Transcriptomic Responses of the Honey Bee Brain to Infection with Deformed Wing Virus
<p>Principal component analysis (PCA) of the RNA-Seq data from the samples used in the final analysis. The gene expression profiles from the five mock (blue circles) and seven deformed wing virus (DWV, red circle) infected honey bees are presented. The PCA was performed on pairwise gene comparisons after variance-stabilizing transformation on the counts using DESeq2. Points that are closer together are more similar in gene expression patterns.</p> "> Figure 2
<p>Expression of <span class="html-italic">A. mellifera</span> genes was compared by DESeq2 with MA (<b>a</b>) or volcano (<b>b</b>) plots. The mean expression level (log2 counts per million (CPM)), the fold change (log2 FC), and the FDR-adjusted <span class="html-italic">p</span> values are shown for each gene. Red points indicate differential expression (FDR ≤ 0.001 determined by DESeq2).</p> "> Figure 3
<p>Venn diagram comparing the numbers of genes expressed at higher levels (UP) or lower levels (DOWN) identified by both DESeq2 and edgeR. The number of upregulated genes identified by both dESeq2 and edgeR was 269 while the number of downregulated genes was 1361. No gene was identified as upregulated by one algorithm and downregulated by the other.</p> "> Figure 4
<p>Chord plot comparing the expression levels of selected genes and their relationship to specific biological process gene ontology terms. Gene expression changes are shown for selected genes that were differentially expressed (FDR < 0.001 by DESeq2 and edgeR) and represented in the indicated gene ontology category. Expression level changes (log2 fold change) are shown for the comparison of DWV-infected samples to mock-infected samples. Connections from the right side of the figure to the left signify associations between genes and selected biological process categories. Genes are shown in the following biological process categories: GO:0023052 (signaling (red)), GO:0007268 (chemical synaptic transmission (light green)), GO:0007264 (small GTPase mediated signal transduction(green)), GO:0001505 (regulation of neurotransmitter levels (blue)), and GO:0045087 (innate immune response(purple)).</p> "> Figure 5
<p>Average proline concentration in 0.5 mL NMR buffer as a function of DWV state for bee brains (left hand black bars) and corresponding bodies (right hand red bars) is illustrated. Proline increases strongly in the brains of DWV infected workers, but is relatively unchanged in corresponding bodies. The proline concentration in 0.5 mL NMR buffer extracted from the corresponding bodies was much higher and its value was scaled down by 1000 (e.g., for the bodies the scale corresponds to M).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Bees
2.2. Virus Isolation and Infection of Honey Bees
2.3. RNA Isolation, Sequencing, and Data Analysis
2.4. Nuclear Magnetic Resonance (NMR) Metabolomics
3. Results
3.1. Analysis of Transcriptome of Infected Brains
3.2. Analysis of Metabolome of Infected Brains
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cox-Foster, D.L.; Conlan, S.; Holmes, E.C.; Palacios, G.; Evans, J.D.; Moran, N.A.; Quan, P.-L.; Briese, T.; Hornig, M.; Geiser, D.M.; et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 2007, 318, 283–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornman, R.S.; Tarpy, D.R.; Chen, Y.; Jeffreys, L.; Lopez, D.; Pettis, J.S.; van Engelsdorp, D.; Evans, J.D. Pathogen webs in collapsing honey bee colonies. PLoS ONE 2012, 7, e43562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chejanovsky, N.; Ophir, R.; Schwager, M.S.; Slabezki, Y.; Grossman, S.; Cox-Foster, D. Characterization of viral siRNA populations in honey bee colony collapse disorder. Virology 2014, 454–455, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.P.; Siede, R. Honey bee viruses. Adv. Virus Res. 2007, 70, 33–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, S.J.; Brettell, L.E. Deformed wing virus in honeybees and other insects. Annu. Rev. Virol. 2019, 6, 49–69. [Google Scholar] [CrossRef]
