Functional Verification of Differentially Expressed Genes Following DENV2 Infection in Aedes aegypti
<p>Plasmid vectors: (<b>a</b>) Control plasmid vector; (<b>b</b>) Experimental plasmid vector. In the plasmid vectors, the Pub promoter refers to the polyubiquitin promoter sequence from <span class="html-italic">Aedes aegypti</span>, which significantly enhances the long-term stability of gene expression. ZsGreen represents Enhanced Green Fluorescent Protein (EGFP), while DsRed indicates Red Fluorescent Protein. The CDS of DEGs represents the protein-coding sequences of the 24 selected differentially expressed genes (<a href="#viruses-17-00067-t001" class="html-table">Table 1</a>).</p> "> Figure 2
<p>Schematic of fluorescence detection: (<b>a</b>) Schematic of fluorescence detection for the optimized transfection ratio. DsRed represents the Red Fluorescent Protein on the plasmid. Observing red fluorescence indicates that the plasmid has been successfully transfected into the cells; (<b>b</b>) Schematic of fluorescence detection for control plasmid overexpression. EGFP represents the Enhanced Green Fluorescent Protein, and DsRed represents the Red Fluorescent Protein on the plasmid. Observing red and green fluorescence indicates that the plasmid has been successfully transfected into the cells.</p> "> Figure 3
<p>Aag2 cell density: (<b>a</b>) Cell density of the first experiment; (<b>b</b>) Cell density of the second experiment; (<b>c</b>) Cell density of the third experiment. <span class="html-italic">p</span> values are indicated as follows: <span class="html-italic">p</span> < 0.05 (∗).</p> "> Figure 4
<p>Assessment of the knockdown efficiency of genes in <span class="html-italic">Aedes aegypti</span>: (<b>a</b>) The knockdown effect of 14 genes was assessed on day 1 post-interference. (<b>b</b>) The knockdown effect of 12 genes was assessed on day 1 post-interference. Columns of the same color indicate the experimental group, and the other, the negative control group. NC denotes the negative control. <span class="html-italic">p</span> values are indicated as follows: <span class="html-italic">p</span> < 0.05 (∗).</p> "> Figure 5
<p>Assessment of the knockdown efficiency of genes (<b>left</b>) and comparison of DENV2 RNA copies (<b>right</b>) in <span class="html-italic">Aedes aegypti</span>: (<b>a</b>–<b>f</b>) Knockdown efficiency of six genes associated with DENV2 infection and replication in <span class="html-italic">Aedes aegypti</span> (<b>left</b>); (<b>g</b>–<b>l</b>) DENV2 RNA copies in <span class="html-italic">Aedes aegypti</span> before and after six genes knockdown (<b>right</b>). <span class="html-italic">p</span> values are indicated as follows: <span class="html-italic">p</span> < 0.05 (∗), <span class="html-italic">p</span> < 0.01 (∗∗), <span class="html-italic">p</span> < 0.001 (∗∗∗), <span class="html-italic">p</span> < 0.0001 (∗∗∗∗).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus, Cells, Plasmids and Mosquitoes
2.2. Differentially Expressed Genes (DEGs) Related to DENV2 Infection and Replication
2.3. Transfection
2.4. Preparation of DENV2 Suspension Using C6/36 Cells
2.5. Virus Infection
