Characterization of HTLV-1 Infectious Molecular Clone Isolated from Patient with HAM/TSP and Immortalization of Human Primary T-Cell Lines
<p>Cloning pBST into pBR327. (<b>A</b>) Agarose gel of p.4.39 DNA digested with 1-Sac1+BstEII. 2- BstEII. 3- Sac1. 4- Lambda HindIII DNA marker. Schematic representation of p4.39 with restriction sites for Sac1 (S) or BstEII (B) and pBR327 digested with EcoR1 and Sal1 for cloning. (<b>B</b>–<b>D</b>) Alignment between pBST and MT-2 sequences of different regions of the viral LTR. (<b>E</b>) Alignment between pBST and MT-2 sequence of RexRE REM3 loop. (<b>F</b>) The enhancer region conserved sites for transcription factors SRF and ELK-1 in HTLV-1 ACH (<b>top</b>) and pBST sequence (<b>bottom</b>).</p> "> Figure 2
<p>Schematic representation of pBST mutations present in viral proteins. (<b>A</b>) Phylogenetic tree analysis, generated with the maximum likelihood (PhyML) method on a 710-nt-long fragment of the LTR. The numbers at the nodes correspond to the bootstrap value, obtained after 1000 repeats. The branch lengths are drawn to scale. HTLV-1c strains were used as outgroup. (<b>B</b>) Phylogenetic tree generated by the maximum likelihood method (PhyML) on 6366 nt corresponding to the concatenation of gag-pol-env-tax ORFs. The numbers at the nodes correspond to the bootstrap value, obtained after 1000 repeats. The branch lengths are drawn to scale. HTLV-1c strains were used as outgroup. (<b>C</b>) Amino acid sequence of structural and enzymatic proteins GAG, PRO, POL, and ENV TAX, HBZ, p12, p30, and p13 from pBST and HTLV-1A prototype ATK. Mutation positions are indicated. (<b>D</b>) Amino acid sequence alignment compared to full-length genome sequences from Japanese HAM/TSP (n = 12) or Brazilian HAM/TSP (n = 10) (Supplemental S4–S12). See material and methods. Red triangle and (*) indicate stop codon.</p> "> Figure 3
<p>Expression of viral mRNAs from pBST. (<b>A</b>) Schematic representation of HTLV-1 mRNAs with positions of splice donors and splice acceptor sites noted. (<b>B</b>) pBST was transfected into 293T cells, and total RNAs were extracted after 48 h. “(-)” represents control, pCDNA 3.1 transfected 293T cells, and “PBST” represents pBST transfected 293T cells. Specific primers (<a href="#viruses-16-01755-t001" class="html-table">Table 1</a>) were used, and RT-PCR products were resolved onto agarose gels. p13 PCR products are approximately 130 bp. HTLV-1 transformed cells LAF, MT4, and HUT102 were used as controls. (<b>C</b>) Schematic of the pBST LTR cloned into the luciferase vector. Luciferase assays representing fold change activation of pBST-LTR-Luciferase activated by Tax produced in the context of the molecular clone. (<b>D</b>) The pBST envelope gene was cloned into pCDNA 3.1 expression vector and transfected into high-density HeLa cells. Syncytia were visualized after 48 h by staining with Crystal Violet.</p> "> Figure 4
<p>pBST produces infectious virus particles. (<b>A</b>) Electron microscopy images of 293T cells transfected with ACH or pBST. Digital images were acquired with an AMT digital camera, with magnification scale bars indicated in the figures. White triangles indicate virus particles, with size in nanometers (nm). (<b>B</b>) 293T cells were transfected with increasing amounts of pBST molecular clones. After 48 h, supernatant was cleared by centrifugation for 5 min at 10,000 rpm, and supernatant was tested for GAG p19 by ELISA. (<b>C</b>) 729B cells were transfected with pBST by Amaxa, and after 48 h, cells were co-cultivated with BHK1E6 HTLV-1LTR-LacZ reporter cells for 48 h. Cells were washed, fixed, and stained with X-Gal to reveal HTLV-1-infected beta-galactosidase-positive cells.</p> "> Figure 5