- McMenamin, A.J.; Flenniken, M.L. Recently identified bee viruses and their impact on bee pollinators. Curr. Opin. Insect Sci. 2018, 26, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Lanzi, G.; de Miranda, J.R.; Boniotti, M.B.; Cameron, C.E.; Lavazza, A.; Capucci, L.; Camazine, S.M.; Rossi, C. Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.). J. Virol. 2006, 80, 4998–5009. [Google Scholar] [CrossRef] [Green Version]
- Tentcheva, D.; Gauthier, L.; Zappulla, N.; Dainat, B.; Cousserans, F.; Colin, M.E.; Bergoin, M. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl. Environ. Microbiol. 2004, 70, 7185–7191. [Google Scholar] [CrossRef] [Green Version]
- Berényi, O.; Bakonyi, T.; Derakhshifar, I.; Köglberger, H.; Nowotny, N. Occurrence of six honeybee viruses in diseased Austrian apiaries. Appl. Environ. Microbiol. 2006, 72, 2414–2420. [Google Scholar] [CrossRef] [Green Version]
- Baliey, L.; Ball, B. Honey Bee Pathology, 2nd ed.; Academic Press: London, UK, 1991; ISBN 978-0-12-073481-8. [Google Scholar]
- Yue, C.; Genersch, E. RT-PCR Analysis of deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J. Gen. Virol. 2005, 86, 3419–3424. [Google Scholar] [CrossRef]
- Mazzei, M.; Carrozza, M.L.; Luisi, E.; Forzan, M.; Giusti, M.; Sagona, S.; Tolari, F.; Felicioli, A. Infectivity of DWV associated to flower pollen: Experimental evidence of a horizontal transmission route. PLoS ONE 2014, 9, e113448. [Google Scholar] [CrossRef] [Green Version]
- Yue, C.; Schröder, M.; Gisder, S.; Genersch, E. Vertical-transmission routes for deformed wing virus of honeybees (Apis mellifera). J. Gen. Virol. 2007, 88, 2329–2336. [Google Scholar] [CrossRef]
- de Miranda, J.R.; Fries, I. Venereal and vertical transmission of deformed wing virus in honeybees (Apis mellifera L.). J. Invertebr. Pathol. 2008, 98, 184–189. [Google Scholar] [CrossRef]
- Amiri, E.; Meixner, M.D.; Kryger, P. Deformed wing virus can be transmitted during natural mating in honey bees and infect the queens. Sci. Rep. 2016, 6, 33065. [Google Scholar] [CrossRef] [PubMed]
- de Miranda, J.R.; Genersch, E. Deformed wing virus. J. Invertebr. Pathol. 2010, 103 (Suppl. 1), S48–S61. [Google Scholar] [CrossRef] [PubMed]
- Highfield, A.C.; El Nagar, A.; Mackinder, L.C.M.; Noël, L.M.-L.J.; Hall, M.J.; Martin, S.J.; Schroeder, D.C. Deformed wing virus implicated in overwintering honeybee colony losses. Appl. Environ. Microbiol. 2009, 75, 7212–7220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prisco, G.D.; Zhang, X.; Pennacchio, F.; Caprio, E.; Li, J.; Evans, J.D.; Degrandi-Hoffman, G.; Hamilton, M.; Chen, Y.P. Dynamics of persistent and acute deformed wing virus infections in honey bees, Apis mellifera. Viruses 2011, 3, 2425–2441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dainat, B.; Evans, J.D.; Chen, Y.P.; Gauthier, L.; Neumann, P. Dead or alive: Deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Appl. Environ. Microbiol. 2012, 78, 981–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benaets, K.; Van Geystelen, A.; Cardoen, D.; De Smet, L.; de Graaf, D.C.; Schoofs, L.; Larmuseau, M.H.D.; Brettell, L.E.; Martin, S.J.; Wenseleers, T. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proc. Biol. Sci. 2017, 284, 20162149. [Google Scholar] [CrossRef]