2.6. RT-qPCR Detection of Gene Expression
2.7. Detection of DENV2 RNA Copies in the Supernatant of Cells After Transfection
2.8. Thoracic Microinjection of Adult Female Mosquitoes
2.9. Quantification of Target Gene Expression in Mosquitoes After siRNA Injection
2.10. Detection of DENV2 RNA Copies in Mosquitoes After siRNA Injection
2.11. Statistical Method
3. Results
3.1. Constructed an Instantaneous Transfection and Overexpression Model of Aag2 Cells
3.2. The Change in DENV2 RNA Copies in Aag2 Cell Supernatants After Gene Overexpression
3.3. Establishment of a Gene Interference Model in Mosquitoes
3.4. Changes in Target Gene Expression and DENV2 RNA Copies in Mosquitoes After siRNA Interference
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rico-Hesse, R. Microevolution and virulence of dengue viruses. Adv. Virus Res. 2003, 59, 315–341. [Google Scholar] [PubMed]
- Khetarpal, N.; Khanna, I. Dengue Fever: Causes, Complications, and Vaccine Strategies. J. Immunol. Res. 2016, 2016, 6803098. [Google Scholar] [CrossRef]
- Brower, V. Vector-borne diseases and global warming: Are both on an upward swing? Scientists are still debating whether global warming will lead to a further spread of mosquitoes and the diseases they transmit. EMBO Rep. 2001, 2, 755–757. [Google Scholar] [CrossRef]
- Shepard, D.S.; Undurraga, E.A.; Halasa, Y.A.; Stanaway, J.D. The global economic burden of dengue: A systematic analysis. Lancet Infect. Dis. 2016, 16, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C.; Barrett, A.D. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat. Rev. Microbiol. 2004, 2, 789–801. [Google Scholar] [CrossRef]
- Patterson, J.; Sammon, M.; Garg, M. Dengue, Zika and Chikungunya: Emerging Arboviruses in the New World. West. J. Emerg. Med. 2016, 17, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, L.; Saleh, M.C. Manipulating Mosquito Tolerance for Arbovirus Control. Cell Host Microbe 2019, 26, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Zárate, S.; Novella, I.S. Vesicular stomatitis virus evolution during alternation between persistent infection in insect cells and acute infection in mammalian cells is dominated by the persistence phase. J. Virol. 2004, 78, 12236–12242. [Google Scholar] [CrossRef]
- Sim, S.; Jupatanakul, N.; Dimopoulos, G. Mosquito immunity against arboviruses. Viruses 2014, 6, 4479–4504. [Google Scholar] [CrossRef]
- Sánchez-Vargas, I.; Scott, J.C.; Poole-Smith, B.K.; Franz, A.W.; Barbosa-Solomieu, V.; Wilusz, J.; Olson, K.E.; Blair, C.D. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog. 2009, 5, e1000299. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Ramirez, J.L.; Dimopoulos, G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 2008, 4, e1000098. [Google Scholar] [CrossRef] [PubMed]
- Souza-Neto, J.A.; Sim, S.; Dimopoulos, G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc. Natl. Acad. Sci. USA 2009, 106, 17841–17846. [Google Scholar] [CrossRef]
- Hillyer, J.F. Mosquito immunity. Adv. Exp. Med. Biol. 2010, 708, 218–238. [Google Scholar] [CrossRef]
- Kumar, A.; Srivastava, P.; Sirisena, P.; Dubey, S.K.; Kumar, R.; Shrinet, J.; Sunil, S. Mosquito Innate Immunity. Insects 2018, 9, 95. [Google Scholar] [CrossRef]
