Keplerian Ringed-Disk Viscous-Diffusive Evolution and Combined Independent General Relativistic Evolutions
<p>Evolution of double ring surface densities <math display="inline"><semantics> <mi mathvariant="sans-serif">Σ</mi> </semantics></math> at different (dimensionless) times signed on the panels. The fluid surface density, given in Equation (<a href="#FD4-universe-11-00088" class="html-disp-formula">4</a>), is plotted versus radial distance <span class="html-italic">r</span> at selected time <span class="html-italic">t</span>. (All the quantities are dimensionless). Orange (Green) curve is the one-ring model <math display="inline"><semantics> <mrow> <mi mathvariant="normal">A</mi> <mo>(</mo> <mi mathvariant="normal">B</mi> <mo>)</mo> </mrow> </semantics></math>, black dashed curve shows the evolution of the two-ring (independent) composition <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="normal">A</mi> <mo>+</mo> <mi mathvariant="normal">B</mi> <mo>)</mo> </mrow> </semantics></math>. Where <math display="inline"><semantics> <mrow> <mi mathvariant="normal">A</mi> <mo>:</mo> <mo>{</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>ν</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>12</mn> <mo>,</mo> <msub> <mi>m</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>}</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi mathvariant="normal">B</mi> <mo>:</mo> <mo>{</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>→</mo> <mi>q</mi> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>ν</mi> <mo>→</mo> <msub> <mi>n</mi> <mi>ν</mi> </msub> <mi>ν</mi> <mo>,</mo> <msub> <mi>m</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>6</mn> <mo>}</mo> </mrow> </semantics></math>, with <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>n</mi> <mi>ν</mi> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>4</mn> <mo>)</mo> </mrow> </semantics></math> (therefore for model <math display="inline"><semantics> <mi mathvariant="normal">B</mi> </semantics></math>, there is <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>5</mn> <mo>/</mo> <mn>12</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.). Two fluid rings <math display="inline"><semantics> <mi mathvariant="normal">A</mi> </semantics></math> and <math display="inline"><semantics> <mi mathvariant="normal">B</mi> </semantics></math> spread radially over time <span class="html-italic">t</span> due to their constant shear viscosity <math display="inline"><semantics> <mi>ν</mi> </semantics></math>. (Here, geometric units are considered where, in particular, radius <span class="html-italic">r</span> has units of mass <span class="html-italic">M</span>, and the rotational law for the Keplerian disk is <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">Ω</mi> <mo>±</mo> </msub> <mo>=</mo> <mo>∓</mo> <msqrt> <mrow> <mi>G</mi> <mi>M</mi> <mo>/</mo> <msup> <mi>r</mi> <mn>3</mn> </msup> </mrow> </msqrt> <mo>=</mo> <mo>∓</mo> <msqrt> <mrow> <mn>1</mn> <mo>/</mo> <msup> <mi>r</mi> <mn>3</mn> </msup> </mrow> </msqrt> </mrow> </semantics></math>, in geometrical units, and the central gravitational mass is at the origin <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>).</p> "> Figure 2
<p>The fluid surface density is given from the integration of Equation (<a href="#FD3-universe-11-00088" class="html-disp-formula">3</a>) (all the quantities are dimensionless). Left panel: Surface densities <math display="inline"><semantics> <mi mathvariant="sans-serif">Σ</mi> </semantics></math> at different dimensionless times signed on the panel for constant shear viscosity <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math> and initial condition <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Σ</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mfenced separators="" open="[" close="]"> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mn>4</mn> <mn>23</mn> </mfrac> </mstyle> <mi>π</mi> <mrow> <mi>sin</mi> <mi mathvariant="normal">c</mi> </mrow> <mrow> <mo>[</mo> <mn>2</mn> <mrow> <mo>(</mo> <mi>r</mi> <mo>−</mo> <mn>11</mn> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <mi>i</mi> <msup> <mi>π</mi> <mn>2</mn> </msup> <msup> <mi>δ</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>r</mi> <mo>−</mo> <mn>11</mn> <mo>)</mo> </mrow> </mfenced> <mn>2</mn> </msup> </mrow> </semantics></math> (where <math display="inline"><semantics> <mrow> <mrow> <mi>sin</mi> <mi mathvariant="normal">c</mi> </mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>=</mo> <mo form="prefix">sin</mo> <mi>x</mi> <mo>/</mo> <mi>x</mi> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>≠</mo> <mn>0</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mrow> <mi>sin</mi> <mi mathvariant="normal">c</mi> </mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>) and <math display="inline"><semantics> <mrow> <msub> <mo>∂</mo> <mi>r</mi> </msub> <mi mathvariant="sans-serif">Σ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mi>r</mi> <mo>*</mo> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mo>*</mo> </msub> <mo>⪆</mo> <mn>0</mn> </mrow> </semantics></math>, plotted versus radial distance <span