<p>Immortalization of primary human T cell lines and secondary transmission to 729B cells. (<b>A</b>) Images of cultures from PBMCs at 3 weeks of culture and pBST immortalized T cell lines. (<b>B</b>) FACS analyses of cell surface markers for CD4, CD8, and CD25 expression on activated PBMCs or pBST immortalized cells. Cells were blocked for 30 min in BSA buffer and incubated for 2 h with the appropriate conjugated antibody. Cells were washed and fixed in 1% PFA overnight before analyses. CD4-APC (cat#551980) BD Pharmingen; IgG1-k-Isotype control-APC (cat#550854) BD Pharmingen. CD8-PE (cat#555367) BD Pharmingen; IgG1-k-Isotype control-PE (cat#555749) BD Pharmingen. Results were acquired on instrument BC-Accuri C6 Plus Flow Cytometer (BD Biosciences). (<b>C</b>) PCR analyses of genomic DNA from PBMC controls or PBMCs immortalized with pBST. HTLV-1 LAF cell line was used as a control. Chromatograms show specific genetic variations (black arrow) present in the pBST immortalized cell lines. The ACH sequence was used as a control. (<b>D</b>) RT-PCR analysis of <span class="html-italic">hbz</span> expression from 729B cell controls or 729B cells chronically infected with pBST. The HTLV-1 LAF cell line was used as a control.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Cloning of a Full-Length HAM/TSP Molecular Clone pBST
3.2. Analysis of the pBST Provirus mRNA Splicing and Regulatory Signals
3.3. Genetic Characteristics of the pBST Structural and Enzymatic Genes
3.4. Characteristics of pBST Viral Regulatory Genes
3.5. pBST Viral Genes mRNA Expression and Virus Replication
3.6. Production of Infectious Virus Particles by pBST
3.7. mDC to T-Cell Virus Transmission Is Required for Long-Term Expansion and Immortalization of Human Primary T-Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uchiyama, T. Human T cell leukemia virus type I (HTLV-I) and human diseases. Annu. Rev. Immunol. 1997, 15, 15–37. [Google Scholar] [CrossRef]
- Poiesz, B.J.; Ruscetti, F.W.; Gazdar, A.F.; Bunn, P.A.; Minna, J.D.; Gallo, R.C. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl. Acad. Sci. USA 1980, 77, 7415–7419. [Google Scholar] [CrossRef]
- Yoshida, M.; Miyoshi, I.; Hinuma, Y. Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc. Natl. Acad. Sci. USA 1982, 79, 2031–2035. [Google Scholar] [CrossRef]
- Gessain, A.; Barin, F.; Vernant, J.C.; Gout, O.; Maurs, L.; Calender, A.; de The, G. Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet 1985, 2, 407–410. [Google Scholar] [CrossRef]
- Osame, M.; Matsumoto, M.; Usuku, K.; Izumo, S.; Ijichi, N.; Amitani, H.; Tara, M.; Igata, A. Chronic progressive myelopathy associated with elevated antibodies to human T-lymphotropic virus type I and adult T-cell leukemialike cells. Ann. Neurol. 1987, 21, 117–122. [Google Scholar] [CrossRef]
- Bangham, C.R. HTLV-1 infections. J. Clin. Pathol. 2000, 53, 581–586. [Google Scholar] [CrossRef]
- Legrand, N.; McGregor, S.; Bull, R.; Bajis, S.; Valencia, B.M.; Ronnachit, A.; Einsiedel, L.; Gessain, A.; Kaldor, J.; Martinello, M. Clinical and Public Health Implications of Human T-Lymphotropic Virus Type 1 Infection. Clin. Microbiol. Rev. 2022, 35, e0007821. [Google Scholar] [CrossRef]
- Iwanaga, M. Epidemiology of HTLV-1 Infection and ATL in Japan: An Update. Front. Microbiol. 2020, 11, 1124. [Google Scholar] [CrossRef]
- Afonso, P.V.; Cassar, O.; Gessain, A. Molecular epidemiology, genetic variability and evolution of HTLV-1 with special emphasis on African genotypes. Retrovirology 2019, 16, 39. [Google Scholar] [CrossRef]
- Wilson, M.E. Travel and the emergence of infectious diseases. Emerg. Infect. Dis. 1995, 1, 39–46. [Google Scholar] [CrossRef]
- Greenaway, C.; Castelli, F. Infectious diseases at different stages of migration: An expert review. J. Travel. Med. 2019, 26, taz007. [Google Scholar] [CrossRef] [PubMed]
- Brattig, N.; Bergquist, R.; Vienneau, D.; Zhou, X.N. Geography and health: Role of human translocation and access to care. Infect. Dis. Poverty 2024, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef]
- Miura, M.; Naito, T.; Saito, M. Current Perspectives in Human T-Cell Leukemia Virus Type 1 Infection and Its Associated Diseases. Front. Med. 2022, 9, 867478. [Google Scholar] [CrossRef]
- Bangham, C.R.M. HTLV-1 persistence and the oncogenesis of adult T-cell leukemia/lymphoma. Blood 2023, 141, 2299–2306. [Google Scholar] [CrossRef]
