Serological Evidence of Cryptic Rift Valley Fever Virus Transmission Among Humans and Livestock in Central Highlands of Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Area
2.3. Sampling Method and Sample Size
2.4. Participant Management
2.5. Sampling Collection and Testing
2.6. Competitive Enzyme-Linked Immunosorbent Assay (C-ELISA)
2.7. Specific IgM ELISA Detection
2.8. PCR Assay
2.9. RVF Virus Neutralizing Antibody Assay
2.10. Statistical Analysis
2.11. Ethical Approval
3. Results
3.1. Characteristics of Human Participants
3.2. Characteristics of Livestock
3.3. Environmental Risk Factor Analysis
3.4. RVFV Prevalence in Humans
3.5. RVFV Prevalence in Livestock
3.6. Multivariable Analysis of Human Risk Factors of RVFV Seropositivity
3.7. Factors Associated with RVFV Seropositivity in Livestock
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daubney, R.; Hudson, J. Enzootic Hepatitis or Rift Valley Fever. An Un-described Virus Disease of Sheep, Cattle and Man from East Africa. J. Pathol. Bacteriol. 1931, 34, 545–579. [Google Scholar] [CrossRef]
- Ikegami, T.; Makino, S. The pathogenesis of Rift Valley fever. Viruses 2011, 3, 493–519. [Google Scholar] [CrossRef] [PubMed]
- Manore, C.A.; Beechler, B.R. Inter-epidemic and between-season persistence of rift valley fever: Vertical transmission or cryptic cycling? Transbound. Emerg. Dis. 2015, 62, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Mroz, C.; Gwida, M.; El-Ashker, M.; El-Diasty, M.; El-Beskawy, M.; Ziegler, U.; Eiden, M.; Groschup, M.H. Seroprevalence of Rift Valley fever virus in livestock during inter-epidemic period in Egypt, 2014/15. BMC Veter-Res. 2017, 13, 87. [Google Scholar] [CrossRef]
- Murithi, R.M.; Munyua, P.; Ithondeka, P.M.; Macharia, J.M.; Hightower, A.; Luman, E.T.; Breiman, R.F.; Njenga, M.K. Rift Valley fever in Kenya: History of epizootics and identification of vulnerable districts. Epidemiology Infect. 2011, 139, 372–380. [Google Scholar] [CrossRef]
- Nanyingi, D.M.O. Spatial Epidemiology and Predictive Modelling of Rift Valley Fever in Garissa County, Kenya. Ph.D. Thesis, The Univeristy of Nairobii, Garissa County, Kenya, 2018. [Google Scholar]
- Clark, M.H.A.; Warimwe, G.M.; Nardo, A.D.; Lyons, N.A.; Gubbins, S. Systematic literature review of Rift Valley fever virus seroprevalence in livestock, wildlife and humans in Africa from 1968 to 2016. PLoS Neglected Trop. Dis. 2018, 12, e0006627. [Google Scholar] [CrossRef]
- Bron, G.M.; Strimbu, K.; Cecilia, H.; Lerch, A.; Moore, S.M.; Tran, Q.; Perkins, T.A.; Bosch, Q.A.T. Over 100 years of Rift Valley Fever: A patchwork of data on pathogen spread and spillover. Pathogens 2021, 10, 708. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. 2018 Annual Review of Diseases Prioritized Under the Research and Development Blueprint. Available online: https://www.who.int/news-room/events/detail/2018/02/06/default-calendar/2018-annual-review-of-diseases-prioritized-under-the-research-anddevelopment-blueprint (accessed on 30 April 2024).
