neoantigen vaccination induces clinical and immunologic responses in non-small cell lung cancer patients harboring EGFR mutations. J. Immunother. Cancer 2021, 9, e002531. [Google Scholar] [CrossRef] [PubMed]
- Lennerz, V.; Fatho, M.; Gentilini, C.; Frye, R.A.; Lifke, A.; Ferel, D.; Wölfel, C.; Huber, C.; Wölfel, T. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc. Natl. Acad. Sci. USA 2005, 102, 16013–16018. [Google Scholar] [CrossRef]
- Mandelboim, O.; Berke, G.; Fridkin, M.; Feldman, M.; Eisenstein, M.; Eisenbach, L. CTL induction by a tumour-associated antigen octapeptide derived from a murine lung carcinoma. Nature 1994, 369, 67–71. [Google Scholar] [CrossRef]
- Mandelboim, O.; Vadai, E.; Fridkin, M.; Katz-Hillel, A.; Feldman, M.; Berke, G.; Eisenbach, L. Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides. Nat. Med. 1995, 1, 1179–1183. [Google Scholar] [CrossRef] [PubMed]
- Sensi, M.; Anichini, A. Unique tumor antigens: Evidence for immune control of genome integrity and immunogenic targets for T cell-mediated patient-specific immunotherapy. Clin. Cancer Res. 2006, 12, 5023–5032. [Google Scholar] [CrossRef] [PubMed]
- Blass, E.; Ott, P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 2021, 18, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Greaves, M.; Maley, C.C. Clonal evolution in cancer. Nature 2012, 481, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Ott, P.A.; Wu, C.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 2018, 18, 168–182. [Google Scholar] [CrossRef] [PubMed]
- George, S.; Miao, D.; Demetri, G.D.; Adeegbe, D.; Rodig, S.J.; Shukla, S.; Lipschitz, M.; Amin-Mansour, A.; Raut, C.P.; Carter, S.L.; et al. Loss of PTEN Is Associated with Resistance to Anti-PD-1 Checkpoint Blockade Therapy in Metastatic Uterine Leiomyosarcoma. Immunity 2017, 46, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Verdegaal, E.M.; de Miranda, N.F.; Visser, M.; Harryvan, T.; van Buuren, M.M.; Andersen, R.S.; Hadrup, S.R.; van der Minne, C.E.; Schotte, R.; Spits, H.; et al. Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature 2016, 536, 91–95. [Google Scholar] [CrossRef]
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012, 366, 883–892. [Google Scholar] [CrossRef]
- Hilf, N.; Kuttruff-Coqui, S.; Frenzel, K.; Bukur, V.; Stevanović, S.; Gouttefangeas, C.; Platten, M.; Tabatabai, G.; Dutoit, V.; van der Burg, S.H. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 2019, 565, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Keskin, D.B.; Anandappa, A.J.; Sun, J.; Tirosh, I.; Mathewson, N.D.; Li, S.; Oliveira, G.; Giobbie-Hurder, A.; Felt, K.; Gjini, E. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 2019, 565, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yu, L.; Xu, X.; Yu, S.; Yu, Z. Neoantigen vaccine and neoantigen-specific cell adoptive transfer therapy in solid tumors: Challenges and future directions. Cancer Innov. 2022, 1, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, E.F.; Rajasagi, M.; Ott, P.A.; Brusic, V.; Hacohen, N.; Wu, C.J. HLA-Binding Properties of Tumor Neoepitopes in HumansTumor Neoepitopes in Humans. Cancer Immunol. Res. 2014, 2, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.; Nielsen, M.; Sette, A. T cell epitope predictions. Annu. Rev. Immunol. 