- Walker, T.; Jeffries, C.L.; Mansfield, K.L.; Johnson, N. Mosquito cell lines: History, isolation, availability and application to assess the threat of arboviral transmission in the United Kingdom. Parasites Vectors 2014, 7, 382. [Google Scholar] [CrossRef] [PubMed]
- Grace, T.D. Establishment of a line of mosquito (Aedes aegypti L.) cells grown in vitro. Nature 1966, 211, 366–367. [Google Scholar] [CrossRef] [PubMed]
- Peleg, J. Growth of arboviruses in monolayers from subcultured mosquito embryo cells. Virology 1968, 35, 617–619. [Google Scholar] [CrossRef]
- Peleg, J. Growth of arboviruses in primary tissue culture of Aedes aegypti embryos. Am. J. Trop. Med. Hyg. 1968, 17, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.; Dimopoulos, G. Dengue virus inhibits immune responses in Aedes aegypti cells. PLoS ONE 2010, 5, e10678. [Google Scholar] [CrossRef]
- Fallon, A.M.; Sun, D. Exploration of mosquito immunity using cells in culture. Insect Biochem. Mol. Biol. 2001, 31, 263–278. [Google Scholar] [CrossRef]
- Weger-Lucarelli, J.; Rückert, C.; Grubaugh, N.D.; Misencik, M.J.; Armstrong, P.M.; Stenglein, M.D.; Ebel, G.D.; Brackney, D.E. Adventitious viruses persistently infect three commonly used mosquito cell lines. Virology 2018, 521, 175–180. [Google Scholar] [CrossRef]
- Varjak, M.; Donald, C.L.; Mottram, T.J.; Sreenu, V.B.; Merits, A.; Maringer, K.; Schnettler, E.; Kohl, A. Characterization of the Zika virus induced small RNA response in Aedes aegypti cells. PLoS Neglected Trop. Dis. 2017, 11, e0006010. [Google Scholar] [CrossRef]
- Gao, Y.; Hernandez, V.P.; Fallon, A.M. Immunity proteins from mosquito cell lines include three defensin A isoforms from Aedes aegypti and a defensin D from Aedes albopictus. Insect Mol. Biol. 1999, 8, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Barletta, A.B.; Silva, M.C.; Sorgine, M.H. Validation of Aedes aegypti Aag-2 cells as a model for insect immune studies. Parasites Vectors 2012, 5, 148. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, H.; Lu, Q.; Tian, L.; Yao, S.; Lai, F.; Liang, Y.; Liu, C.; Lu, Y.; Tian, S.; et al. Nanocarrier-mediated siRNA delivery: A new approach for the treatment of traumatic brain injury-related Alzheimer’s disease. Neural Regen. Res. 2025, 20, 2538–2555. [Google Scholar] [CrossRef]
- Whitten, M.M. Novel RNAi delivery systems in the control of medical and veterinary pests. Curr. Opin. Insect Sci. 2019, 34, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Gatehouse, J.A.; Fitches, E.C. A Systematic Study of RNAi Effects and dsRNA Stability in Tribolium castaneum and Acyrthosiphon pisum, Following Injection and Ingestion of Analogous dsRNAs. Int. J. Mol. Sci. 2018, 19, 10798. [Google Scholar] [CrossRef]
- Cruz, C.; Tayler, A.; Whyard, S. RNA Interference-Mediated Knockdown of Male Fertility Genes in the Queensland Fruit Fly Bactrocera tryoni (Diptera: Tephritidae). Insects 2018, 9, 96. [Google Scholar] [CrossRef]
- Monte, E. The sophisticated evolution of Trichoderma to control insect pests. Proc. Natl. Acad. Sci. USA 2023, 120, e2301971120. [Google Scholar] [CrossRef] [PubMed]