- de Glanville, W.A.; Nyarobi, J.M.; Kibona, T.; Halliday, J.E.B.; Thomas, K.M.; Allan, K.J.; Johnson, P.C.D.; Davis, A.; Lankester, F.; Claxton, J.R.; et al. Inter-epidemic Rift Valley fever virus infection incidence and risks for zoonotic spillover in northern Tanzania. PLoS Neglected Trop. Dis. 2022, 16, e0010871. [Google Scholar] [CrossRef]
- Wright, D.; Kortekaas, J.; Bowden, T.A.; Warimwe, G.M.Y. Rift Valley fever: Biology and epidemiology. J. Gen. Virol. 2019, 100, 1187–1199. [Google Scholar] [CrossRef]
- Nyakarahuka, L.; Kyondo, J.; Telford, C.; Whitesell, A.; Tumusiime, A.; Mulei, S.; Baluku, J.; Cossaboom, C.M.; Cannon, D.L.; Montgomery, J.M.; et al. A Countrywide Seroepidemiological Survey of Rift Valley Fever in Livestock, Uganda, 2017. Am. J. Trop. Med. Hyg. 2023, 109, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Mbotha, D.; Bett, B.; Kairu-Wanyoike, S.; Grace, D.; Kihara, A.; Wainaina, M.; Hoppenheit, A.; Clausen, P.-H.; Lindahl, J. Inter-epidemic Rift Valley fever virus seroconversions in an irrigation scheme in Bura, south-east Kenya. Transbound. Emerg. Dis. 2018, 65, e55–e62. [Google Scholar] [CrossRef] [PubMed]
- Gerken, K.N.; LaBeaud, A.D.; Mandi, H.; Jackson, M.L.; Breugelmans, J.G.; King, C.H. Paving the way for human vaccination against Rift Valley fever virus: A systematic literature review of RVFV epidemiology from 1999 to 2021. PLoS Neglected Trop. Dis. 2022, 16, e0009852. [Google Scholar] [CrossRef]
- Grossi-Soyster, E.N.; Lee, J.; King, C.H.; LaBeaud, A.D. The influence of raw milk exposures on Rift Valley fever virus transmission. PLoS Negl. Trop. Dis. 2019, 13, e0007258. [Google Scholar] [CrossRef]
- Situma, S.; Nyakarahuka, L.; Omondi, E.; Mureithi, M.; Mweu, M.M.; Muturi, M.; Mwatondo, A.; Dawa, J.; Konongoi, L.; Khamadi, S.; et al. Widening geographic range of Rift Valley fever disease clusters associated with climate change in East Africa. BMJ Glob. Health 2024, 9, e014737. [Google Scholar] [CrossRef] [PubMed]
- Budasha, N.H.; Gonzalez, J.-P.; Sebhatu, T.T.; Arnold, E. Rift Valley fever seroprevalence and abortion frequency among livestock of Kisoro district, South Western Uganda (2016): A prerequisite for zoonotic infection. BMC Veter-Res. 2018, 14, 271. [Google Scholar] [CrossRef]
- Njenga, M.K.; Bett, B. Rift Valley fever virus—How and where virus is maintained during inter-epidemic periods. Curr. Clin. Microbiol. Rep. 2019, 6, 18–24. [Google Scholar] [CrossRef]
- Murang’a County. Murang’a County Integrated Development Plan. Murang’ a County Integrated Development Plan. Cty Integr Dev plan. 2018; (May). Google Search. Murang’a County. 2018. Available online: https://www.devolution.go.ke/sites/default/files/2024-03/Muranga-CIDP-2018-2022.pdf (accessed on 1 October 2021).
- UNEP. UNEP Climate Action Note|Data You Need to Know. Available online: https://www.unep.org/explore-topics/climate-action/what-we-do/climate-action-note/state-of-the-climate.html (accessed on 21 September 2023).