2020, 38, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Sarkizova, S.; Klaeger, S.; Le, P.M.; Li, L.W.; Oliveira, G.; Keshishian, H.; Hartigan, C.R.; Zhang, W.; Braun, D.A.; Ligon, K.L. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat. Biotechnol. 2020, 38, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Capietto, A.-H.; Jhunjhunwala, S.; Pollock, S.B.; Lupardus, P.; Wong, J.; Hänsch, L.; Cevallos, J.; Chestnut, Y.; Fernandez, A.; Lounsbury, N. Mutation position is an important determinant for predicting cancer neoantigens. J. Exp. Med. 2020, 217, e20190179. [Google Scholar] [CrossRef] [PubMed]
- Harari, A.; Graciotti, M.; Bassani-Sternberg, M.; Kandalaft, L.E. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat. Rev. Drug Discov. 2020, 19, 635–652. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Brunsvig, P.F.; Kyte, J.A.; Kersten, C.; Sundstrøm, S.; Møller, M.; Nyakas, M.; Hansen, G.L.; Gaudernack, G.; Aamdal, S. Telomerase Peptide Vaccination in NSCLC: A Phase II Trial in Stage III Patients Vaccinated after Chemoradiotherapy and an 8-Year Update on a Phase I/II TrialTelomerase Peptide Vaccination in NSCLC. Clin. Cancer Res. 2011, 17, 6847–6857. [Google Scholar] [CrossRef]
- Butts, C.; Socinski, M.A.; Mitchell, P.L.; Thatcher, N.; Havel, L.; Krzakowski, M.; Nawrocki, S.; Ciuleanu, T.-E.; Bosquée, L.; Trigo, J.M. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2014, 15, 59–68. [Google Scholar] [CrossRef]
- Nemunaitis, J.; Jahan, T.; Ross, H.; Sterman, D.; Richards, D.; Fox, B.; Jablons, D.; Aimi, J.; Lin, A.; Hege, K. Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX® vaccine in advanced-stage non-small-cell lung cancer. Cancer Gene Ther. 2006, 13, 555–562. [Google Scholar] [CrossRef]
- Vansteenkiste, J.F.; Cho, B.C.; Vanakesa, T.; De Pas, T.; Zielinski, M.; Kim, M.S.; Jassem, J.; Yoshimura, M.; Dahabreh, J.; Nakayama, H. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016, 17, 822–835. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Giaccone, G. Why has active immunotherapy not worked in lung cancer? Ann. Oncol. 2015, 26, 2213–2220. [Google Scholar] [CrossRef]
- Kalinski, P.; Urban, J.; Narang, R.; Berk, E.; Wieckowski, E.; Muthuswamy, R. Dendritic cell-based therapeutic cancer vaccines: What we have and what we need. Future Oncol. 2009, 5, 379–390. [Google Scholar] [CrossRef]
- Steinman, R.M.; Cohn, Z.A. Identification of a novel cell type in peripheral lymphoid organs of mice: I. Morphology, quantitation, tissue distribution. J. Exp. Med. 1973, 137, 1142–1162. [Google Scholar] [CrossRef] [PubMed]
- Steinman, R.M.; Banchereau, J. Taking dendritic cells into medicine. Nature 2007, 449, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, A.; Salvi, V.; Soriani, A.; Laffranchi, M.; Sozio, F.; Bosisio, D.; Sozzani, S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell. Mol. Immunol. 2023, 20, 432–447. [Google Scholar] [CrossRef]
- Duong, E.; Fessenden, T.B.; Lutz, E.; Dinter, T.; Yim, L.; Blatt, S.; Bhutkar, A.; Wittrup, K.D.; Spranger, S. Type I interferon activates MHC class I-dressed CD11b+ conventional dendritic cells to promote protective anti-tumor CD8+ T cell immunity. Immunity 2022, 55, 308–323.e309. [Google Scholar] [CrossRef]