- State Key Laboratory of Pathogen and Biosecurity, Functional Verification of Related Genes Susceptible to DENV2 in Aedes Aegypti [BioProject ID: PRJNA1197782]. National Center for Biotechnology Information. 2024. Available online: https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA1197782 (accessed on 31 December 2024).
- Li, M.J.; Lan, C.J.; Gao, H.T.; Xing, D.; Gu, Z.Y.; Su, D.; Zhao, T.Y.; Yang, H.Y.; Li, C.X. Transcriptome analysis of Aedes aegypti Aag2 cells in response to dengue virus-2 infection. Parasites Vectors 2020, 13, 421. [Google Scholar] [CrossRef]
- Oliveira, F.A.A.; Buri, M.V.; Rodriguez, B.L.; Costa-da-Silva, A.L.; Araújo, H.R.C.; Capurro, M.L.; Lu, S.; Tanaka, A.S. The first characterization of a cystatin and a cathepsin L-like peptidase from Aedes aegypti and their possible role in DENV infection by the modulation of apoptosis. Int. J. Biol. Macromol. 2020, 146, 141–149. [Google Scholar] [CrossRef]
- Bubner, B.; Gase, K.; Baldwin, I.T. Two-fold differences are the detection limit for determining transgene copy numbers in plants by real-time PCR. BMC Biotechnol. 2004, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Dhananjeyan, K.J.; Sivaperumal, R.; Paramasivan, R.; Thenmozhi, V.; Tyagi, B.K. In-silico homology modeling of three isoforms of insect defensins from the dengue vector mosquito, Aedes aegypti (Linn., 1762). J. Mol. Model. 2009, 15, 507–514. [Google Scholar] [CrossRef]
- Kokoza, V.; Ahmed, A.; Woon Shin, S.; Okafor, N.; Zou, Z.; Raikhel, A.S. Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes. Proc. Natl. Acad. Sci. USA 2010, 107, 8111–8116. [Google Scholar] [CrossRef]
- Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, R.M.; Kriventseva, E.V.; Meister, S.; Xi, Z.; Alvarez, K.S.; Bartholomay, L.C.; Barillas-Mury, C.; Bian, G.; Blandin, S.; Christensen, B.M.; et al. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 2007, 316, 1738–1743. [Google Scholar] [CrossRef] [PubMed]
- Lowenberger, C.; Bulet, P.; Charlet, M.; Hetru, C.; Hodgeman, B.; Christensen, B.M.; Hoffmann, J.A. Insect immunity: Isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 1995, 25, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Alto, B.W.; Smartt, C.T.; Shin, D. Transcription Profiling for Defensins of Aedes aegypti (Diptera: Culicidae) During Development and in Response to Infection with Chikungunya and Zika Viruses. J. Med. Entomol. 2018, 55, 78–89. [Google Scholar] [CrossRef]
- Oda, S.; Fukami, T.; Yokoi, T.; Nakajima, M. A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab. Pharmacokinet. 2015, 30, 30–51. [Google Scholar] [CrossRef]
- Miyauchi, Y.; Kurita, A.; Yamashita, R.; Takamatsu, T.; Ikushiro, S.; Mackenzie, P.I.; Tanaka, Y.; Ishii, Y. Hetero-oligomer formation of mouse UDP-glucuronosyltransferase (UGT) 2b1 and 1a1 results in the gain of glucuronidation activity towards morphine, an activity which is absent in homo-oligomers of either UGT. Biochem. Biophys. Res. Commun. 2020, 525, 348–353. [Google Scholar] [CrossRef]