- Möckel, N.; Gisder, S.; Genersch, E. Horizontal transmission of deformed wing virus: Pathological consequences in adult bees (Apis mellifera) depend on the transmission route. J. Gen. Virol. 2011, 92, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Gisder, S.; Möckel, N.; Eisenhardt, D.; Genersch, E. In vivo evolution of viral virulence: Switching of deformed wing virus between hosts results in virulence changes and sequence shifts. Environ. Microbiol. 2018, 20, 4612–4628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamp, B.; Url, A.; Seitz, K.; Eichhorn, J.; Riedel, C.; Sinn, L.J.; Indik, S.; Köglberger, H.; Rümenapf, T. Construction and rescue of a molecular clone of deformed wing virus (DWV). PLoS ONE 2016, 11, e0164639. [Google Scholar] [CrossRef]
- Shah, K.S.; Evans, E.C.; Pizzorno, M.C. Localization of deformed wing virus (DWV) in the brains of the honeybee, Apis mellifera Linnaeus. Virol. J. 2009, 6, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zioni, N.; Soroker, V.; Chejanovsky, N. Replication of varroa destructor virus 1 (VDV-1) and a varroa destructor virus 1-deformed wing virus recombinant (VDV-1-DWV) in the head of the honey bee. Virology 2011, 417, 106–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winston, M.L. Biology of the Honey Bee; Harvard University Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Natsopoulou, M.E.; McMahon, D.P.; Paxton, R.J. Parasites modulate within-colony activity and accelerate the temporal polyethism schedule of a social insect, the honey bee. Behav. Ecol. Sociobiol. 2016, 70, 1019–1031. [Google Scholar] [CrossRef] [Green Version]
- Wells, T.; Wolf, S.; Nicholls, E.; Groll, H.; Lim, K.S.; Clark, S.J.; Swain, J.; Osborne, J.L.; Haughton, A.J. Flight performance of actively foraging honey bees is reduced by a common pathogen. Environ. Microbiol. Rep. 2016, 8, 728–737. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.; Nicholls, E.; Reynolds, A.M.; Wells, P.; Lim, K.S.; Paxton, R.J.; Osborne, J.L. Optimal search patterns in honeybee orientation flights are robust against emerging infectious diseases. Sci. Rep. 2016, 6, 32612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, J.; Mueller, U. Virus infection causes specific learning deficits in honeybee foragers. Proc. Biol. Sci. 2007, 274, 1517–1521. [Google Scholar] [CrossRef] [Green Version]
- Fujiyuki, T.; Takeuchi, H.; Ono, M.; Ohka, S.; Sasaki, T.; Nomoto, A.; Kubo, T. Novel insect picorna-like virus identified in the brains of aggressive worker honeybees. J. Virol. 2004, 78, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Fujiyuki, T.; Matsuzaka, E.; Nakaoka, T.; Takeuchi, H.; Wakamoto, A.; Ohka, S.; Sekimizu, K.; Nomoto, A.; Kubo, T. Distribution of kakugo virus and its effects on the gene expression profile in the brain of the worker honeybee Apis mellifera L. J. Virol. 2009, 83, 11560–11568. [Google Scholar] [CrossRef] [Green Version]
- Rortais, A.; Tentcheva, D.; Papachristoforou, A.; Gauthier, L.; Arnold, G.; Colin, M.E.; Bergoin, M. Deformed wing virus is not related to honey bees’ aggressiveness. Virol. J. 2006, 3, 61. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.R.; Atallah, J.; Plachetzki, D.C. The importance of tissue specificity for RNA-seq: Highlighting the errors of composite structure extractions. BMC Genomics 2013, 14, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Organtini, L.J.; Shingler, K.L.; Ashley, R.E.; Capaldi, E.A.; Durrani, K.; Dryden, K.A.; Makhov, A.M.; Conway, J.F.; Pizzorno, M.C.; Hafenstein, S. Honey bee deformed wing virus structures reveal that conformational changes accompany genome release. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winnebeck, E.C.; Millar, C.D.; Warman, G.R. Why does insect RNA look degraded? J. Insect Sci. Online 2010, 10, 159. [Google Scholar] [CrossRef]