- Bloemendal, M.; Bol, K.F.; Boudewijns, S.; Gorris, M.A.; de Wilt, J.H.; Croockewit, S.A.; van Rossum, M.M.; de Goede, A.L.; Petry, K.; Koornstra, R.H. Immunological responses to adjuvant vaccination with combined CD1c+ myeloid and plasmacytoid dendritic cells in stage III melanoma patients. Oncoimmunology 2022, 11, 2015113. [Google Scholar] [CrossRef]
- Patente, T.A.; Pinho, M.P.; Oliveira, A.A.; Evangelista, G.C.; Bergami-Santos, P.C.; Barbuto, J.A. Human dendritic cells: Their heterogeneity and clinical application potential in cancer immunotherapy. Front. Immunol. 2019, 9, 3176. [Google Scholar] [CrossRef] [PubMed]
- Dudek, A.M.; Martin, S.; Garg, A.D.; Agostinis, P. Immature, semi-mature, and fully mature dendritic cells: Toward a DC-cancer cells interface that augments anticancer immunity. Front. Immunol. 2013, 4, 438. [Google Scholar] [CrossRef] [PubMed]
- Fucikova, J.; Palova-Jelinkova, L.; Bartunkova, J.; Spisek, R. Induction of tolerance and immunity by dendritic cells: Mechanisms and clinical applications. Front. Immunol. 2019, 10, 2393. [Google Scholar] [CrossRef] [PubMed]
- Murgaski, A.; Kiss, M.; Van Damme, H.; Kancheva, D.; Vanmeerbeek, I.; Keirsse, J.; Hadadi, E.; Brughmans, J.; Arnouk, S.M.; Hamouda, A.E. Efficacy of CD40 agonists is mediated by distinct cDC subsets and subverted by suppressive macrophages. Cancer Res. 2022, 82, 3785–3801. [Google Scholar] [CrossRef] [PubMed]
- Fong, L.; Hou, Y.; Rivas, A.; Benike, C.; Yuen, A.; Fisher, G.A.; Davis, M.M.; Engleman, E.G. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl. Acad. Sci. USA 2001, 98, 8809–8814. [Google Scholar] [CrossRef] [PubMed]
- Itoh, T.; Ueda, Y.; Kawashima, I.; Nukaya, I.; Fujiwara, H.; Fuji, N.; Yamashita, T.; Yoshimura, T.; Okugawa, K.; Iwasaki, T. Immunotherapy of solid cancer using dendritic cells pulsed with the HLA-A24-restricted peptide of carcinoembryonic antigen. Cancer Immunol. Immunother. 2002, 51, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y.; Itoh, T.; Nukaya, I.; Kawashima, I.; Okugawa, K.; Yano, Y.; Yamamoto, Y.; Naitoh, K.; Shimizu, K.; Imura, K. Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived, HLA-A24-restricted CTL epitope: Clinical outcomes of 18 patients with metastatic gastrointestinal or lung adenocarcinomas. Int. J. Oncol. 2004, 24, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Quoix, E.; Lena, H.; Losonczy, G.; Forget, F.; Chouaid, C.; Papai, Z.; Gervais, R.; Ottensmeier, C.; Szczesna, A.; Kazarnowicz, A. TG4010 immunotherapy and first-line chemotherapy for advanced non-small-cell lung cancer (TIME): Results from the phase 2b part of a randomised, double-blind, placebo-controlled, phase 2b/3 trial. Lancet Oncol. 2016, 17, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Hirschowitz, E.A.; Foody, T.; Hidalgo, G.E.; Yannelli, J.R. Immunization of NSCLC patients with antigen-pulsed immature autologous dendritic cells. Lung Cancer 2007, 57, 365–372. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z. Efficacy and safety of dendritic cells co-cultured with cytokine-induced killer cells immunotherapy for non-small-cell lung cancer. Int. Immunopharmacol. 2015, 28, 22–28. [Google Scholar] [CrossRef]