- Williams, J.A.; Hyland, R.; Jones, B.C.; Smith, D.A.; Hurst, S.; Goosen, T.C.; Peterkin, V.; Koup, J.R.; Ball, S.E. Drug-drug interactions for UDP-glucuronosyltransferase substrates: A pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab. Dispos. Biol. Fate Chem. 2004, 32, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, P.; Nagini, S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr. Drug Targets 2018, 19, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Vontas, J.; Katsavou, E.; Mavridis, K. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: Muddying the waters. Pestic. Biochem. Physiol. 2020, 170, 104666. [Google Scholar] [CrossRef]
- Ishii, Y.; Takeda, S.; Yamada, H. Modulation of UDP-glucuronosyltransferase activity by protein-protein association. Drug Metab. Rev. 2010, 42, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.; Poernbacher, I.; Buser, N.; Hafen, E.; Stocker, H. The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev. Cell 2010, 18, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Hatefi, Y.; Ragan, C.I.; Galante, Y.M. The Enzymes and the Enzyme Complexes of the Mitochondrial Oxidative Phosphorylation System. In The Enzymes of Biological Membranes: Volume 4 Bioenergetics of Electron and Proton Transport; Martonosi, A.N., Ed.; Springer: Boston, MA, USA, 1985; pp. 1–70. [Google Scholar]
- Paupy, C.; Brengues, C.; Kamgang, B.; Hervé, J.P.; Fontenille, D.; Simard, F. Gene flow between domestic and sylvan populations of Aedes aegypti (Diptera: Culicidae) in North Cameroon. J. Med. Entomol. 2008, 45, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Fricke, B.; Heink, S.; Steffen, J.; Kloetzel, P.M.; Krüger, E. The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep. 2007, 8, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.M.; Dun, Y.; Mysona, B.; Ananth, S.; Roon, P.; Smith, S.B.; Ganapathy, V. Expression of the sodium-coupled monocarboxylate transporters SMCT1 (SLC5A8) and SMCT2 (SLC5A12) in retina. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3356–3363. [Google Scholar] [CrossRef]
- Guder, W.G.; Wagner, S.; Wirthensohn, G. Metabolic fuels along the nephron: Pathways and intracellular mechanisms of interaction. Kidney Int. 1986, 29, 41–45. [Google Scholar] [CrossRef]
- Gerich, J.E.; Meyer, C.; Woerle, H.J.; Stumvoll, M. Renal gluconeogenesis: Its importance in human glucose homeostasis. Diabetes Care 2001, 24, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Ross, B.D.; Espinal, J.; Silva, P. Glucose metabolism in renal tubular function. Kidney Int. 1986, 29, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, V.; Gopal, E.; Miyauchi, S.; Prasad, P.D. Biological functions of SLC5A8, a candidate tumour suppressor. Biochem. Soc. Trans. 2005, 33, 237–240. [Google Scholar] [CrossRef]
- Gupta, N.; Martin, P.M.; Prasad, P.D.; Ganapathy, V. SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sci. 2006, 78, 2419–2425. [Google Scholar] [CrossRef]
No. | Vectorbase ID | Gene ID | Gene Description | Mosquito Salivary Glands | Mosquito Midgut | Aag2 Cell | |||
---|---|---|---|---|---|---|---|---|---|
log2FC | padj | log2FC | padj | log2FC | padj | ||||
1 | AAEL003841 | LOC110680759 | defensin-A | 0.402 | 0.871 | 2.992 | 0.003 | - | - |
2 | AAEL003857 | LOC5579095 | defensin-A-like | 1.420 | 0.007 | 2.348 | 0.000 | - | - |
