Real-World Safety of COVID-19 mRNA Vaccines: A Systematic Review and Meta-Analysis
<p>Flow diagram of the literature search and study selection for meta-analysis.</p> "> Figure 2
<p>Distribution of included studies. Abbreviations: SOT, solid organ transplant; IMIDs, immune-mediated inflammatory diseases; HSCT, hematopoietic stem cell transplants; HIV, human immunodeficiency virus.</p> "> Figure 3
<p>The incidence of adverse events related to the first, second, and third doses of COVID-19 mRNA vaccines in the total population. Abbreviation: AEs, adverse events.</p> "> Figure 4
<p>The incidence and OR of adverse events related to COVID-19 mRNA vaccines in immunocompromised patients. Abbreviations: AEs, adverse events; OR, odds ratio; CI, confidence interval.</p> "> Figure 5
<p>The incidence and OR of adverse events related to COVID-19 mRNA vaccines in immunocompromised patients with cancer, SOT, dialysis, IMIDs, HSCT, or HIV. Abbreviations: AEs, adverse events; OR, odds ratio; CI, confidence interval; SOT, solid organ transplant; IMIDs, immune-mediated inflammatory diseases; HSCT, hematopoietic stem cell transplants; HIV, human immunodeficiency virus.</p> "> Figure 6
<p>Adverse events related to COVID-19 mRNA vaccines in adults and the elderly. Abbreviations: AEs, adverse events; OR, odds ratio; CI, confidence interval.</p> "> Figure 7
<p>Adverse events related to COVID-19 mRNA vaccines in females and males. Abbreviations: AEs, adverse events; OR, odds ratio; CI, confidence interval.</p> "> Figure 8
<p>Adverse events related to COVID-19 mRNA vaccines in the population with and without prior SARS-CoV-2 infection. Abbreviations: AEs, adverse events; OR, odds ratio; CI, confidence interval.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Risk of Bias
2.5. Statistical Analysis
3. Results
3.1. Search Results and Study Characteristics
3.2. Safety of COVID-19 mRNA Vaccines in the Total Population
3.3. Safety of COVID-19 mRNA Vaccines in Immunocompromised Patients
3.4. The Influencing Factors on the Safety of COVID-19 mRNA Vaccines
3.5. Sensitivity Analysis and Publication Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Motamedi, H.; Ari, M.M.; Dashtbin, S.; Fathollahi, M.; Hossainpour, H.; Alvandi, A.; Moradi, J.; Abiri, R. An update review of globally reported SARS-CoV-2 vaccines in preclinical and clinical stages. Int. Immunopharmacol. 2021, 96, 107763. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Vaccines 30 December 2020. Available online: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines (accessed on 22 October 2022).
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Our World in Data (2020) Statistics and Research: Coronavirus (COVID-19) Vaccinations. 21 February 2023. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 8 March 2023).
- Huang, Q.; Zeng, J.; Yan, J. COVID-19 mRNA vaccines. J. Genet. Genom. 2021, 48, 107–114. [Google Scholar] [CrossRef]
- Klein, N.P.; Lewis, N.; Goddard, K.; Fireman, B.; Zerbo, O.; Hanson, K.E.; Donahue, J.G.; Kharbanda, E.O.; Naleway, A.; Nelson, J.C.; et al. Surveillance for Adverse Events After COVID-19 mRNA Vaccination. JAMA 2021, 326, 1390–1399. [Google Scholar] [CrossRef]
- Luxi, N.; Giovanazzi, A.; Capuano, A.; Crisafulli, S.; Cutroneo, P.M.; Fantini, M.P.; Ferrajolo, C.; Moretti, U.; Poluzzi, E.; Raschi, E.; et al. COVID-19 Vaccination in Pregnancy, Paediatrics, Immunocompromised Patients, and Persons with History of Allergy or Prior SARS-CoV-2 Infection: Overview of Current Recommendations and Pre- and Post-Marketing Evidence for Vaccine Efficacy and Safety. Drug. Saf. 2021, 44, 1247–1269. [Google Scholar] [CrossRef]