- Kilavi, M.; MacLeod, D.; Ambani, M.; Robbins, J.; Dankers, R.; Graham, R.; Titley, H.; Salih, A.A.M.; Todd, M.C. Extreme Rainfall and Flooding over Central Kenya Including Nairobi City during the Long-Rains Season 2018: Causes, Predictability, and Potential for Early Warning and Actions. Atmosphere 2018, 9, 472. [Google Scholar] [CrossRef]
- Nyakarahuka, L.; Maurice, A.d.S.; Purpura, L.; Ervin, E.; Balinandi, S.; Tumusiime, A.; Kyondo, J.; Mulei, S.; Tusiime, P.; Lutwama, J.; et al. Prevalence and risk factors of Rift Valley fever in humans and animals from Kabale district in Southwestern Uganda, 2016. PLoS Neglected Trop. Dis. 2018, 12, e0006412. [Google Scholar] [CrossRef] [PubMed]
- UK Sample Size Calculator. UK Samples-Mixed-Mode, Quota & Probability Sampling. Available online: https://uksamples.co.uk/ (accessed on 9 May 2024).
- Kainga, H.; Phonera, M.C.; Chatanga, E.; Kallu, S.A.; Mpundu, P.; Samutela, M.; Chambaro, H.M.; Kajihara, M.; Shempela, D.M.; Sikalima, J.; et al. Seroprevalence and Associated Risk Factors of Rift Valley Fever in Livestock from Three Ecological Zones of Malawi. Pathogens 2022, 11, 1349. [Google Scholar] [CrossRef]
- Drosten, C.; Gottig, S.; Schilling, S.; Asper, M.; Panning, M.; Schmitz, H.; Gunther, S. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J. Clin. Microbiol. 2002, 40, 2323–2330. [Google Scholar] [CrossRef]
- Njenga, M.K.; Paweska, J.; Wanjala, R.; Rao, C.Y.; Weiner, M.; Omballa, V.; Luman, E.T.; Mutonga, D.; Sharif, S.; Panning, M.; et al. Using a Field Quantitative Real-Time PCR Test to Rapidly Identify Highly Viremic Rift Valley Fever Cases. J. Clin. Microbiol. 2009, 47, 1166–1171. [Google Scholar] [CrossRef]
- Balaraman, V.; Gaudreault, N.N.; Trujillo, J.D.; Indran, S.V.; Wilson, W.C.; Richt, J.A. RT-qPCR genotyping assays for differentiating Rift Valley fever phlebovirus strains. J. Virol. Methods 2023, 315, 114693. [Google Scholar] [CrossRef] [PubMed]
- Mariën, J.; Ceulemans, A.; Michiels, J.; Heyndrickx, L.; Kerkhof, K.; Foque, N.; Widdowson, M.-A.; Mortgat, L.; Duysburgh, E.; Desombere, I.; et al. Evaluating SARS-CoV-2 spike and nucleocapsid proteins as targets for antibody detection in severe and mild COVID-19 cases using a Luminex bead-based assay. J. Virol. Methods 2021, 288, 114025. [Google Scholar] [CrossRef]
- Evans, A.; Gakuya, F.; Paweska, J.T.; Rostal, M.; Akoolo, L.; Van Vuren, P.J.; Manyibe, T.; Macharia, J.M.; Ksiazek, T.G.; Feikin, D.R.; et al. Prevalence of antibodies against Rift Valley fever virus in Kenyan wildlife. Epidemiol. Infect. 2008, 136, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Nah, J.-J.; Moon, J.-S.; Ko, Y.-J.; Yoo, H.-S.; Kweon, C.-H. Competitive ELISA for the Detection of Antibodies to Rift Valley Fever Virus in Goats and Cattle. J. Vet. Med. Sci. 2012, 74, 321–327. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Hungerbühler, V.; Özcelik, R.; Abakar, M.F.; Zakaria, F.A.; Eiden, M.; Hartnack, S.; Kimala, P.; Kittl, S.; Michel, J.; Suter-Riniker, F.; et al. Diagnostic serology test comparison for Q fever and Rift Valley fever in humans and livestock from pastoral communities. PLoS Neglected Trop. Dis. 2024, 18, e0012300. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 21 October 2023).