- Gao, X.; Mi, Y.; Guo, N.; Xu, H.; Xu, L.; Gou, X.; Jin, W. Cytokine-induced killer cells as pharmacological tools for cancer immunotherapy. Front. Immunol. 2017, 8, 774. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ren, B.; Li, H.; Yu, J.; Cao, S.; Hao, X.; Ren, X. Enhanced antitumor effects of DC-activated CIKs to chemotherapy treatment in a single cohort of advanced non-small-cell lung cancer patients. Cancer Immunol. Immunother. 2013, 62, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Bu, X.; Wei, X.; Sun, W.; Xie, X.; Li, C.; Guo, Q.; Zhu, D.; Wei, X.; Gao, D. Dendritic cell immunotherapy combined with cytokine-induced killer cells promotes skewing toward Th2 cytokine profile in patients with metastatic non-small cell lung cancer. Int. Immunopharmacol. 2015, 25, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, X.; Sun, Z.; Li, J.; Zhu, H.; Li, J.; Pang, Y. Dendritic cell vaccine and cytokine-induced killer cell therapy for the treatment of advanced non-small cell lung cancer. Oncol. Lett. 2016, 11, 2605–2610. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Liu, S.; Zhao, Z.; Sun, W.; Wei, X.; Ma, X.; Zhao, P.; Gao, D. Increased cycles of DC/CIK immunotherapy decreases frequency of Tregs in patients with resected NSCLC. Int. Immunopharmacol. 2017, 52, 197–202. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiao, G.; Wang, X.; Song, Y.; Zhou, X.; Jiang, N.; Zhou, L.; Huang, H.; Zhao, J.; Morse, M. Combination of DC/CIK adoptive T cell immunotherapy with chemotherapy in advanced non-small-cell lung cancer (NSCLC) patients: A prospective patients’ preference-based study (PPPS). Clin. Transl. Oncol. 2019, 21, 721–728. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, Y.; Zhou, J.; Pan, X. A clinical study evaluating dendritic and cytokine-induced killer cells combined with concurrent radiochemotherapy for stage IIIB non-small cell lung cancer. Genet. Mol. Res. 2015, 14, 10228–10235. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Iizasa, T.; Ishikawa, A.; Shingyouji, M.; Yoshino, M.; Kimura, M.; Inada, Y.; Matsubayashi, K. Prospective phase II study of post-surgical adjuvant chemo-immunotherapy using autologous dendritic cells and activated killer cells from tissue culture of tumor-draining lymph nodes in primary lung cancer patients. Anticancer Res. 2008, 28, 1229–1238. [Google Scholar] [CrossRef]
- Kimura, H.; Matsui, Y.; Ishikawa, A.; Nakajima, T.; Iizasa, T. Randomized controlled phase III trial of adjuvant chemoimmunotherapy with activated cytotoxic T cells and dendritic cells from regional lymph nodes of patients with lung cancer. Cancer Immunol. Immunother. 2018, 67, 1231–1238. [Google Scholar] [CrossRef]
- Antonia, S.J.; López-Martin, J.A.; Bendell, J.; Ott, P.A.; Taylor, M.; Eder, J.P.; Jäger, D.; Pietanza, M.C.; Le, D.T.; de Braud, F. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): A multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016, 17, 883–895. [Google Scholar] [CrossRef]