- Pormohammad, A.; Zarei, M.; Ghorbani, S.; Mohammadi, M.; Razizadeh, M.H.; Turner, D.L.; Turner, R.J. Efficacy and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Vaccines 2021, 9, 467. [Google Scholar] [CrossRef]
- Cheng, H.; Peng, Z.; Luo, W.; Si, S.; Mo, M.; Zhou, H.; Xin, X.; Liu, H.; Yu, Y. Efficacy and Safety of COVID-19 Vaccines in Phase III Trials: A Meta-Analysis. Vaccines 2021, 9, 582. [Google Scholar] [CrossRef]
- Chen, M.; Yuan, Y.; Zhou, Y.; Deng, Z.; Zhao, J.; Feng, F.; Zou, H.; Sun, C. Safety of SARS-CoV-2 vaccines: A systematic review and meta-analysis of randomized controlled trials. Infect. Dis. Poverty 2021, 10, 94. [Google Scholar] [CrossRef]
- Cai, C.; Peng, Y.; Shen, E.; Huang, Q.; Chen, Y.; Liu, P.; Guo, C.; Feng, Z.; Gao, L.; Zhang, X.; et al. A comprehensive analysis of the efficacy and safety of COVID-19 vaccines. Mol. Ther. 2021, 29, 2794–2805. [Google Scholar] [CrossRef]
- Fan, Y.J.; Chan, K.H.; Hung, I.F. Safety and Efficacy of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Different Vaccines at Phase 3. Vaccines 2021, 9, 989. [Google Scholar] [CrossRef]
- Sharif, N.; Alzahrani, K.J.; Ahmed, S.N.; Dey, S.K. Efficacy, Immunogenicity and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 714170. [Google Scholar] [CrossRef]
- Wu, Q.; Dudley, M.Z.; Chen, X.; Bai, X.; Dong, K.; Zhuang, T.; Salmon, D.; Yu, H. Evaluation of the safety profile of COVID-19 vaccines: A rapid review. BMC Med. 2021, 19, 173. [Google Scholar] [CrossRef]
- Liu, Q.; Qin, C.; Liu, M.; Liu, J. Effectiveness and safety of SARS-CoV-2 vaccine in real-world studies: A systematic review and meta-analysis. Infect. Dis. Poverty 2021, 10, 132. [Google Scholar] [CrossRef]
- Mehrabi Nejad, M.M.; Moosaie, F.; Dehghanbanadaki, H.; Ghadery, A.H.; Shabani, M.; Tabary, M.; Aryannejad, A.; SeyedAlinaghi, S.; Rezaei, N. Immunogenicity of COVID-19 mRNA vaccines in immunocompromised patients: A systematic review and meta-analysis. Eur. J. Med. Res. 2022, 27, 23. [Google Scholar] [CrossRef]
- Mehrabi Nejad, M.M.; Shobeiri, P.; Dehghanbanadaki, H.; Tabary, M.; Aryannejad, A.; Ghadery, A.H.; Shabani, M.; Moosaie, F.; SeyedAlinaghi, S.; Razaei, N. Seroconversion following the first, second, and third dose of SARS-CoV-2 vaccines in immunocompromised population: A systematic review and meta-analysis. Virol. J. 2022, 19, 132. [Google Scholar] [CrossRef]
- Galmiche, S.; Nguyen, L.B.L.; Tartour, E.; de Lamballerie, X.; Wittkop, L.; Loubet, P.; Launay, O. Immunological and clinical efficacy of COVID-19 vaccines in immunocompromised populations: A systematic review. Clin. Microbiol. Infect. 2022, 28, 163–177. [Google Scholar] [CrossRef]
- Marra, A.R.; Kobayasha, T.; Suzuki, H.; Alsuhaibani, M.; Tofaneto, B.M.; Bariani, L.M.; Auler, M.d.M.; Salinas, J.L.; Edmond, M.B.; Doll, M.; et al. Short-term effectiveness of COVID-19 vaccines in immunocompromised patients: A systematic literature review and meta-analysis. J. Infect. 2022, 84, 297–310. [Google Scholar] [CrossRef]
- Lee, A.R.Y.B.; Wong, S.Y.; Chai, L.Y.A.; Lee, S.C.; Lee, M.X.; Muthiah, M.D.; Tay, S.H.; Teo, C.B.; Tan, B.K.J.; Chan, Y.H.; et al. Efficacy of COVID-19 vaccines in immunocompromised patients: Systematic review and meta-analysis. BMJ 2022, 376, e068632. [Google Scholar] [CrossRef]
- Parker, E.P.K.; Desai, S.; Marti, M.; Nohynek, H.; Kaslow, D.C.; Kochhar, S.; O’Brien, K.L.; Hombach, J.; Wilder-Smith, A. Response to additional COVID-19 vaccine doses in people who are immunocompromised: A rapid review. Lancet Glob. Health 2022, 10, e326–e328. [Google Scholar] [CrossRef] [PubMed]
- National Heart, Lung and Blood Institute. Study Quality Assessment Tools. July 2021. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 3 August 2022).