- Wang, Z.; Pei, S.; Ye, R.; Chen, J.; Cheng, N.; Zhao, M.; Cao, W.; Jia, Z. Increasing evolution, prevalence, and outbreaks for rift valley fever virus in the process of breaking geographical barriers. Sci. Total Environ. 2024, 917, 170302. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.A.J.; Grossi-Soyster, E.N.; De Glanville, W.A.; Thomas, L.F.; Kariuki, S.; Bronsvoort, B.M.D.C.; Wamae, C.N.; LaBeaud, A.D.; Fèvre, E.M. The sero-epidemiology of Rift Valley fever in people in the Lake Victoria Basin of western Kenya. PLoS Negl. Trop. Dis. 2017, 11, e0005731. [Google Scholar] [CrossRef]
- LaBeaud, A.D.; Muchiri, E.M.; Ndzovu, M.; Mwanje, M.T.; Muiruri, S.; Peters, C.J.; King, C.H. Interepidemic Rift Valley fever virus seropositivity, northeastern Kenya. Emerg. Infect. Dis. 2008, 14, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Kumalija, M.S.; O Chilongola, J.; Budodo, R.M.; Horumpende, P.G.; Mkumbaye, S.I.; Vianney, J.-M.; Mwakapuja, R.S.; Mmbaga, B.T. Detection of Rift Valley Fever virus inter-epidemic activity in Kilimanjaro Region, North Eastern Tanzania. Glob. Health Action 2021, 14, 1957554. [Google Scholar] [CrossRef]
- Sumaye, R.D.; Abatih, E.N.; Thiry, E.; Amuri, M.; Berkvens, D.; Geubbels, E. Rift Valley fever seropositivity in humans and domestic ruminants and associated risk factors in Sengerema, Ilala, and Rufiji districts, Tanzania. Int. J. Infect. Dis. 2022, 122, 559–565. [Google Scholar]
- Sumaye, R.D.; Abatih, E.N.; Thiry, E.; Amuri, M.; Berkvens, D.; Geubbels, E. Inter-epidemic Acquisition of Rift Valley Fever Virus in Humans in Tanzania. PLoS Neglected Trop. Dis. 2015, 9, e0003536. [Google Scholar] [CrossRef] [PubMed]
- Linthicum, K.J.; Britch, S.C.; Anyamba, A. Rift Valley Fever: An Emerging Mosquito-Borne Disease. Annu. Rev. Èntomol. 2016, 61, 395–415. [Google Scholar] [CrossRef] [PubMed]
- Muturi, M.; Mwatondo, A.; Nijhof, A.M.; Akoko, J.; Nyamota, R.; Makori, A.; Nyamai, M.; Nthiwa, D.; Wambua, L.; Roesel, K.; et al. Ecological and subject-level drivers of interepidemic Rift Valley fever virus exposure in humans and livestock in Northern Kenya. Sci. Rep. 2023, 13, 15342. [Google Scholar] [CrossRef]
- Tigoi, C.; Sang, R.; Chepkorir, E.; Orindi, B.; Arum, S.O.; Mulwa, F.; Mosomtai, G.; Limbaso, S.; Hassan, O.A.; Irura, Z.; et al. High risk for human exposure to rift valley fever virus in communities living along livestock movement routes: A cross-sectional survey in Kenya. PLoS Neglected Trop. Dis. 2020, 14, e0007979. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Muturi, M.; Mwatondo, A.; Omolo, J.; Bett, B.; Gikundi, S.; Konongoi, L.; Ofula, V.; Makayotto, L.; Kasiti, J.; et al. Epidemiological Investigation of a Rift Valley Fever Outbreak in Humans and Livestock in Kenya, 2018. Am. J. Trop. Med. Hyg. 2020, 103, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- Mosomtai, G.; Evander, M.; Sandström, P.; Ahlm, C.; Sang, R.; Hassan, O.A.; Affognon, H.; Landmann, T. Association of ecological factors with Rift Valley fever occurrence and mapping of risk zones in Kenya. Int. J. Infect. Dis. 2016, 46, 49–55. [Google Scholar] [CrossRef]
- Bett, B.; Lindahl, J.; Delia, G. Climate Change and Infectious Livestock Diseases: The Case of Rift Valley Fever and Tick-Borne Diseases. In The Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future; Rosenstock, T.S., Nowak, A., Girvetz, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 29–37. [Google Scholar] [CrossRef]
- Kortekaas, J.; Kant, J.; Vloet, R.; Cêtre-Sossah, C.; Marianneau, P.; Lacote, S.; Banyard, A.C.; Jeffries, C.; Eiden, M.; Groschup, M.; et al. European ring trial to evaluate ELISAs for the diagnosis of infection with Rift Valley fever virus. J. Virol. Methods 2013, 187, 177–181. [Google Scholar] [CrossRef]
- Lubisi, B.A.; Ndouvhada, P.N.; Neiffer, D.; Penrith, M.-L.; Sibanda, D.-R.; Bastos, A.D.S. Evaluation of a Virus Neutralisation Test for Detection of Rift Valley Fever Antibodies in Suid Sera. Trop. Med. Infect. Dis. 2019, 4, 52. [Google Scholar] [CrossRef]
- de Bronsvoort, B.M.C.; Bagninbom, J.-M.; Ndip, L.; Kelly, R.F.; Handel, I.; Tanya, V.N.; Morgan, K.L.; Ngwa, V.N.; Mazeri, S.; Nfon, C. Comparison of Two Rift Valley Fever Serological Tests in Cameroonian Cattle Populations Using a Bayesian Latent Class Approach. Front. Vet. Sci. 2019, 6, 258. [Google Scholar] [CrossRef]
Variable | Levels | No. Sampled, N = 1750 1 (%) | No. Negative = 1716 1 (%) | No. Positive = 34 1 (%) | Seropositivity Rate (%) | p-Value 2 |
---|---|---|---|---|---|---|
Sex | Female | 906 (51.8) | 899 (52.4) | 7 (20.6) | 0.77 | <0.001 * |
Male | 844 (48.2) | 817 (47.6) | 27 (79.4) | 3.20 | ||
Age | Median (IQR) | 37 (25, 49) | 37 (25, 49) | 48 (39, 59) | - | <0.001 * |
Education | None | 51 (2.9) | 51 (3.0) | 0 (0.0) | 0.00 | 0.071 |
Primary | 1040 (59.4) | 1015 (59.1) | 25 (73.5) | 2.40 | ||
Secondary | 448 (25.6) | 439 (25.6) | 9 (26.5) | 2.01 | ||
Tertiary | 211 (12.1) | 211 (12.3) | 0 (0.0) | 0.00 | ||
Occupation | Butcher | 7 (0.4) | 6 (0.3) | 1 (2.9) | 14.29 | 0.006 * |
Farmer | 628 (35.9) | 608 (35.4) | 20 (58.8) | 3.18 | ||
Other | 938 (53.6) | 927 (54.0) | 11 (32.4) | 1.17 | ||
Formal | 177 (10.1) | 175 (10.2) | 2 (5.9) | 1.90 | ||
Keep livestock | No | 364 (20.8) | 359 (20.9) | 5 (14.7) | 1.37 | 0.4 |