- Malik, B.; Taylor, G.P. Can we reduce the incidence of adult T-cell leukaemia/lymphoma? Cost-effectiveness of human T-lymphotropic virus type 1 (HTLV-1) antenatal screening in the United Kingdom. Br. J. Haematol. 2019, 184, 1040–1043. [Google Scholar] [CrossRef]
- Demontis, M.A.; Hilburn, S.; Taylor, G.P. Human T cell lymphotropic virus type 1 viral load variability and long-term trends in asymptomatic carriers and in patients with human T cell lymphotropic virus type 1-related diseases. AIDS Res. Hum. Retroviruses 2013, 29, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Manel, N.; Kim, F.J.; Kinet, S.; Taylor, N.; Sitbon, M.; Battini, J.L. The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 2003, 115, 449–459. [Google Scholar] [CrossRef]
- Ghez, D.; Lepelletier, Y.; Lambert, S.; Fourneau, J.M.; Blot, V.; Janvier, S.; Arnulf, B.; van Endert, P.M.; Heveker, N.; Pique, C.; et al. Neuropilin-1 is involved in human T-cell lymphotropic virus type 1 entry. J. Virol. 2006, 80, 6844–6854. [Google Scholar] [CrossRef]
- Dahmoush, L.; Hijazi, Y.; Barnes, E.; Stetler-Stevenson, M.; Abati, A. Adult T-cell leukemia/lymphoma: A cytopathologic, immunocytochemical, and flow cytometric study. Cancer 2002, 96, 110–116. [Google Scholar] [CrossRef]
- Sibon, D.; Gabet, A.S.; Zandecki, M.; Pinatel, C.; Thete, J.; Delfau-Larue, M.H.; Rabaaoui, S.; Gessain, A.; Gout, O.; Jacobson, S.; et al. HTLV-1 propels untransformed CD4 lymphocytes into the cell cycle while protecting CD8 cells from death. J. Clin. Investig. 2006, 116, 974–983. [Google Scholar] [CrossRef] [PubMed]
- Currer, R.; Van Duyne, R.; Jaworski, E.; Guendel, I.; Sampey, G.; Das, R.; Narayanan, A.; Kashanchi, F. HTLV tax: A fascinating multifunctional co-regulator of viral and cellular pathways. Front. Microbiol. 2012, 3, 406. [Google Scholar] [CrossRef] [PubMed]
- Martella, C.; Tollenaere, A.I.; Waast, L.; Lacombe, B.; Groussaud, D.; Margottin-Goguet, F.; Ramirez, B.C.; Pique, C. Human T-Cell Lymphotropic Virus Type 1 Transactivator Tax Exploits the XPB Subunit of TFIIH during Viral Transcription. J. Virol. 2020, 94, e02171-19. [Google Scholar] [CrossRef] [PubMed]
- Bellon, M.; Baydoun, H.H.; Yao, Y.; Nicot, C. HTLV-I Tax-dependent and -independent events associated with immortalization of human primary T lymphocytes. Blood 2010, 115, 2441–2448. [Google Scholar] [CrossRef]
- Baydoun, H.H.; Bai, X.T.; Shelton, S.; Nicot, C. HTLV-I tax increases genetic instability by inducing DNA double strand breaks during DNA replication and switching repair to NHEJ. PLoS ONE 2012, 7, e42226. [Google Scholar] [CrossRef]
- Nicot, C. HTLV-I Tax-Mediated Inactivation of Cell Cycle Checkpoints and DNA Repair Pathways Contribute to Cellular Transformation: “A Random Mutagenesis Model”. J. Cancer Sci. 2015, 2. [Google Scholar] [CrossRef]
- Sinha-Datta, U.; Horikawa, I.; Michishita, E.; Datta, A.; Sigler-Nicot, J.C.; Brown, M.; Kazanji, M.; Barrett, J.C.; Nicot, C. Transcriptional activation of hTERT through the NF-kappaB pathway in HTLV-I-transformed cells. Blood 2004, 104, 2523–2531. [Google Scholar] [CrossRef]
- Li, X.H.; Gaynor, R.B. Regulation of NF-kappaB by the HTLV-1 Tax protein. Gene Expr. 1999, 7, 233–245. [Google Scholar]
- Mahgoub, M.; Yasunaga, J.I.; Iwami, S.; Nakaoka, S.; Koizumi, Y.; Shimura, K.; Matsuoka, M. Sporadic on/off switching of HTLV-1 Tax expression is crucial to maintain the whole population of virus-induced leukemic cells. Proc. Natl. Acad. Sci. USA 2018, 115, E1269–E1278. [Google Scholar] [CrossRef]
- Sugata, K.; Yasunaga, J.; Mitobe, Y.; Miura, M.; Miyazato, P.; Kohara, M.; Matsuoka, M. Protective effect of cytotoxic T lymphocytes targeting HTLV-1 bZIP factor. Blood 2015, 126, 1095–1105. [Google Scholar] [CrossRef]
- Hleihel, R.; Skayneh, H.; de The, H.; Hermine, O.; Bazarbachi, A. Primary cells from patients with adult T cell leukemia/lymphoma depend on HTLV-1 Tax expression for NF-kappaB activation and survival. Blood Cancer J. 2023, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.; Gotuzzo, E.; Vandamme, A.M.; Verdonck, K. Family Aggregation of Human T-Lymphotropic Virus 1-Associated Diseases: A Systematic Review. Front. Microbiol. 2016, 7, 1674. [Google Scholar] [CrossRef] [PubMed]