- Chung, H.C.; Piha-Paul, S.A.; Lopez-Martin, J.; Schellens, J.H.; Kao, S.; Miller Jr, W.H.; Delord, J.-P.; Gao, B.; Planchard, D.; Gottfried, M. Pembrolizumab after two or more lines of previous therapy in patients with recurrent or metastatic SCLC: Results from the KEYNOTE-028 and KEYNOTE-158 studies. J. Thorac. Oncol. 2020, 15, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Chiappori, A.A.; Soliman, H.; Janssen, W.E.; Antonia, S.J.; Gabrilovich, D.I. INGN-225: A dendritic cell-based p53 vaccine (Ad. p53-DC) in small cell lung cancer: Observed association between immune response and enhanced chemotherapy effect. Expert Opin. Biol. Ther. 2010, 10, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Mirza, N.; Fricke, I.; Chiappori, A.; Thompson, P.; Williams, N.; Bepler, G.; Simon, G.; Janssen, W.; Lee, J.-H. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin. Cancer Res. 2006, 12, 878–887. [Google Scholar] [CrossRef]
- Chiappori, A.A.; Williams, C.C.; Gray, J.E.; Tanvetyanon, T.; Haura, E.B.; Creelan, B.C.; Thapa, R.; Chen, D.-T.; Simon, G.R.; Bepler, G. Randomized-controlled phase II trial of salvage chemotherapy after immunization with a TP53-transfected dendritic cell-based vaccine (Ad. p53-DC) in patients with recurrent small cell lung cancer. Cancer Immunol. Immunother. 2019, 68, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Iclozan, C.; Antonia, S.; Chiappori, A.; Chen, D.-T.; Gabrilovich, D. Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol. Immunother. 2013, 62, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.; Ingels, J.; Van Lint, S.; Vandekerckhove, B.; Vermaelen, K. Dendritic cell-based immunotherapy in lung cancer. Front. Immunol. 2021, 11, 620374. [Google Scholar] [CrossRef]
- Verdijk, P.; Aarntzen, E.H.; Lesterhuis, W.J.; Boullart, A.I.; Kok, E.; van Rossum, M.M.; Strijk, S.; Eijckeler, F.; Bonenkamp, J.J.; Jacobs, J.F. Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients. Clin. Cancer Res. 2009, 15, 2531–2540. [Google Scholar] [CrossRef]
Properties | Tumor-Associated Antigens (TAAs) | Tumor-Specific Antigens (TSAs) |
---|---|---|
Normal cell | Yes | No |
Tumor cell | Yes | Yes |
Immune escape | Yes | No |
Autoimmunity | Yes | No |
Risk of vaccines (previous experimental studies) | Yes (High) | No (Minimum) |
Examples | p53, Ras, Bcr-Abl (case-specific mutated neoantigen) | HPV E6, E7, Her2/neu, telomerase, survivin, Gp100, tyrosinase |
Immune Blockade | Ligand | Mechanism of Action | Lung Cancer Indication | Research Paper Citation |
---|---|---|---|---|
PD-1 | PD-L1 | PD-1 inhibition blocks the interaction between PD-1 on T cells and PD-L1 on cancer cells, thereby restoring T-cell function and promoting anti-tumor immune responses. | Non-small cell lung cancer | Reck et al., 2016 [57] |
CTLA-4 | B7 | CTLA-4 inhibition enhances T-cell activation and proliferation by blocking the interaction between CTLA-4 on T cells and B7 on antigen-presenting cells, leading to increased anti-tumor immune responses. | Non-small cell lung cancer | Hellmann et al., 2018 [58] |
TIM-3 | Galectin-9, CEACAM1 | TIM-3 inhibition prevents the interaction between TIM-3 on T cells and its ligands on cancer cells, leading to improved T-cell function and enhanced anti-tumor immune responses. | Non-small cell lung cancer | Harding et al., 2021 [54] |