- Elsik, C.G.; Worley, K.C.; Bennett, A.K.; Beye, M.; Camara, F.; Childers, C.P.; de Graaf, D.C.; Debyser, G.; Deng, J.; Devreese, B.; et al. Finding the missing honey bee genes: Lessons learned from a genome upgrade. BMC Genomics 2014, 15, 86. [Google Scholar] [CrossRef] [Green Version]
- Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006, 443, 931–949. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durbin, B.P.; Hardin, J.S.; Hawkins, D.M.; Rocke, D.M. A variance-stabilizing transformation for gene-expression microarray data. Bioinform. Oxf. Engl. 2002, 18 (Suppl. 1), S105–S110. [Google Scholar] [CrossRef] [Green Version]
- Varet, H.; Brillet-Guéguen, L.; Coppée, J.-Y.; Dillies, M.-A. SARTools: A DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-seq data. PLoS ONE 2016, 11, e0157022. [Google Scholar] [CrossRef] [Green Version]
- Schulze, S.K.; Kanwar, R.; Gölzenleuchter, M.; Therneau, T.M.; Beutler, A.S. SERE: Single-parameter quality control and sample comparison for RNA-seq. BMC Genomics 2012, 13, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busby, M.A.; Stewart, C.; Miller, C.A.; Grzeda, K.R.; Marth, G.T. Scotty: A web tool for designing RNA-seq experiments to measure differential gene expression. Bioinform. Oxf. Engl. 2013, 29, 656–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinform. Oxf. Engl. 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 Update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [Green Version]
- Brutscher, L.M.; Daughenbaugh, K.F.; Flenniken, M.L. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Sci. Rep. 2017, 7, 6448. [Google Scholar] [CrossRef] [Green Version]
- Doublet, V.; Poeschl, Y.; Gogol-Döring, A.; Alaux, C.; Annoscia, D.; Aurori, C.; Barribeau, S.M.; Bedoya-Reina, O.C.; Brown, M.J.F.; Bull, J.C.; et al. Unity in defence: Honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics 2017, 18, 207. [Google Scholar] [CrossRef]
- Aufauvre, J.; Misme-Aucouturier, B.; Viguès, B.; Texier, C.; Delbac, F.; Blot, N. Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS ONE 2014, 9, e91686. [Google Scholar] [CrossRef]
- Galbraith, D.A.; Yang, X.; Niño, E.L.; Yi, S.; Grozinger, C. Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera). PLoS Pathog. 2015, 11, e1004713. [Google Scholar] [CrossRef] [Green Version]
- Ryabov, E.V.; Fannon, J.M.; Moore, J.D.; Wood, G.R.; Evans, D.J. The Iflaviruses sacbrood virus and deformed wing virus evoke different transcriptional responses in the honeybee which may facilitate their horizontal or vertical transmission. PeerJ 2016, 4, e1591. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Guo, R.; Xu, X.; Xiong, C.; Liang, Q.; Zheng, Y.; Luo, Q.; Zhang, Z.; Huang, Z.; Kumar, D.; et al. Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing. Gene 2017, 621, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Zanni, V.; Galbraith, D.A.; Annoscia, D.; Grozinger, C.M.; Nazzi, F. Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera). Insect Biochem. Mol. Biol. 2017, 87, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doublet, V.; Paxton, R.J.; McDonnell, C.M.; Dubois, E.; Nidelet, S.; Moritz, R.F.A.; Alaux, C.; Le Conte, Y. Brain transcriptomes of honey bees (Apis mellifera) experimentally infected by two pathogens: Black queen cell virus and Nosema ceranae. Genomics Data 2016, 10, 79–82. [Google Scholar] [CrossRef]
- Li, Z.; Yu, T.; Chen, Y.; Heerman, M.; He, J.; Huang, J.; Nie, H.; Su, S. Brain transcriptome of honey bees (Apis mellifera) exhibiting impaired olfactory learning induced by a sublethal dose of imidacloprid. Pestic. Biochem. Physiol. 2019, 156, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Gisder, S.; Aumeier, P.; Genersch, E. Deformed wing virus: Replication and viral load in mites (Varroa destructor). J. Gen. Virol. 2009, 90, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Brutscher, L.M.; Flenniken, M.L. RNAi and Antiviral defense in the honey bee. J. Immunol. Res. 2015, 2015, 941897. [Google Scholar] [CrossRef] [Green Version]