- Rosadas, C.; Taylor, G.P. Mother-to-Child HTLV-1 Transmission: Unmet Research Needs. Front. Microbiol. 2019, 10, 999. [Google Scholar] [CrossRef] [PubMed]
- Bellon, M.; Bialuk, I.; Galli, V.; Bai, X.T.; Farre, L.; Bittencourt, A.; Marcais, A.; Petrus, M.N.; Ratner, L.; Waldmann, T.A.; et al. Germinal epimutation of Fragile Histidine Triad (FHIT) gene is associated with progression to acute and chronic adult T-cell leukemia diseases. Mol. Cancer 2021, 20, 86. [Google Scholar] [CrossRef] [PubMed]
- Rowan, A.G.; Dillon, R.; Witkover, A.; Melamed, A.; Demontis, M.A.; Gillet, N.A.; Mun, L.J.; Bangham, C.R.M.; Cook, L.B.; Fields, P.A.; et al. Evolution of retrovirus-infected premalignant T-cell clones prior to Adult T-cell leukemia/lymphoma diagnosis. Blood 2020, 135, 2023–2032. [Google Scholar] [CrossRef]
- Saito, M. Association Between HTLV-1 Genotypes and Risk of HAM/TSP. Front. Microbiol. 2019, 10, 1101. [Google Scholar] [CrossRef]
- Nagai, M.; Usuku, K.; Matsumoto, W.; Kodama, D.; Takenouchi, N.; Moritoyo, T.; Hashiguchi, S.; Ichinose, M.; Bangham, C.R.; Izumo, S.; et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: High proviral load strongly predisposes to HAM/TSP. J. Neurovirol. 1998, 4, 586–593. [Google Scholar] [CrossRef]
- Forlani, G.; Baratella, M.; Tedeschi, A.; Pique, C.; Jacobson, S.; Accolla, R.S. HTLV-1 HBZ Protein Resides Exclusively in the Cytoplasm of Infected Cells in Asymptomatic Carriers and HAM/TSP Patients. Front. Microbiol. 2019, 10, 819. [Google Scholar] [CrossRef]
- Trovato, R.; Mulloy, J.C.; Johnson, J.M.; Takemoto, S.; de Oliveira, M.P.; Franchini, G. A lysine-to-arginine change found in natural alleles of the human T-cell lymphotropic/leukemia virus type 1 p12(I) protein greatly influences its stability. J. Virol. 1999, 73, 6460–6467. [Google Scholar] [CrossRef]
- Nicot, C.; Astier-Gin, T.; Edouard, E.; Legrand, E.; Moynet, D.; Vital, A.; Londos-Gagliardi, D.; Moreau, J.P.; Guillemain, B. Establishment of HTLV-I-infected cell lines from French, Guianese and West Indian patients and isolation of a proviral clone producing viral particles. Virus Res. 1993, 30, 317–334. [Google Scholar] [CrossRef]
- Ebeid, D.E.; Khalafalla, F.G.; Broughton, K.M.; Monsanto, M.M.; Esquer, C.Y.; Sacchi, V.; Hariharan, N.; Korski, K.I.; Moshref, M.; Emathinger, J.; et al. Pim1 maintains telomere length in mouse cardiomyocytes by inhibiting TGFbeta signalling. Cardiovasc. Res. 2021, 117, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Astier-Gin, T.; Portail, J.P.; Lafond, F.; Guillemain, B. Identification of HTLV-I- or HTLV-II-producing cells by cocultivation with BHK-21 cells stably transfected with a LTR-lacZ gene construct. J. Virol. Methods 1995, 51, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Gouy, M.; Guindon, S.; Gascuel, O. SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Mol. Biol. Evol. 2010, 27, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.; Green, P.L. Growth and manipulation of a human T-cell leukemia virus type 2 full-length molecular clone. Methods Mol. Biol. 2005, 304, 409–421. [Google Scholar] [CrossRef]
- Chevalier, S.A.; Ko, N.L.; Calattini, S.; Mallet, A.; Prevost, M.C.; Kehn, K.; Brady, J.N.; Kashanchi, F.; Gessain, A.; Mahieux, R. Construction and characterization of a human T-cell lymphotropic virus type 3 infectious molecular clone. J. Virol. 2008, 82, 6747–6752. [Google Scholar] [CrossRef]
- Kimata, J.T.; Wong, F.H.; Wang, J.J.; Ratner, L. Construction and characterization of infectious human T-cell leukemia virus type 1 molecular clones. Virology 1994, 204, 656–664. [Google Scholar] [CrossRef]
- Derse, D.; Mikovits, J.; Polianova, M.; Felber, B.K.; Ruscetti, F. Virions released from cells transfected with a molecular clone of human T-cell leukemia virus type I give rise to primary and secondary infections of T cells. J. Virol. 1995, 69, 1907–1912. [Google Scholar] [CrossRef]