LAG-3 | MHC class II | LAG-3 inhibition blocks the interaction between LAG-3 on T cells and MHC class II on antigen-presenting cells, leading to enhanced T-cell activation and anti-tumor immune responses. | Non-small cell lung cancer | Eng et al., 2019 [59] |
TIGIT | CD155, CD112 | TIGIT inhibition prevents the interaction between TIGIT on T cells and its ligands on cancer cells, leading to improved T-cell function and enhanced anti-tumor immune responses. | Non-small cell lung cancer | Hung et al., 2018 [60] |
VISTA | PSGL-1, C-type lectin domain family 1 member B | VISTA inhibition blocks the interaction between VISTA on cancer cells and its ligands on T cells, leading to enhanced T-cell activation and anti-tumor immune responses. | Non-small cell lung cancer | Qin et al., 2019 [61] |
NCT Number | Study Title | Conditions | Interventions | Study Phases | Start Date | Completion Date | OS and PFS (Months) | References | |
---|---|---|---|---|---|---|---|---|---|
DC-based immunotherapy in NSCLC | NCT02956551 | Personalized DC Vaccine for Lung Cancer | Carcinoma, NSCLC | BIOLOGICAL: DC vaccine | PHASE1 | November 2016 | January 2020 | OS = 7.9; PFS = 5.5 | [63] |
NCT00322452 | First Line IRESSATM Versus Carboplatin/Paclitaxel in Asia | NSCLC | DRUG: Gefitinib| DRUG: Carboplatin| DRUG: Paclitaxel | PHASE3 | March 2006 | June 2010 | NA | [64] | |
NCT03546361 | CCL21-Gene Modified DC Vaccine and Pembrolizumab in Treating Patients With Stage IV NSCLC | NSCLC |Stage IV Lung Cancer AJCC v8|Stage IVA Lung Cancer AJCC v8|Stage IVB Lung Cancer AJCC v8 | BIOLOGICAL: Autologous DC-Adenovirus CCL21 vaccine |BIOLOGICAL: Pembrolizumab | PHASE1 | July 2019 | June 2025 | NA | [65] | |
NCT05195619 | Personalized DC Vaccines in NSCLC | NSCLC | BIOLOGICAL: Autologous DC vaccine loaded with personalized peptides |DRUG: Low dose cyclophosphamide | PHASE1 | December 2021 | September 2024 | OS = 2; PFS = 2 | [66] | |
NCT00322452 | First Line IRESSATM Versus Carboplatin/Paclitaxel in Asia | NSCLC | DRUG: Gefitinib, Carboplatin, Paclitaxel | PHASE3 | March 2006 | June 2010 | OS = 18.1 (gefitinib) vs. 18.3 months (carboplatin/paclitaxel); PFS = 6.8 | [67] | |
NCT04147078 | Personalized DC Vaccine for Postoperative Cancer | Gastric Cancer| Hepatocellular Carcinoma |NSCLC| Colon Rectal Cancer | BIOLOGICAL: DC vaccine subcutaneous administration | PHASE1 | June 2019 | June 2026 | NA | [68] | |
DC/CIK Cell Therapy | NCT03987867 | Study of Autologous CIK Cell Immunotherapy Combination With PD-1 Inhibitor and Chemotherapy in the Advanced NSCLC | NSCLC Cancer| First-line Treatment | BIOLOGICAL: CIK cell| BIOLOGICAL: Sintilimab injection| DRUG: Pemetrexed, Liposome Paclitaxel, Carboplatin | PHASE1 | June 2019 | June 2021 | PFS = 19.3 | [69] |
NCT03360630 | Anti-PD-1 Alone or Combined With Autologous Cell Therapy in Advanced NSCLC | Lung Cancer| Neoplasms NSCLC | BIOLOGICAL: Anti-PD-1 plus DC–CIK|BIOLOGICAL: Anti-PD-1 alone | PHASE1|PHASE2 | November 2016 | June 2023 | OS = 24 | [70] | |
NCT01871480 | CIK Cell Transfusion Plus Gefitinib As Second Or Third-Line Treatment for Advanced Adenocarcinoma NSCLC | NSCLC | DRUG: Group A: Cytokine-induced killer cell + Gefitinib |DRUG: Group B: Gefitinib | PHASE2 | May 2013 | May 2016 | OS = 3; PFS = 2 | [71] | |