Yes | 1386 (79.2) | 1357 (79.1) | 29 (85.3) | 2.09 | ||
Close animal contact | ||||||
No | 105 (6.0) | 105 (6.1) | 0 (0.0) | 0.00 | 0.3 | |
Yes | 1645 (94.0) | 1611 (93.9) | 34 (100.0) | 2.07 | ||
Types of close animal contact | ||||||
Birthing | No | 1596 (91.2) | 1569 (91.4) | 27 (79.4) | 1.69 | 0.025 * |
Yes | 154 (8.8) | 147 (8.6) | 7 (20.6) | 4.55 | ||
Cleaning | No | 736 (42.1) | 725 (42.2) | 11 (32.4) | 1.49 | 0.2 |
Yes | 1014 (57.9) | 991 (57.8) | 23 (67.6) | 2.27 | ||
Feeding | No | 388 (22.2) | 383 (22.3) | 5 (14.7) | 1.29 | 0.3 |
Yes | 1362 (77.8) | 1333 (77.7) | 29 (85.3) | 2.13 | ||
Handling raw meat | ||||||
No | 737 (42.1) | 725 (42.2) | 12 (35.3) | 1.63 | 0.4 | |
Yes | 1013 (57.9) | 991 (57.8) | 22 (64.7) | 2.17 | ||
Herding | No | 1547 (88.4) | 1522 (88.7) | 25 (73.5) | 1.62 | 0.012 * |
Yes | 203 (11.6) | 194 (11.3) | 9 (26.5) | 4.43 | ||
Milking | No | 1081 (61.8) | 1072 (62.5) | 9 (26.5) | 0.83 | <0.001 |
Yes | 669 (38.2) | 644 (37.5) | 25 (73.5) | 3.74 | ||
Slaughtering | No | 1620 (92.6) | 1594 (92.9) | 26 (76.5) | 1.60 | 0.003 * |
Yes | 130 (7.4) | 122 (7.1) | 8 (23.5) | 6.15 | ||
Spraying | No | 1455 (83.1) | 1437 (83.7) | 18 (52.9) | 1.24 | <0.001 * |
Yes | 295 (16.9) | 279 (16.3) | 16 (47.1) | 5.42 | ||
Treating | No | 1730 (98.9) | 1697 (98.9) | 33 (97.1) | 1.91 | 0.3 |
Yes | 20 (1.1) | 19 (1.1) | 1 (2.9) | 5.00 |
Variable | No. Sampled = N = 706 1 (%) | No. Negative = 675 1 (%) | No. Positive = 31 1 (%) | Seropositivity Rate (%) | p-Value 2 |
---|---|---|---|---|---|
Ward | 0.2 | ||||
Gaturi | 298 (42.2) | 286 (42.4) | 12 (38.7) | 4.03 | |
Mbiri | 272 (38.5) | 256 (37.9) | 16 (51.6) | 5.88 | |
Township | 136 (19.3) | 133 (19.7) | 3 (9.7) | 2.21 | |
Species | <0.001 * | ||||
Cattle | 271 (38.4) | 249 (36.9) | 22 (71.0) | 8.12 | |
Shoats | 435 (61.6) | 426 (63.1) | 9 (29.0) | 2.07 | |
Sex | 0.014 * | ||||
Female | 529 (74.9) | 500 (74.1) | 29 (93.5) | 5.48 | |
Male | 177 (25.1) | 175 (25.9) | 2 (6.5) | 1.13 | |
Breed | 0.3 | ||||
Cross | 150 (21.2) | 147 (21.8) | 3 (9.7) | 2.00 | |
Exotic | 381 (54.0) | 362 (53.6) | 19 (61.3) | 4.99 | |
Local | 175 (24.8) | 166 (24.6) | 9 (29.0) | 5.14 | |
Cattle age | 0.13 | ||||
Adult | 182 (67.2) | 164 (65.9) | 18 (81.8) | 9.89 | |
Young (<12 months) | 89 (32.8) | 85 (34.1) | 4 (18.2 | 4.49 | |
Shoat’s age | 0.5 | ||||
Adult | 316 (72.6) | 308 (72.3) | 8 (88.9) | 2.53 | |
Young (<12 months) | 119 (27.4) | 118 (27.7) | 1 (11.1) | 0.84 | |
Herd size | 0.2 | ||||
>5 | 356 (50.4) | 337 (49.9) | 19 (61.3) | 5.34 | |
1—5 | 350 (49.6) | 338 (50.1) | 12 (38.7) | 3.43 |
Multivariable Model | ||||
---|---|---|---|---|
Characteristic | Variable | aOR | 95% CI 1 | p-Value |