- Zhao, T.M.; Robinson, M.A.; Bowers, F.S.; Kindt, T.J. Infectivity of chimeric human T-cell leukemia virus type I molecular clones assessed by naked DNA inoculation. Proc. Natl. Acad. Sci. USA 1996, 93, 6653–6658. [Google Scholar] [CrossRef]
- Ratner, L.; Philpott, T.; Trowbridge, D.B. Nucleotide sequence analysis of isolates of human T-lymphotropic virus type 1 of diverse geographical origins. AIDS Res. Hum. Retroviruses 1991, 7, 923–941. [Google Scholar] [CrossRef]
- Zhao, T.M.; Robinson, M.A.; Bowers, F.S.; Kindt, T.J. Characterization of an infectious molecular clone of human T-cell leukemia virus type I. J. Virol. 1995, 69, 2024–2030. [Google Scholar] [CrossRef]
- Derse, D.; Mikovits, J.; Ruscetti, F. X-I and X-II open reading frames of HTLV-I are not required for virus replication or for immortalization of primary T-cells in vitro. Virology 1997, 237, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.C.; Hickey, M.; Hsu, L.; Medina, D.; Rabson, A.B. Activation of human T cell leukemia virus type 1 LTR promoter and cellular promoter elements by T cell receptor signaling and HTLV-1 Tax expression. Virology 2005, 339, 1–11. [Google Scholar] [CrossRef]
- Lu, H.; Pise-Masison, C.A.; Linton, R.; Park, H.U.; Schiltz, R.L.; Sartorelli, V.; Brady, J.N. Tax relieves transcriptional repression by promoting histone deacetylase 1 release from the human T-cell leukemia virus type 1 long terminal repeat. J. Virol. 2004, 78, 6735–6743. [Google Scholar] [CrossRef] [PubMed]
- Gillet, N.A.; Malani, N.; Melamed, A.; Gormley, N.; Carter, R.; Bentley, D.; Berry, C.; Bushman, F.D.; Taylor, G.P.; Bangham, C.R. The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood 2011, 117, 3113–3122. [Google Scholar] [CrossRef]
- Nakano, K.; Watanabe, T. HTLV-1 Rex: The courier of viral messages making use of the host vehicle. Front. Microbiol. 2012, 3, 330. [Google Scholar] [CrossRef]
- Cavallari, I.; Rende, F.; D’Agostino, D.M.; Ciminale, V. Converging strategies in expression of human complex retroviruses. Viruses 2011, 3, 1395–1414. [Google Scholar] [CrossRef]
- Cavallari, I.; Rende, F.; Bona, M.K.; Sztuba-Solinska, J.; Silic-Benussi, M.; Tognon, M.; LeGrice, S.F.; Franchini, G.; D’Agostino, D.M.; Ciminale, V. Expression of Alternatively Spliced Human T-Cell Leukemia Virus Type 1 mRNAs Is Influenced by Mitosis and by a Novel cis-Acting Regulatory Sequence. J. Virol. 2016, 90, 1486–1498. [Google Scholar] [CrossRef] [PubMed]
- Nicot, C.; Dundr, M.; Johnson, J.M.; Fullen, J.R.; Alonzo, N.; Fukumoto, R.; Princler, G.L.; Derse, D.; Misteli, T.; Franchini, G. HTLV-1-encoded p30II is a post-transcriptional negative regulator of viral replication. Nat. Med. 2004, 10, 197–201. [Google Scholar] [CrossRef]
- Fauquenoy, S.; Robette, G.; Kula, A.; Vanhulle, C.; Bouchat, S.; Delacourt, N.; Rodari, A.; Marban, C.; Schwartz, C.; Burny, A.; et al. Repression of Human T-lymphotropic virus type 1 Long Terminal Repeat sense transcription by Sp1 recruitment to novel Sp1 binding sites. Sci. Rep. 2017, 7, 43221. [Google Scholar] [CrossRef]
- Yoshida, M.; Satou, Y.; Yasunaga, J.; Fujisawa, J.; Matsuoka, M. Transcriptional control of spliced and unspliced human T-cell leukemia virus type 1 bZIP factor (HBZ) gene. J. Virol. 2008, 82, 9359–9368. [Google Scholar] [CrossRef]
- Valeri, V.W.; Hryniewicz, A.; Andresen, V.; Jones, K.; Fenizia, C.; Bialuk, I.; Chung, H.K.; Fukumoto, R.; Parks, R.W.; Ferrari, M.G.; et al. Requirement of the human T-cell leukemia virus p12 and p30 products for infectivity of human dendritic cells and macaques but not rabbits. Blood 2010, 116, 3809–3817. [Google Scholar] [CrossRef] [PubMed]
- Pouliquen, J.F.; Hardy, L.; Lavergne, A.; Kafiludine, E.; Kazanji, M. High seroprevalence of human T-cell lymphotropic virus type 1 in blood donors in Guyana and molecular and phylogenetic analysis of new strains in the Guyana shelf (Guyana, Suriname, and French Guiana). J. Clin. Microbiol. 2004, 42, 2020–2026. [Google Scholar] [CrossRef] [PubMed]