- Merkling, S.H.; van Rij, R.P. Beyond RNAi: Antiviral defense strategies in Drosophila and mosquito. J. Insect Physiol. 2013, 59, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743. [Google Scholar] [CrossRef] [Green Version]
- Nazzi, F.; Brown, S.P.; Annoscia, D.; Del Piccolo, F.; Di Prisco, G.; Varricchio, P.; Della Vedova, G.; Cattonaro, F.; Caprio, E.; Pennacchio, F. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog. 2012, 8, e1002735. [Google Scholar] [CrossRef] [Green Version]
- Di Prisco, G.; Annoscia, D.; Margiotta, M.; Ferrara, R.; Varricchio, P.; Zanni, V.; Caprio, E.; Nazzi, F.; Pennacchio, F. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc. Natl. Acad. Sci. USA 2016, 113, 3203–3208. [Google Scholar] [CrossRef] [Green Version]
- Casteels-Josson, K.; Zhang, W.; Capaci, T.; Casteels, P.; Tempst, P. Acute transcriptional response of the honeybee peptide-antibiotics gene repertoire and required post-translational conversion of the precursor structures. J. Biol. Chem. 1994, 269, 28569–28575. [Google Scholar] [CrossRef]
- Otvos, L. The short proline-rich antibacterial peptide family. Cell. Mol. Life Sci. CMLS 2002, 59, 1138–1150. [Google Scholar] [CrossRef]
- Emwas, A.-H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.A.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; et al. NMR spectroscopy for metabolomics research. Metabolites 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Dossey, A.T.; Walse, S.S.; Rocca, J.R.; Edison, A.S. Single insect NMR: A new tool to probe chemical biodiversity. ACS Chem. Biol. 2006, 1, 511–514. [Google Scholar] [CrossRef]
- Bedard, K.M.; Semler, B.L. Regulation of picornavirus gene expression. Microbes Infect. 2004, 6, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Remnant, E.J.; Mather, N.; Gillard, T.L.; Yagound, B.; Beekman, M. Direct transmission by injection affects competition among RNA viruses in honeybees. Proc. Biol. Sci. 2019, 286, 20182452. [Google Scholar] [CrossRef]
- Carrillo-Tripp, J.; Dolezal, A.G.; Goblirsch, M.J.; Miller, W.A.; Toth, A.L.; Bonning, B.C. In vivo and in vitro infection dynamics of honey bee viruses. Sci. Rep. 2016, 6, 22265. [Google Scholar] [CrossRef] [PubMed]
- Locke, B.; Semberg, E.; Forsgren, E.; de Miranda, J.R. Persistence of subclinical deformed wing virus infections in honeybees following Varroa mite removal and a bee population turnover. PLoS ONE 2017, 12, e0180910. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, R.; Baumann, A.; Blenau, W. Aminergic control and modulation of honeybee behaviour. Curr. Neuropharmacol. 2006, 4, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Schulz, D.J.; Sullivan, J.P.; Robinson, G.E. Juvenile hormone and octopamine in the regulation of division of labor in honey bee colonies. Horm. Behav. 2002, 42, 222–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustard, J.A.; Kurshan, P.T.; Hamilton, I.S.; Blenau, W.; Mercer, A.R. Developmental expression of a tyramine receptor gene in the brain of the honey bee, Apis mellifera. J. Comp. Neurol. 2005, 483, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Kikuno, K.; Bahn, J.-H.; Kim, K.-M.; Park, J.H. Dopamine D2 receptor as a cellular component controlling nocturnal hyperactivities in Drosophila melanogaster. Chronobiol. Int. 2013, 30, 443–459. [Google Scholar] [CrossRef]