Age | - | 1.05 | 1.03, 1.07 | <0.001 * |
Gender | Female (Ref) | — | — | |
Male | 4.77 | 2.08, 12.4 | <0.001 * | |
Milking animals | No (Ref) | — | — | |
Yes | 2.69 | 1.23, 6.36 | 0.017 * | |
Drinking raw milk | No (Ref) | — | — | |
Yes | 5.24 | 1.13, 17.9 | 0.015 * | |
Abortions in herds | No (Ref) | — | — | |
Yes | 2.26 | 0.88, 5.38 | 0.074 | |
Keeping cattle | No (Ref) | — | — | |
Yes | 3.12 | 0.89, 19.8 | 0.13 | |
Presence of a quarry | No (Ref) | — | — | |
Yes | 2.4 | 1.08, 5.72 | 0.038 * | |
Mosquito net use | No (Ref) | — | — | |
Yes | 0.51 | 0.20, 1.16 | 0.13 |
Multivariable Model | ||||
---|---|---|---|---|
Characteristic | Variable | aOR | 95% CI 1 | p-Value |
Livestock species | Cattle (Ref) | — | — | |
Small ruminants | 0.27 | 0.12, 0.60 | 0.002 * | |
Breed distribution | Cross (Ref) | — | — | |
Exotic | 1.79 | 0.57, 7.85 | 0.4 | |
Local | 2.28 | 0.64, 10.6 | 0.2 | |
Animal age | Adult > 12 months (Ref) | — | — | |
Young < 12 months | 0.5 | 0.16, 1.24 | 0.2 | |
Sex | Female (Ref) | — | — | |
Male | 0.29 | 0.05, 1.04 | 0.1 | |
Livestock herd size | >5 animals (Ref) | — | — | |
1–5 animals | 0.6 | 0.27, 1.26 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Situma, S.; Omondi, E.; Nyakarahuka, L.; Odinoh, R.; Mweu, M.; Mureithi, M.W.; Mulinge, M.M.; Clancey, E.; Dawa, J.; Ngere, I.; et al. Serological Evidence of Cryptic Rift Valley Fever Virus Transmission Among Humans and Livestock in Central Highlands of Kenya. Viruses 2024, 16, 1927. https://doi.org/10.3390/v16121927
Situma S, Omondi E, Nyakarahuka L, Odinoh R, Mweu M, Mureithi MW, Mulinge MM, Clancey E, Dawa J, Ngere I, et al. Serological Evidence of Cryptic Rift Valley Fever Virus Transmission Among Humans and Livestock in Central Highlands of Kenya. Viruses. 2024; 16(12):1927. https://doi.org/10.3390/v16121927
Chicago/Turabian StyleSituma, Silvia, Evans Omondi, Luke Nyakarahuka, Raymond Odinoh, Marshal Mweu, Marianne W. Mureithi, Martin M. Mulinge, Erin Clancey, Jeanette Dawa, Isaac Ngere, and et al. 2024. "Serological Evidence of Cryptic Rift Valley Fever Virus Transmission Among Humans and Livestock in Central Highlands of Kenya" Viruses 16, no. 12: 1927. https://doi.org/10.3390/v16121927
APA StyleSituma, S., Omondi, E., Nyakarahuka, L., Odinoh, R., Mweu, M., Mureithi, M. W., Mulinge, M. M., Clancey, E., Dawa, J., Ngere, I., Osoro, E., Gunn, B., Konongoi, L., Khamadi, S. A., Michiels, J., Ariën, K. K., Bakamutumaho, B., Breiman, R. F., & Njenga, K. (2024). Serological Evidence of Cryptic Rift Valley Fever Virus Transmission Among Humans and Livestock in Central Highlands of Kenya. Viruses, 16(12), 1927. https://doi.org/10.3390/v16121927