3 | AAEL007268 | LOC5568968 | protein kibra | 2.479 | 0.013 | 3.299 | 0.000 | - | - |
4 | AAEL011559 | LOC5574940 | zinc metalloproteinase nas-14 | 3.951 | 0.030 | 5.969 | 0.000 | - | - |
5 | AAEL009630 | LOC5572215 | Pde9a/high affinity cGMP-specific 3′,5′-cyclic phosphodiesterase 9A | 2.276 | 0.000 | 2.485 | 0.000 | - | - |
6 | AAEL021099 | LOC5571480 | SLCO2A1/solute carrier organic anion transporter family member 2A1 | 0.700 | 0.858 | 2.501 | 0.004 | - | - |
7 | AAEL012981 | LOC5577084 | SLC22A8/solute carrier family 22 member 8 | 1.516 | 0.641 | 2.442 | 0.003 | - | - |
8 | AAEL018680 | LOC33307568 | ND4/NADH dehydrogenase subunit 4 | 1.137 | 0.086 | 2.006 | 0.021 | - | - |
9 | AAEL000556 | LOC5563674 | perlucin | 7.310 | 0.045 | −1.221 | 1.000 | - | - |
10 | AAEL003163 | LOC5577396 | protein fork head | 3.424 | 0.000 | 3.982 | 0.008 | - | - |
11 | AAEL011900 | LOC5575526 | beta-1,4-glucuronyltransferase | 2.821 | 0.002 | 2.217 | 0.001 | - | - |
12 | AAEL023898 | LOC110675616 | mucin-5AC-like | 2.295 | 0.001 | 2.458 | 0.000 | - | - |
13 | AAEL007064 | LOC5568698 | GNBPB6/beta-1,3-glucan-binding protein | 4.059 | 0.015 | 1.358 | 0.542 | - | - |
14 | AAEL004923 | LOC5565694 | neuronal acetylcholine receptor subunit beta-3 | 2.499 | 0.000 | −0.455 | 1.000 | - | - |
15 | AAEL017136 | LOC23687556 | CYP4c21/cytochrome P450 4c21 | 2.034 | 0.001 | 3.404 | 1.000 | - | - |
16 | AAEL001835 | LOC5572450 | SMCT1/sodium-coupled monocarboxylate transporter 1 | 1.032 | 0.686 | 2.544 | 0.000 | - | - |
17 | AAEL014246 | LOC5563937 | UGT2B1/UDP-glucuronosyltransferase 2B1 | - | - | - | - | 2.164 | 0.000 |
18 | AAEL008467 | LOC5570649 | CBS/cystathionine beta-synthase | - | - | - | - | 2.103 | 0.000 |
19 | AAEL004174 | LOC5564263 | TBX6 T-box transcription factor | - | - | - | - | 1.690 | 0.000 |
20 | AAEL014555 | LOC5564671 | POMP proteasome maturation protein | - | - | - | - | 1.389 | 0.009 |
21 | AAEL002721 | LOC5575760 | PEM/protein extra macrochaetae | - | - | - | - | 1.253 | 0.000 |
22 | AAEL013828 | LOC5578712 | M1PI/ethylthioribose-1-phosphate isomerase | - | - | - | - | 1.198 | 0.000 |
23 | AAEL014972 | LOC5565788 | Tret1/facilitated trehalose transporter Tret1 | - | - | - | - | 1.182 | 0.000 |
24 | AAEL002583 | LOC5575353 | TLR7 toll-like receptor 7 | - | - | - | - | 1.175 | 0.000 |
No. | Gene ID | Forward Primer (5′ to 3′) | Reverse Primer (5′ to 3′) | Length (bp) |
---|---|---|---|---|
1 | LOC110680759 | CGCACTTTACGCTTTCGAG | AGAGCCAGGAAACAAATGACA | 138 |
2 | LOC5579095 | GAAGCTCGCCCTTTTGCC | CACAAGCACTATCACCAACGC | 136 |
3 | LOC5568968 | TGATCATATTAACAAGAAGACCAC | CGATCTGAGGGTCATAGC | 128 |
4 | LOC5574940 | CCACGCCAAACTGATTCGAGA | AAGACCTCGATTACGACCT | 148 |
5 | LOC5572215 | CCGGTGTAATACTGAATCAACCA | TACGTCCAAGCTGTAGGCTC | 116 |
6 | LOC5571480 | TCGACGAAAAGGATAAAACCG | TTTTACCCCACACCAAGCA | 126 |
7 | LOC5577084 | TTGATCAACGTTTTCGAGCTG | TCATTATAACGCCTCCCGCTGT | 91 |
8 | LOC33307568 | AGGCTTTAATTGCTTATTCTTCG | AGCCAAACAAAATAACCCAG | 143 |
9 | LOC5563674 | TGTGGTCAACAGCGAAGCAA | CGGTTTTCCATTGGCGAT | 148 |
10 | LOC5577396 | TTCTGGACTTTGCATCCCGAC | TCCGGACTCGTTGCATCCAT | 146 |