- Seiki, M.; Hattori, S.; Hirayama, Y.; Yoshida, M. Human adult T-cell leukemia virus: Complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc. Natl. Acad. Sci. USA 1983, 80, 3618–3622. [Google Scholar] [CrossRef] [PubMed]
- Hanson, H.M.; Willkomm, N.A.; Yang, H.; Mansky, L.M. Human Retrovirus Genomic RNA Packaging. Viruses 2022, 14, 1094. [Google Scholar] [CrossRef]
- Le Blanc, I.; Blot, V.; Bouchaert, I.; Salamero, J.; Goud, B.; Rosenberg, A.R.; Dokhelar, M.C. Intracellular distribution of human T-cell leukemia virus type 1 Gag proteins is independent of interaction with intracellular membranes. J. Virol. 2002, 76, 905–911. [Google Scholar] [CrossRef]
- Gottlinger, H.G.; Dorfman, T.; Sodroski, J.G.; Haseltine, W.A. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc. Natl. Acad. Sci. USA 1991, 88, 3195–3199. [Google Scholar] [CrossRef]
- Darugar, Q.; Kim, H.; Gorelick, R.J.; Landes, C. Human T-cell lymphotropic virus type 1 nucleocapsid protein-induced structural changes in transactivation response DNA hairpin measured by single-molecule fluorescence resonance energy transfer. J. Virol. 2008, 82, 12164–12171. [Google Scholar] [CrossRef]
- Fan, J.; Ma, G.; Nosaka, K.; Tanabe, J.; Satou, Y.; Koito, A.; Wain-Hobson, S.; Vartanian, J.P.; Matsuoka, M. APOBEC3G generates nonsense mutations in human T-cell leukemia virus type 1 proviral genomes in vivo. J. Virol. 2010, 84, 7278–7287. [Google Scholar] [CrossRef]
- Mahieux, R.; Suspene, R.; Delebecque, F.; Henry, M.; Schwartz, O.; Wain-Hobson, S.; Vartanian, J.P. Extensive editing of a small fraction of human T-cell leukemia virus type 1 genomes by four APOBEC3 cytidine deaminases. J. Gen. Virol. 2005, 86, 2489–2494. [Google Scholar] [CrossRef]
- Navarro, F.; Bollman, B.; Chen, H.; Konig, R.; Yu, Q.; Chiles, K.; Landau, N.R. Complementary function of the two catalytic domains of APOBEC3G. Virology 2005, 333, 374–386. [Google Scholar] [CrossRef]
- Sasada, A.; Takaori-Kondo, A.; Shirakawa, K.; Kobayashi, M.; Abudu, A.; Hishizawa, M.; Imada, K.; Tanaka, Y.; Uchiyama, T. APOBEC3G targets human T-cell leukemia virus type 1. Retrovirology 2005, 2, 32. [Google Scholar] [CrossRef] [PubMed]
- Hattori, S.; Kiyokawa, T.; Imagawa, K.; Shimizu, F.; Hashimura, E.; Seiki, M.; Yoshida, M. Identification of gag and env gene products of human T-cell leukemia virus (HTLV). Virology 1984, 136, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Delamarre, L.; Rosenberg, A.R.; Pique, C.; Pham, D.; Callebaut, I.; Dokhelar, M.C. The HTLV-I envelope glycoproteins: Structure and functions. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1996, 13 (Suppl. S1), S85–S91. [Google Scholar] [CrossRef] [PubMed]
- Pique, C.; Pham, D.; Tursz, T.; Dokhelar, M.C. Human T-cell leukemia virus type I envelope protein maturation process: Requirements for syncytium formation. J. Virol. 1992, 66, 906–913. [Google Scholar] [CrossRef]
- Carrington, C.V.; Weiss, R.A.; Schulz, T.F. A truncated HTLV-I envelope protein, lacking the hydrophobic membrane anchor domain, is associated with cellular membranes and virions. Virology 1994, 202, 61–69. [Google Scholar] [CrossRef]
- Kim, F.J.; Manel, N.; Boublik, Y.; Battini, J.L.; Sitbon, M. Human T-cell leukemia virus type 1 envelope-mediated syncytium formation can be activated in resistant Mammalian cell lines by a carboxy-terminal truncation of the envelope cytoplasmic domain. J. Virol. 2003, 77, 963–969. [Google Scholar] [CrossRef]
- Koralnik, I.J.; Gessain, A.; Klotman, M.E.; Lo Monico, A.; Berneman, Z.N.; Franchini, G. Protein isoforms encoded by the pX region of human T-cell leukemia/lymphotropic virus type I. Proc. Natl. Acad. Sci. USA 1992, 89, 8813–8817. [Google Scholar] [CrossRef]
- Fukumoto, R.; Andresen, V.; Bialuk, I.; Cecchinato, V.; Walser, J.C.; Valeri, V.W.; Nauroth, J.M.; Gessain, A.; Nicot, C.; Franchini, G. In vivo genetic mutations define predominant functions of the human T-cell leukemia/lymphoma virus p12I protein. Blood 2009, 113, 3726–3734. [Google Scholar] [CrossRef] [PubMed]