- Lismont, E.; Mortelmans, N.; Verlinden, H.; Vanden Broeck, J. Molecular cloning and characterization of the SIFamide precursor and receptor in a hymenopteran insect, Bombus terrestris. Gen. Comp. Endocrinol. 2018, 258, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Martelli, C.; Pech, U.; Kobbenbring, S.; Pauls, D.; Bahl, B.; Sommer, M.V.; Pooryasin, A.; Barth, J.; Arias, C.W.P.; Vassiliou, C.; et al. SIFamide translates hunger signals into appetitive and feeding behavior in Drosophila. Cell Rep. 2017, 20, 464–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Li, M.; Shen, P. A G-protein-coupled neuropeptide Y-like receptor suppresses behavioral and sensory response to multiple stressful stimuli in Drosophila. J. Neurosci. 2010, 30, 2504–2512. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Ament, S.A.; Eddy, J.A.; Rodriguez-Zas, S.L.; Schatz, B.R.; Price, N.D.; Robinson, G.E. Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proc. Natl. Acad. Sci. USA 2011, 108, 18020–18025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahrbach, S.E. Structure of the mushroom bodies of the insect brain. Annu. Rev. Entomol. 2006, 51, 209–232. [Google Scholar] [CrossRef]
Sample | Treatment 1 | Analysis Group | Reads Mapping to DWV-A Genome 2 | Input Reads | Mapped Reads | % of Reads Mapped |
---|---|---|---|---|---|---|
Mock06 | saline | Mock | 184 | 9,777,028 | 8,780,845 | 89.8% |
Mock07 | saline | Mock | 166 | 9,941,632 | 8,974,412 | 90.3% |
Mock08 | saline | Mock | 333 | 10,056,939 | 8,902,211 | 88.5% |
Mock09 | saline | Mock | 193 | 12,158,954 | 10,995,539 | 90.4% |
Mock10 | saline | Mock | 257 | 14,885,921 | 13,471,208 | 90.5% |
DWV01 | DWV 108 GE | DWV | 372,674 | 9,381,298 | 8,317,765 | 88.7% |
DWV02 | DWV 108 GE | DWV | 536,845 | 12,014,963 | 10,737,245 | 89.4% |
DWV05 | DWV 108 GE | DWV | 627,575 | 11,463,725 | 10,403,578 | 90.8% |
DWV06 | DWV 108 GE | DWV | 600,523 | 12,942,641 | 11,667,059 | 90.1% |
DWV07 | DWV 108 GE | DWV | 282,418 | 10,940,452 | 9,708,615 | 88.7% |
DWV09 | DWV 108 GE | DWV | 284,126 | 13,132,427 | 10,299,986 | 78.4% |
DWV10 | DWV 108 GE | DWV | 1,047,479 | 19,577,082 | 17,478,913 | 89.3% |
DEG Class | GO: Category | GO: Biological Process Term | p1 | #DEG 2 | #Category 3 |
---|---|---|---|---|---|
Upregulated | 0045087 | Innate immune response | 1.04 × 10−4 | 3 | 12 |
0006955 | Immune response | 4.56 × 10−4 | 3 | 19 | |
0006950 | Response to stress | 1.99 × 10−2 | 4 | 188 | |
Downregulated | 0007154 | Cell communication | 2.03 × 10−28 | 152 | 775 |
0007165 | Signal transduction | 1.50 × 10−26 | 140 | 752 | |
0007186 | G-protein-coupled receptor signaling pathway | 3.74 × 10−9 | 30 | 136 | |
0007166 | Cell surface receptor signaling pathway | 2.32 × 10−8 | 32 | 129 | |
0007264 | Small GTPase mediated signal transduction | 9.57 × 10−6 | 20 | 71 | |
0006811 | Ion transport | 6.64 × 10−5 | 307 | 49 | |
0018108 | Peptidyl-tyrosine-phosphorylation | 1.86 × 10−4 | 11 | 32 | |
0007169 | Transmembrane receptor protein tyrosine kinase signaling pathway | 3.20 × 10−3 | 7 | 14 | |
0099536 | Synaptic signaling | 2.97 × 10−3 | 11 | 32 | |
0051056 | Regulation of small GTPase mediated signal transduction | 5.03 × 10−3 | 12 | 42 |
OGS 3.2 ID | Pathway 1 | Gene Symbol | Gene Description | List 2 |
---|---|---|---|---|
GB45495 | Heat shock proteins | LOC411700 | heat shock protein 83-like | E |
GB49918 | IMD | LOC724728 | NF-kappa-B essential modulator | D |
GB41606 | JNK | LOC726947 | TGF-beta-activated kinase 1 and MAP3K7-binding protein 3 | E |
GB52625 | MAPK | pnt | ETS-like protein pointed | D |
GB48923 | RNAi | LOC726766 | endoribonuclease Dicer | B |
GB50955 | RNAi | LOC411577 | protein argonaute-2, AGO2 | B |
GB54480 | RNAi | PRM1 | TAR RNA-binding protein 2 | E |
GB54808 | RNAi | LOC409557 | protein maelstrom | B |
GB52596 | Serine proteases | nanos | protein nanos | D |
GB43738 | Toll | PPO | phenoloxidase subunit A3 | B |