- Dodd, R.H.; Pickles, K.; Nickel, B.; Cvejic, E.; Ayre, J.; Batcup, C.; Bonner, C.; Copp, T.; Cornell, S.; Dakin, T.; et al. Concerns and motivations about COVID-19 vaccination. Lancet Infect. Dis. 2021, 21, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Khurana, A.; Allawadhi, P.; Khurana, I.; Allwadhi, S.; Weiskirchen, R.; Banothu, A.K.; Chhabra, D.; Joshi, K.; Bharani, K.K. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 2021, 38, 101142. [Google Scholar] [CrossRef] [PubMed]
- Rohde, C.M.; Lindemann, C.; Giovanelli, M.; Sellers, R.S.; Diekmann, J.; Choudhary, S.; Ramaiah, L.; Vogel, A.B.; Chervona, Y.; Muik, A.; et al. Toxicological Assessments of a Pandemic COVID-19 Vaccine-Demonstrating the Suitability of a Platform Approach for mRNA Vaccines. Vaccines 2023, 11, 417. [Google Scholar] [CrossRef]
- COVID-19 Vaccines for People Who Are Moderately or Severely Immunocompromised. 19 October 2022. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/immuno.html (accessed on 22 October 2022).
- Wang, J.; Tong, Y.; Li, D.; Li, J.; Li, Y. The Impact of Age Difference on the Efficacy and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 758294. [Google Scholar] [CrossRef]
- Crooke, S.N.; Ovsyannikova, I.G.; Poland, G.A.; Kennedy, R.B. Immunosenescence and human vaccine immune responses. Immun. Ageing 2019, 16, 25. [Google Scholar] [CrossRef] [Green Version]
- Bourée, P. Immunity and immunization in elderly. Pathol. Biol. 2003, 51, 581–585. [Google Scholar] [CrossRef]
- Kountouras, J.; Tzitiridou-Chatzopoulou, M.; Papaefthymiou, A.; Chatzopoulos, D.; Doulberis, M. COVID-19 mRNA Vaccine Effectiveness against Elderly Frail People. Medicina 2023, 59, 202. [Google Scholar] [CrossRef]
- Pereira, B.; Xu, X.N.; Akbar, A.N. Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly. Front. Immunol. 2020, 11, 583019. [Google Scholar] [CrossRef]
- Dugan, H.L.; Henry, C.; Wilson, P.C. Aging and influenza vaccine-induced immunity. Cell. Immunol. 2020, 348, 103998. [Google Scholar] [CrossRef]
- Smetana, J.; Chlibek, R.; Shaw, J.; Splino, M.; Prymula, R. Influenza vaccination in the elderly. Hum. Vaccin. Immunother. 2018, 14, 540–549. [Google Scholar] [CrossRef]
- García-Botella, A.; García-Lledó, A.; Gómez-Pavón, J.; del Castillo, J.G.; Hernández-Sampelayo, T.; Martín-Delgado, M.C.; Sánchez, F.J.M.; Martínez-Sellés, M.; García, J.M.M.; Guillén, S.M.; et al. Booster or additional vaccination doses in patients vaccinated against COVID-19. Rev. Esp. Quimioter. 2022, 35, 105–114. [Google Scholar] [CrossRef]