- Pise-Masison, C.A.; de Castro-Amarante, M.F.; Enose-Akahata, Y.; Buchmann, R.C.; Fenizia, C.; Washington Parks, R.; Edwards, D.; Fiocchi, M.; Alcantara, L.C., Jr.; Bialuk, I.; et al. Co-dependence of HTLV-1 p12 and p8 functions in virus persistence. PLoS Pathog. 2014, 10, e1004454. [Google Scholar] [CrossRef]
- Barreto, F.K.; Khouri, R.; Rego, F.F.A.; Santos, L.A.; Castro-Amarante, M.F.; Bialuk, I.; Pise-Masison, C.A.; Galvao-Castro, B.; Gessain, A.; Jacobson, S.; et al. Analyses of HTLV-1 sequences suggest interaction between ORF-I mutations and HAM/TSP outcome. Infect. Genet. Evol. 2016, 45, 420–425. [Google Scholar] [CrossRef]
- Martins, M.L.; Soares, B.C.; Ribas, J.G.; Thorun, G.W.; Johnson, J.; Kroon, E.G.; Carneiro-Prioetti, A.B.; Bonjardim, C.A. Frequency of p12K and p12R alleles of HTLV Type 1 in HAM/TSP patients and in asymptomatic HTLV type 1 carriers. AIDS Res. Hum. Retroviruses 2002, 18, 899–902. [Google Scholar] [CrossRef] [PubMed]
- Afonso, P.V.; Fagrouch, Z.; Deijs, M.; Niphuis, H.; Bogers, W.; Gessain, A.; van der Hoek, L.; Verschoor, E.J. Absence of accessory genes in a divergent simian T-lymphotropic virus type 1 isolated from a bonnet macaque (Macaca radiata). PLoS Negl. Trop. Dis. 2019, 13, e0007521. [Google Scholar] [CrossRef] [PubMed]
- Hirons, A.; Yurick, D.; Jansz, N.; Ellenberg, P.; Franchini, G.; Einsiedel, L.; Khoury, G.; Purcell, D.F.J. High level of genomic divergence in p12 and genes of HTLV-1 subtype-C in Central Australia. Retrovirology 2024, 21, 14. [Google Scholar] [CrossRef] [PubMed]
- Katsuya, H.; Islam, S.; Tan, B.J.Y.; Ito, J.; Miyazato, P.; Matsuo, M.; Inada, Y.; Iwase, S.C.; Uchiyama, Y.; Hata, H.; et al. The Nature of the HTLV-1 Provirus in Naturally Infected Individuals Analyzed by the Viral DNA-Capture-Seq Approach. Cell Rep. 2019, 29, 724–735.e4. [Google Scholar] [CrossRef]
- Ghorbel, S.; Sinha-Datta, U.; Dundr, M.; Brown, M.; Franchini, G.; Nicot, C. Human T-cell leukemia virus type I p30 nuclear/nucleolar retention is mediated through interactions with RNA and a constituent of the 60 S ribosomal subunit. J. Biol. Chem. 2006, 281, 37150–37158. [Google Scholar] [CrossRef]
- Baydoun, H.H.; Pancewicz, J.; Nicot, C. Human T-lymphotropic type 1 virus p30 inhibits homologous recombination and favors unfaithful DNA repair. Blood 2011, 117, 5897–5906. [Google Scholar] [CrossRef]
- Ciminale, V.; Zotti, L.; D’Agostino, D.M.; Ferro, T.; Casareto, L.; Franchini, G.; Bernardi, P.; Chieco-Bianchi, L. Mitochondrial targeting of the p13II protein coded by the x-II ORF of human T-cell leukemia/lymphotropic virus type I (HTLV-I). Oncogene 1999, 18, 4505–4514. [Google Scholar] [CrossRef]
- Andresen, V.; Pise-Masison, C.A.; Sinha-Datta, U.; Bellon, M.; Valeri, V.; Washington Parks, R.; Cecchinato, V.; Fukumoto, R.; Nicot, C.; Franchini, G. Suppression of HTLV-1 replication by Tax-mediated rerouting of the p13 viral protein to nuclear speckles. Blood 2011, 118, 1549–1559. [Google Scholar] [CrossRef]
- Baratella, M.; Forlani, G.; Raval, G.U.; Tedeschi, A.; Gout, O.; Gessain, A.; Tosi, G.; Accolla, R.S. Cytoplasmic Localization of HTLV-1 HBZ Protein: A Biomarker of HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). PLoS Negl. Trop. Dis. 2017, 11, e0005285. [Google Scholar] [CrossRef]
- Gessain, A.; Saal, F.; Morozov, V.; Lasneret, J.; Vilette, D.; Gout, O.; Emanoil-Ravier, R.; Sigaux, F.; de The, G.; Peries, J. Characterization of HTLV-I isolates and T lymphoid cell lines derived from French West Indian patients with tropical spastic paraparesis. Int. J. Cancer 1989, 43, 327–333. [Google Scholar] [CrossRef]
- Hoshino, H. Cellular Factors Involved in HTLV-1 Entry and Pathogenicit. Front. Microbiol. 2012, 3, 222. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.S.; Petrow-Sadowski, C.; Huang, Y.K.; Bertolette, D.C.; Ruscetti, F.W. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat. Med. 2008, 14, 429–436. [Google Scholar] [CrossRef]
- Pique, C.; Jones, K.S. Pathways of cell-cell transmission of HTLV-1. Front. Microbiol. 2012, 3, 378. [Google Scholar] [CrossRef]