GB46708 | Toll | LOC552594 | cactin | E |
GB47805 | Toll | Pgrp-s2 | peptidoglycan recognition protein S2 | B |
GB46236 | Toll, AMP | LOC100576979 | apidaecin type 73-like | E |
GB47318 | Toll, AMP | LOC406144 | abaecin | B |
GB47546 | Toll, AMP | Apid1 | apidaecin 1 | B |
GB51223 | Toll, AMP | LOC406142 | hymenoptaecin | B |
GB51306 | Toll, AMP | LOC406115 | apidaecin | B |
GB40654 | Toll, IMD | LOC552247 | nuclear factor NF-kappa-B p100 subunit, relish | B |
GB50013 | Toll, PPO | LOC726126 | proclotting enzyme, serine protease 8 | E |
GB42981 | Toll/TLR | B-gluc2 | beta-1,3-glucan recognition protein 2 | E |
GB52625 | MAPK | pnt | ETS-like protein pointed | D |
GB48923 | RNAi | LOC726766 | endoribonuclease Dicer | B |
GB50955 | RNAi | LOC411577 | protein argonaute-2, AGO2 | B |
OGS 3.2 ID | Pathway 1 | Gene Symbol | Gene Description |
---|---|---|---|
GB52453 | Apoptosis | LOC100578356 | apoptotic protease-activating factor 1-like |
GB56010, GB56012 | Apoptosis, JNK | LOC409286 | stress-activated protein kinase JNK |
GB47938 | C-lectin domain | CTL4 | C-type lectin 4 |
GB51399 | C-lectin domain | CTL8 | C-type lectin 8 |
GB52628 | Heat shock proteins | Hsf | heat shock factor |
GB44117 | IG Superfamily Genes | IGFn3-5 | immunoglobulin-like and fibronectin type III domain containing 5 |
GB45752 | Imd | Ubc13 | ubiquitin-conjugating enzyme 13 |
GB48187, GB48188 | imd | LOC413809 | mitogen-activated protein kinase kinase kinase 7 |
GB42200 | Jakstat | LOC408577 | phosphatidylinositol 3-kinase regulatory subunit alpha |
GB43421 | Jakstat | LOC412008 | sprouty-related, EVH1 domain-containing protein 1, Spred |
GB47412, GB47413 | Jakstat | LOC411982 | E3 ubiquitin-protein ligase CBL |
GB48204 | Jakstat | LOC413980 | CD109 antigen, TEPA |
GB50020 | both | LOC413742 | signal transducer and activator of transcription 5B, STAT92E-like |
GB52510 | Jakstat | LOC413772 | suppressor of cytokine signaling 7, Socs7 |
GB47812 | PI3K-Akt-Tor | RPTOR | regulatory associated protein of MTOR, complex 1 |
GB40977 | RNAi | LOC552259 | staphylococcal nuclease domain-containing protein 1, Tudor-SN |
GB42279 | RNAi | LOC726768 | ATP-dependent RNA helicase dbp2-like |
GB48208 | RNAi | LOC552062 | protein argonaute-2, AGO1 |
GB50259 | RNAi | LOC410580 | synaptic functional regulator FMR1 |
GB44031 | Toll | Dl | dorsal |
GB48426 | Toll | LOC410235 | toll-like receptor Tollo, Toll-10 |
GB43456 | Toll/TLR | 18-w | 18-wheeler |
GB52453 | Apoptosis | LOC100578356 | apoptotic protease-activating factor 1-like |
GB56010, GB56012 | Apoptosis, JNK | LOC409286 | stress-activated protein kinase JNK |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizzorno, M.C.; Field, K.; Kobokovich, A.L.; Martin, P.L.; Gupta, R.A.; Mammone, R.; Rovnyak, D.; Capaldi, E.A. Transcriptomic Responses of the Honey Bee Brain to Infection with Deformed Wing Virus. Viruses 2021, 13, 287. https://doi.org/10.3390/v13020287
Pizzorno MC, Field K, Kobokovich AL, Martin PL, Gupta RA, Mammone R, Rovnyak D, Capaldi EA. Transcriptomic Responses of the Honey Bee Brain to Infection with Deformed Wing Virus. Viruses. 2021; 13(2):287. https://doi.org/10.3390/v13020287
Chicago/Turabian StylePizzorno, Marie C., Kenneth Field, Amanda L. Kobokovich, Phillip L. Martin, Riju A. Gupta, Renata Mammone, David Rovnyak, and Elizabeth A. Capaldi. 2021. "Transcriptomic Responses of the Honey Bee Brain to Infection with Deformed Wing Virus" Viruses 13, no. 2: 287. https://doi.org/10.3390/v13020287
APA StylePizzorno, M. C., Field, K., Kobokovich, A. L., Martin, P. L., Gupta, R. A., Mammone, R., Rovnyak, D., & Capaldi, E. A. (2021). Transcriptomic Responses of the Honey Bee Brain to Infection with Deformed Wing Virus. Viruses, 13(2), 287. https://doi.org/10.3390/v13020287