- Otani, J.; Ohta, R.; Sano, C. Association between Immunoglobulin G Levels and Adverse Effects Following Vaccination with the BNT162b2 Vaccine among Japanese Healthcare Workers. Vaccines 2021, 9, 1149. [Google Scholar] [CrossRef]
- Potluri, T.; Fink, A.L.; Sylvia, K.E.; Dhakal, S.; Vermillion, M.S.; vom Steeg, L.; Deshpande, S.; Narasimhan, H.; Klein, S.L. Age-associated changes in the impact of sex steroids on influenza vaccine responses in males and females. NPJ Vaccines 2019, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef]
- Klein, S.L.; Jedlicka, A.; Pekosz, A. The Xs and Y of immune responses to viral vaccines. Lancet Infect. Dis. 2010, 10, 338–349. [Google Scholar] [CrossRef]
Group | No | Any AEs Proportion (95% CI) | p-Value | No | Any Local AEs Proportion (95% CI) | p-Value | No | Any Systemic AEs Proportion (95% CI) | p-Value |
---|---|---|---|---|---|---|---|---|---|
Overall | 52 | 0.62 (0.56–0.68) | 43 | 0.52 (0.44–0.60) | 40 | 0.29 (0.23–0.35) | |||
Study population | 0.0054 | 0.0258 | 0.0197 | ||||||
General population | 11 | 0.68 (0.55–0.80) | 8 | 0.63 (0.44–0.80) | 7 | 0.27 (0.16–0.40) | |||
Healthcare workers | 26 | 0.67 (0.58–0.76) | 14 | 0.61 (0.54–0.68) | 12 | 0.40 (0.32–0.48) | |||
Patients | 15 | 0.48 (0.39–0.57) | 21 | 0.42 (0.30–0.54) | 21 | 0.23 (0.15–0.33) | |||
Vaccine type | 0.6097 | <0.0001 | <0.0001 | ||||||
BNT162b2 | 43 | 0.61 (0.53–0.68) | 35 | 0.45 (0.37–0.53) | 32 | 0.24 (0.18–0.30) | |||
mRNA-1273 | 3 | 0.71 (0.41–0.93) | 5 | 0.83 (0.70–0.93) | 5 | 0.58 (0.51–0.65) | |||
Both | 6 | 0.67 (0.54–0.79) | 3 | 0.76 (0.65–0.86) | 3 | 0.44 (0.23–0.67) | |||
Study type | 0.0585 | 0.9568 | 0.3025 | ||||||
Cohort study | 28 | 0.56 (0.49–0.63) | 36 | 0.52 (0.43–0.61) | 34 | 0.28 (0.21–0.35) | |||
Cross-sectional study | 24 | 0.69 (0.58–0.79) | 7 | 0.52 (0.40–0.65) | 6 | 0.36 (0.23–0.49) | |||
Survey time | 0.004 | 0.0083 | 0.0625 | ||||||
Within 7 days | 14 | 0.58 (0.45–0.71) | 17 | 0.44 (0.29–0.59) | 16 | 0.39 (0.29–0.49) | |||
More than 7 days | 22 | 0.55 (0.45–0.65) | 17 | 0.43 (0.30–0.56) | 16 | 0.24 (0.16–0.32) | |||
No description | 16 | 0.75 (0.67–0.83) | 9 | 0.65 (0.55–0.75) | 8 | 0.21 (0.11–0.33) | |||
Population size | 0.0772 | 0.0645 | 0.0835 | ||||||
<100 | 10 | 0.64 (0.51–0.75) | 10 | 0.67 (0.53–0.81) | 9 | 0.40 (0.31–0.50) | |||
100–1000 | 31 | 0.62 (0.53–0.71) | 21 | 0.49 (0.37–0.61) | 19 | 0.25 (0.17–0.35) | |||
1000–10,000 | 9 | 0.64 (0.46–0.80) | 9 | 0.40 (0.28–0.54) | 9 | 0.25 (0.14–0.38) | |||
≥10,000 | 2 | 0.46 (0.33–0.59) | 3 | 0.63 (0.52–0.74) | 3 | 0.37 (0.14–0.64) |
Group | No | Any AEs Proportion (95% CI) | p-Value | No | Any Local AEs Proportion (95% CI) | p-Value | No | Any Systemic AEs Proportion (95% CI) | p-Value |