- Furukawa, Y.; Usuku, K.; Izumo, S.; Osame, M. Human T cell lymphotropic virus type I (HTLV-I) p12I is dispensable for HTLV-I transmission and maintenance of infection in vivo. AIDS Res. Hum. Retroviruses 2004, 20, 1092–1099. [Google Scholar] [CrossRef]
- Collins, N.D.; Newbound, G.C.; Albrecht, B.; Beard, J.L.; Ratner, L.; Lairmore, M.D. Selective ablation of human T-cell lymphotropic virus type 1 p12I reduces viral infectivity in vivo. Blood 1998, 91, 4701–4707. [Google Scholar] [CrossRef] [PubMed]
- Princler, G.L.; Julias, J.G.; Hughes, S.H.; Derse, D. Roles of viral and cellular proteins in the expression of alternatively spliced HTLV-1 pX mRNAs. Virology 2003, 317, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Dodon, M.D.; Hamaia, S.; Martin, J.; Gazzolo, L. Heterogeneous nuclear ribonucleoprotein A1 interferes with the binding of the human T cell leukemia virus type 1 rex regulatory protein to its response element. J. Biol. Chem. 2002, 277, 18744–18752. [Google Scholar] [CrossRef] [PubMed]
- Ciminale, V.; Zotti, L.; D’Agostino, D.M.; Chieco-Bianchi, L. Inhibition of human T-cell leukemia virus type 2 Rex function by truncated forms of Rex encoded in alternatively spliced mRNAs. J. Virol. 1997, 71, 2810–2818. [Google Scholar] [CrossRef] [PubMed]
- Shuh, M.; Morse, B.A.; Heidecker, G.; Derse, D. Association of SRC-related kinase Lyn with the interleukin-2 receptor and its role in maintaining constitutive phosphorylation of JAK/STAT in human T-cell leukemia virus type 1-transformed T cells. J. Virol. 2011, 85, 4623–4627. [Google Scholar] [CrossRef]
- Bai, X.T.; Sinha-Datta, U.; Ko, N.L.; Bellon, M.; Nicot, C. Nuclear export and expression of human T-cell leukemia virus type 1 tax/rex mRNA are RxRE/Rex dependent. J. Virol. 2012, 86, 4559–4565. [Google Scholar] [CrossRef]
- Nakano, K.; Ando, T.; Yamagishi, M.; Yokoyama, K.; Ishida, T.; Ohsugi, T.; Tanaka, Y.; Brighty, D.W.; Watanabe, T. Viral interference with host mRNA surveillance, the nonsense-mediated mRNA decay (NMD) pathway, through a new function of HTLV-1 Rex: Implications for retroviral replication. Microbes Infect. 2013, 15, 491–505. [Google Scholar] [CrossRef] [PubMed]
Forward | Reverse | |
---|---|---|
GAG | pHTLV-1B GAG: CACCGGTCTGGATCTGTCCC | pHTLV-1B GAG: CGGGATCTGGGCTTGGGTTTGGATG |
ENV | ENV: GTCTGTATCGATCGTGCCAGCC | ENV: GGTAACGTCAGGTGGGGGGC |
Tax | SJP: CCTCAAGCGAGCTGCATGCCCAAG | RPX4: CACGTAGACTGGGTATCCG |
p12 | Uni-LTR: GCCGCCTCCCGCCTGTGGTG | Uni-p12: GAGTCCTTGGAGGCTGAACGGAGG |
p13 | LTR2: CCTGAGGCCGCCATCCACGCCGGTTG | Rp13: GGGCTGTTTCGATGCTTGCCTG |
HBZ | Uni-HBZ(F): AATTGGTGGACGGGCTATTATCC | Uni-HBZ(R): CACGATGCGTTTCCCCGCGAGG |
PBST-HBZ | pHTLV-1B HBZ: GCGGCCTCAGGGCTGTTTCGATGC | pHTLV-1B HBZ: GATAGCAAACCGTCAAGCACAGCTTC |
p30 | SJP: CCTCAAGCGAGCTGCATGCCCAAG | IK4: GCGCCGTGAGCGCAAGTGGAGAC |
p21Rex | LTR2: CCTGAGGCCGCCATCCACGCCGGTTG | RPX4: CACGTAGACTGGGTATCCG |
p12RexORFI | SJP: CCTCAAGCGAGCTGCATGCCCAAG | Rp12: GCAGGAGTTGGGGATTGATGGC |
gDNA | Sense-RPX4: CCGTTCAGCCTCCAAGG | RPX4: CACGTAGACTGGGTATCCG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellon, M.; Jain, P.; Nicot, C. Characterization of HTLV-1 Infectious Molecular Clone Isolated from Patient with HAM/TSP and Immortalization of Human Primary T-Cell Lines. Viruses 2024, 16, 1755. https://doi.org/10.3390/v16111755
Bellon M, Jain P, Nicot C. Characterization of HTLV-1 Infectious Molecular Clone Isolated from Patient with HAM/TSP and Immortalization of Human Primary T-Cell Lines. Viruses. 2024; 16(11):1755. https://doi.org/10.3390/v16111755
Chicago/Turabian StyleBellon, Marcia, Pooja Jain, and Christophe Nicot. 2024. "Characterization of HTLV-1 Infectious Molecular Clone Isolated from Patient with HAM/TSP and Immortalization of Human Primary T-Cell Lines" Viruses 16, no. 11: 1755. https://doi.org/10.3390/v16111755
APA StyleBellon, M., Jain, P., & Nicot, C. (2024). Characterization of HTLV-1 Infectious Molecular Clone Isolated from Patient with HAM/TSP and Immortalization of Human Primary T-Cell Lines. Viruses, 16(11), 1755. https://doi.org/10.3390/v16111755