AKT Therapy in NSCLC | NCT01294306 | MK2206 and Erlotinib Hydrochloride in Treating Patients With Advanced NSCLC Who Have Progressed After Previous Response to Erlotinib Hydrochloride Therapy | Adenosquamous Lung Carcinoma |Bronchioloalveolar Carcinoma| Large Cell Lung Carcinoma| Lung Adenocarcinoma| Recurrent NSCLC| SCLC | DRUG: Akt inhibitor MK2206|DRUG: Erlotinib hydrochloride |OTHER: Laboratory biomarker analysis |OTHER: Pharmacological study | PHASE2 | February 2011 | August 2015 | PFS = 4.4; 4.6 | [72] |
DC-based therapy in SCLC | NCT02688686 | Safety and Efficacy of DC–CIK in Patients With Advanced NSCLC Cancer With Bone Metastases | NSCLC With Bone Metastases | BIOLOGICAL: Genetically modified DCs + CIK BIOLOGICAL: Neoantigen-loaded DC vaccine | PHASE1|PHASE2 | February 2016 | NA | NA | [73] |
NCT03871205 | Neoantigen-primed DC Vaccines Therapy for Refractory Lung Cancer | NSCLC| SCLC | BIOLOGICAL: Neoantigen-loaded DC vaccine | PHASE1 | April 2019 | December 2020 | NA | [74] | |
NCT03406715 | Combination Immunotherapy-Ipilimumab-Nivolumab-DC p53 Vac—Patients With SCLC | SCLC| Lung Cancer| Relapsed SCLC | DRUG: Nivolumab| DRUG: Ipilimumab| BIOLOGICAL: DC-based p53 vaccine | PHASE2 | March 2018 | December 2023 | OS = 3; PFS = 3 | [75] | |
NCT02956551 | Personalized DC Vaccine for Lung Cancer | Carcinoma, NSCLC | BIOLOGICAL: DC vaccine | PHASE1 | November 2016 | June 2020 | OS = 7.9; PFS = 5.5 | [76] | |
NCT03546361 | CCL21-Gene Modified DC Vaccine and Pembrolizumab in Treating Patients With Stage IV NSCLC | NSCLC Carcinoma| Stage IV Lung Cancer AJCC v8|Stage IVA Lung Cancer AJCC v8|Stage IVB Lung Cancer AJCC v8 | BIOLOGICAL: Autologous DC–Adenovirus CCL21 Vaccine| BIOLOGICAL: Pembrolizumab | PHASE1 | July 2019 | June 2025 | NA | [65] | |
NCT05195619 | Personalized DC Vaccines in NSCLC | NSCLC | BIOLOGICAL: Autologous DC vaccine loaded with personalized peptides (PEP-DC vaccine)|DRUG: Low dose cyclophosphamide | PHASE1 | December 2021 | September 2024 | OS = 2; PFS = 2 | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, K.; Singh, A.; Chaudhary, A.; Singh, R.K.; Shanker, A.; Kumar, V.; Haque, R. Neoantigen Identification and Dendritic Cell-Based Vaccines for Lung Cancer Immunotherapy. Vaccines 2024, 12, 498. https://doi.org/10.3390/vaccines12050498
Kumari K, Singh A, Chaudhary A, Singh RK, Shanker A, Kumar V, Haque R. Neoantigen Identification and Dendritic Cell-Based Vaccines for Lung Cancer Immunotherapy. Vaccines. 2024; 12(5):498. https://doi.org/10.3390/vaccines12050498
Chicago/Turabian StyleKumari, Komal, Amarnath Singh, Archana Chaudhary, Rakesh Kumar Singh, Asheesh Shanker, Vinay Kumar, and Rizwanul Haque. 2024. "Neoantigen Identification and Dendritic Cell-Based Vaccines for Lung Cancer Immunotherapy" Vaccines 12, no. 5: 498. https://doi.org/10.3390/vaccines12050498
APA StyleKumari, K., Singh, A., Chaudhary, A., Singh, R. K., Shanker, A., Kumar, V., & Haque, R. (2024). Neoantigen Identification and Dendritic Cell-Based Vaccines for Lung Cancer Immunotherapy. Vaccines, 12(5), 498. https://doi.org/10.3390/vaccines12050498