---|---|---|---|---|---|---|---|---|---|
Overall | 54 | 0.70 (0.64–0.77) | 43 | 0.48 (0.39–0.57) | 40 | 0.48 (0.39–0.57) | |||
Study population | <0.0001 | 0.0041 | 0.0169 | ||||||
General population | 13 | 0.82 (0.74–0.89) | 7 | 0.65 (0.43–0.83) | 6 | 0.59 (0.30–0.85) | |||
Healthcare workers | 24 | 0.77 (0.68–0.84) | 13 | 0.61 (0.48–0.74) | 11 | 0.63 (0.49–0.75) | |||
Patients | 17 | 0.50 (0.39–0.61) | 23 | 0.35 (0.25–0.46) | 23 | 0.38 (0.28–0.49) | |||
Vaccine type | 0.0262 | 0.011 | 0.0003 | ||||||
BNT162b2 | 43 | 0.70 (0.62–0.77) | 34 | 0.42 (0.33–0.51) | 31 | 0.41 (0.32–0.51) | |||
mRNA-1273 | 4 | 0.86 (0.74–0.94) | 5 | 0.75 (0.49–0.95) | 5 | 0.78 (0.63–0.90) | |||
Both | 7 | 0.65 (0.54–0.76) | 4 | 0.65 (0.47–0.80) | 4 | 0.59 (0.40–0.77) | |||
Study type | 0.0766 | 0.3825 | 0.0714 | ||||||
Cohort study | 32 | 0.65 (0.57–0.73) | 37 | 0.46 (0.37–0.56) | 35 | 0.46 (0.36–0.56) | |||
Cross-sectional study | 22 | 0.77 (0.67–0.86) | 6 | 0.58 (0.35–0.79) | 5 | 0.62 (0.47–0.76) | |||
Survey time | 0.022 | 0.0515 | 0.3133 | ||||||
Within 7 days | 14 | 0.69 (0.57–0.80) | 18 | 0.50 (0.48–0.71) | 17 | 0.55 (0.43–0.67) | |||
More than 7 days | 24 | 0.63 (0.52–0.73) | 17 | 0.42 (0.28–0.57) | 16 | 0.44 (0.28–0.60) | |||
No description | 16 | 0.82 (0.73–0.90) | 8 | 0.34 (0.15–0.56) | 7 | 0.39 (0.19–0.61) | |||
Population size | 0.1258 | 0.1601 | 0.0856 | ||||||
<100 | 10 | 0.69 (0.51–0.85) | 10 | 0.65 (0.46–0.81) | 9 | 0.69 (0.50–0.85) | |||
100–1000 | 34 | 0.68 (0.59–0.76) | 22 | 0.41 (0.29–0.54) | 20 | 0.40 (0.28–0.52) | |||
1000–10,000 | 8 | 0.82 (0.76–0.88) | 8 | 0.44 (0.27–0.61) | 8 | 0.45 (0.27–0.63) | |||
≥10,000 | 2 | 0.62 (0.44–0.78) | 3 | 0.60 (0.31–0.85) | 3 | 0.53 (0.22–0.83) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Ren, W.; Wu, T.; Wang, Q.; Luo, M.; Yi, Y.; Li, J. Real-World Safety of COVID-19 mRNA Vaccines: A Systematic Review and Meta-Analysis. Vaccines 2023, 11, 1118. https://doi.org/10.3390/vaccines11061118
Xu W, Ren W, Wu T, Wang Q, Luo M, Yi Y, Li J. Real-World Safety of COVID-19 mRNA Vaccines: A Systematic Review and Meta-Analysis. Vaccines. 2023; 11(6):1118. https://doi.org/10.3390/vaccines11061118
Chicago/Turabian StyleXu, Wanqian, Weigang Ren, Tongxin Wu, Qin Wang, Mi Luo, Yongxiang Yi, and Junwei Li. 2023. "Real-World Safety of COVID-19 mRNA Vaccines: A Systematic Review and Meta-Analysis" Vaccines 11, no. 6: 1118. https://doi.org/10.3390/vaccines11061118
APA StyleXu, W., Ren, W., Wu, T., Wang, Q., Luo, M., Yi, Y., & Li, J. (2023). Real-World Safety of COVID-19 mRNA Vaccines: A Systematic Review and Meta-Analysis. Vaccines, 11(6), 1118. https://doi.org/10.3390/vaccines11061118