11 | LOC5575526 | TACCAGAGAGTCATTTAGTTCGTC | CTCGACACGTTGAAGTACGG | 148 |
12 | LOC110675616 | TGAATCGAAACCCAATCGGACA | TCGGAAGTCCAACGAAGCAC | 148 |
13 | LOC5568698 | GTCACGTGGCAATCGAAACC | CACATTCGGGTTGTCTCCGA | 94 |
14 | LOC5565694 | ATATTGACGGTTTTCATCAAGCA | GGCTCAACTTCCAAACCAGT | 146 |
15 | LOC23687556 | TGGATATCAACAATAATCCGAA | TTCCGATAATCGCTGGTCA | 136 |
16 | LOC5572450 | CATGACTGTGATCCCGTCT | CACAAACAATCCCGGTAGGC | 111 |
17 | LOC5563937 | ACTTCCCGAACATCACCGAGACT | CCACCACCAGAGCCACCATATCTA | 249 |
18 | LOC5570649 | CGGAGAAGATGTCCAACGAGAAGG | CGCCAAAGGATTGCCCGAGTT | 185 |
19 | LOC5564263 | GGACGAAAACTACTGCGTGC | GGTACATCCGTTGGGGACTC | 122 |
20 | LOC5564671 | CGGAACTGAACTACGAACAACACC | TGGACGGCAGGAACGGCATA | 141 |
21 | LOC5575760 | GTTCATGCCGAAGAACCGC | AGGCCTGAACGGGATCAAAA | 128 |
22 | LOC5578712 | GCAATACTGGATCACTGGCGACTG | CTCCAACAACTACTGCCGCTACTC | 237 |
23 | LOC5565788 | GAGGTACGAGGAACACTTGGACTG | AGGAACATCAGCAACAGGAATGGT | 149 |
24 | LOC5575353 | CCGTACCGAGGCAACAACTATACC | GCTGCGGAAGCTCCACCATT | 190 |
25 | RPS6 | CGTCGTCAGGAACGTATCC | TTCTTGGCAGCCTTAGCAG | 119 |
No. | Gene ID | Sense Strand (5′-3′) | Antisense Strand (5′-3′) |
---|---|---|---|
1 | LOC33307568 | GCUACUUGUUUAUUUAUAATT | UUAUAAAUAAACAAGUAGCTT |
2 | LOC110680759 | CGAUUAUCACAUCAUUCAATT | UUGAAUGAUGUGAUAAUCGTT |
3 | LOC5564671 | CGGUCAUGUUGCUCCACUATT | UAGUGGAGCAACAUGACCGTT |
4 | LOC5572450 | GACAGACUAUGGUUCAAUATT | UAUUGAACCAUAGUCUGUCTT |
5 | LOC5579095 | GCUACUGCAACUCCAAGAATT | UUCUUGGAGUUGCAGUAGCTT |
6 | LOC5563937 | CGAGUAACGUACUGAUCAATT | UUGAUCAGUACGUUACUCGTT |
7 | LOC5575353 | GAUCCUGUUCGAAAGUCAATT | UUGACUUUCGAACAGGAUCTT |
8 | LOC5564263 | AGUUGAAGAUCGACCACAATT | UUGUGGUCGAUCUUCAACUTT |
9 | LOC5571480 | GCGGAGAUCUCAAGAUCUATT | UAGAUCUUGAGAUCUCCGCTT |
10 | LOC5574940 | GGAUCAUGUUAGACCGGAATT | UUCCGGUCUAACAUGAUCCTT |
11 | LOC5572215 | GGAAGAAAGAGAAGAUUAATT | UUAAUCUUCUCUUUCUUCCTT |
12 | LOC5570649 | CGAAGAAUCUCCAGAUGAATT | UUCAUCUGGAGAUUCUUCGTT |
13 | LOC5578712 | CCAAGUACAUAGAUGUUAATT | UUAACAUCUAUGUACUUGGTT |
14 | LOC5565788 | GGAAGAUGCUGUUGUACAUTT | AUGUACAACAGCAUCUUCCTT |
15 | NC | UUCUCCGAACGUGUCACGUTT | ACGUGACACGUUCGGAGAATT |
No. | Gene ID | 2 dpi | 4 dpi | 6 dpi | |||
---|---|---|---|---|---|---|---|
G/E | GD2/ED2 | G/E | GD2/ED2 | G/E | GD2/ED2 | ||
1 | LOC110680759 | 6.27 | 5.92 | 4.72 | 5.25 | 4.70 | 4.04 |
2 | LOC5579095 | 4.01 | 3.81 | 3.70 | 3.68 | 5.68 | 2.79 |
3 | LOC5568968 | 3.49 | 3.49 | 2.41 | 2.31 | 2.21 | 2.11 |
4 | LOC5574940 | 4.43 | 4.41 | 4.87 | 3.77 | 5.17 | 2.63 |
5 | LOC5572215 | 4.62 | 4.53 | 4.35 | 3.27 | 5.64 | 2.80 |
6 | LOC5571480 | 4.31 | 4.04 | 4.79 | 3.40 | 5.11 | 2.85 |
7 | LOC5577084 | 4.44 | 4.64 | 4.46 | 3.68 | 4.81 | 3.25 |
8 | LOC33307568 | 2.61 | 2.55 | 1.21 | 1.28 | 1.65 | 0.97 |
9 | LOC5563674 | 4.05 | 3.59 | 3.16 | 3.33 | 3.14 | 2.46 |
10 | LOC5577396 | 2.14 | 1.29 | 2.10 | 1.07 | 1.19 | 0.67 |
11 | LOC5575526 | 3.97 | 2.03 | 3.77 | 4.06 | 3.17 | 2.35 |
12 | LOC110675616 | 3.92 | 2.63 | 4.13 | 3.90 | 3.67 | 3.22 |
13 | LOC5568698 | 5.04 | 5.59 | 3.95 | 3.49 | 4.60 | 3.27 |
14 | LOC5565694 | 4.05 | 5.54 | 3.61 | 3.38 | 3.94 | 3.05 |
15 | LOC23687556 | 5.19 | 5.10 | 3.44 | 3.88 | 4.41 | 3.80 |
16 | LOC5572450 | 3.63 | 6.32 | 3.65 | 2.82 | 4.74 | 2.28 |
17 | LOC5563937 | 1.87 | 1.89 | 1.39 | 1.19 | 1.03 | 0.96 |
18 | LOC5570649 | 1.23 | 0.99 | 0.73 | 0.52 | 0.29 | 0.34 |
19 | LOC5564263 | 3.44 | 3.05 | 2.49 | 2.62 | 2.85 | 2.38 |
20 | LOC5564671 | 2.77 | 2.75 | 2.36 | 2.08 | 2.00 | 1.95 |
21 | LOC5575760 | 2.89 | 2.81 | 2.41 | 2.34 | 2.38 | 2.16 |
22 | LOC5578712 | 2.45 | 2.38 | 2.05 | 2.05 | 1.88 | 1.70 |
23 | LOC5565788 | 3.35 | 3.30 | 3.03 | 2.98 | 3.31 | 2.40 |
24 | LOC5575353 | 4.27 | 3.88 | 3.08 | 3.38 | 3.66 | 2.96 |
Gene ID | 2 dpi | 4 dpi | 6 dpi | |||
---|---|---|---|---|---|---|
p Value | FC | p Value | FC | p Value | FC | |
LOC110680759 | 0.053 | 1.198 | 0.018 | 1.428 | 0.112 | 1.072 |
LOC5579095 | 0.002 | 1.315 | 0.012 | 1.552 | 0.445 | 1.032 |
LOC5568968 | 0.006 | 1.204 | 0.323 | 1.183 | 0.007 | 0.724 |
LOC5574940 | 0.007 | 1.227 | 0.039 | 1.445 | 0.772 | 1.017 |
LOC5572215 | 0.040 | 1.083 | 0.028 | 1.389 | 0.209 | 0.916 |
LOC5571480 | 0.014 | 1.244 | 0.978 | 0.995 | 0.001 | 0.551 |
LOC5577084 | 0.000 | 1.324 | 0.138 | 1.368 | 0.672 | 0.979 |
LOC33307568 | 0.000 | 1.345 | 0.005 | 1.574 | 0.892 | 1.006 |
LOC5563674 | 0.959 | 0.999 | 0.596 | 0.944 | 0.303 | 1.095 |
LOC5577396 | 0.801 | 0.991 | 0.126 | 1.140 | 0.445 | 1.046 |
LOC5575526 | 0.889 | 1.004 | 0.524 | 1.092 | - | - |
LOC110675616 | 0.341 | 0.971 | 0.265 | 0.908 | 0.895 | 0.991 |
LOC5568698 | 0.377 | 0.977 | 0.015 | 0.790 | 0.109 | 0.852 |
LOC5565694 | 0.902 | 1.006 | 0.465 | 1.042 | 0.409 | 1.053 |
LOC23687556 | 0.855 | 0.995 | 0.006 | 0.657 | 0.186 | 1.045 |
LOC5572450 | 0.419 | 1.043 | 0.018 | 0.668 | 0.541 | 1.071 |
LOC5563937 | 0.813 | 0.991 | 0.775 | 0.986 | 0.008 | 0.893 |
LOC5570649 | 0.621 | 1.021 | 0.672 | 1.016 | 0.033 | 0.884 |
LOC5564263 | 0.048 | 1.126 | 0.505 | 1.023 | 0.001 | 0.837 |
LOC5564671 | 0.260 | 1.079 | 0.014 | 0.887 | 0.095 | 0.942 |
LOC5575760 | 0.178 | 1.057 | 0.086 | 0.929 | 0.003 | 0.915 |
LOC5578712 | 0.248 | 1.059 | 0.007 | 0.859 | 0.019 | 0.919 |
LOC5565788 | 0.175 | 1.072 | 0.435 | 0.967 | 0.000 | 0.907 |
LOC5575353 | 0.005 | 1.171 | 0.814 | 1.010 | 0.001 | 0.880 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhou, X.; Xie, X.; Li, B.; Zhao, T.; Yu, H.; Xing, D.; Wu, J.; Li, C. Functional Verification of Differentially Expressed Genes Following DENV2 Infection in Aedes aegypti. Viruses 2025, 17, 67. https://doi.org/10.3390/v17010067
Chen X, Zhou X, Xie X, Li B, Zhao T, Yu H, Xing D, Wu J, Li C. Functional Verification of Differentially Expressed Genes Following DENV2 Infection in Aedes aegypti. Viruses. 2025; 17(1):67. https://doi.org/10.3390/v17010067
Chicago/Turabian StyleChen, Xiaoli, Xinyu Zhou, Xiaoxue Xie, Bo Li, Teng Zhao, Haotian Yu, Dan Xing, Jiahong Wu, and Chunxiao Li. 2025. "Functional Verification of Differentially Expressed Genes Following DENV2 Infection in Aedes aegypti" Viruses 17, no. 1: 67. https://doi.org/10.3390/v17010067
APA StyleChen, X., Zhou, X., Xie, X., Li, B., Zhao, T., Yu, H., Xing, D., Wu, J., & Li, C. (2025). Functional Verification of Differentially Expressed Genes Following DENV2 Infection in Aedes aegypti. Viruses, 17(1), 67. https://doi.org/10.3390/v17010067