class="html-italic">r</span>, (with <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Σ</mi> <mo>[</mo> <mi>t</mi> <mo>,</mo> <msub> <mi>r</mi> <mo>∞</mo> </msub> <mo>]</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>r</mi> <mo>∞</mo> </msub> </semantics></math> is the right boundary of the numerical integration). Right panel: surface densities <math display="inline"><semantics> <mi mathvariant="sans-serif">Σ</mi> </semantics></math> at different times signed on the panel. Initial data are set as <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Σ</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1.4</mn> <mi mathvariant="sans-serif">Π</mi> <mfenced separators="" open="[" close="]"> <mo>(</mo> <mrow> <mi>r</mi> <mo>−</mo> <mn>18</mn> </mrow> <mo>)</mo> <mo>/</mo> <mn>2</mn> </mfenced> <mo>+</mo> <mn>1.2</mn> <mi mathvariant="sans-serif">Π</mi> <mrow> <mo>[</mo> <mn>2</mn> <mrow> <mo>(</mo> <mi>r</mi> <mo>−</mo> <mn>11</mn> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <mi mathvariant="sans-serif">Π</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>−</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Σ</mi> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mn>50</mn> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mo>∂</mo> <mi>r</mi> </msub> <mi mathvariant="sans-serif">Σ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> with shear viscosity <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Π</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math> is the unit box function, equal to 1 for <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>≤</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> and 0 otherwise.</p> "> Figure 3
<p>Surface densities <math display="inline"><semantics> <mi mathvariant="sans-serif">Σ</mi> </semantics></math> plotted versus radial distance <span class="html-italic">r</span> at different dimensionless times signed on the panels. (All the quantities are dimensionless). The fluid surface density is given from the integration of Equation (<a href="#FD3-universe-11-00088" class="html-disp-formula">3</a>) for different constant shear viscosity <math display="inline"><semantics> <mi>ν</mi> </semantics></math> signed on the panels. In the upper panels, the initial data on the surface densities in Equation (<a href="#FD5-universe-11-00088" class="html-disp-formula">5</a>) are for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> rings, where <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>56</mn> </mrow> </semantics></math> (with <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Σ</mi> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mi>r</mi> <mo>∞</mo> </msub> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="sans-serif">Σ</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mi>r</mi> <mo>∞</mo> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>r</mi> <mo>∞</mo> </msub> </semantics></math> is the right boundary of the numerical integration). In the bottom panels, the initial density is <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Σ</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics></math> in Equation (<a href="#FD5-universe-11-00088" class="html-disp-formula">5</a>) for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> rings, defined by <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>7</mn> <mo>,</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>29</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>7</mn> <mo>,</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, (and <math display="inline"><semantics> <mrow> <mo>{</mo> <msup> <mi mathvariant="sans-serif">Σ</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="sans-serif">Σ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mi>r</mi> <mo>∞</mo> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>}</mo> </mrow> </semantics></math> (left panel, model <math display="inline"><semantics> <mrow> <mo>(</mo> <mover accent="true"> <mi mathvariant="bold">P</mi> <mo stretchy="false">¯</mo> </mover> <mo>)</mo> </mrow> </semantics></math>), and <math display="inline"><semantics> <mrow> <mo>{</mo> <mi mathvariant="sans-serif">Σ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msup> <mi mathvariant="sans-serif">Σ</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mi>r</mi> <mo>∞</mo> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>}</mo> </mrow> </semantics></math>(right panel, model <math display="inline"><semantics> <mrow> <mo>(</mo> <mover accent="true"> <mi mathvariant="bold">S</mi> <mo stretchy="false">¯</mo> </mover> <mo>)</mo> </mrow> </semantics></math>).</p> "> Figure 4
<p>The fluids surface density <math display="inline"><semantics> <mi mathvariant="sans-serif">Σ</mi> </semantics></math> is given from the integration of Equation (<a href="#FD3-universe-11-00088" class="html-disp-formula">3</a>). Surface densities <math display="inline"><semantics> <mi mathvariant="sans-serif">Σ</mi> </semantics></math> for a four-ring system are plotted (center and right panels) versus radial distance <span class="html-italic">r</span> at different dimensionless times signed on the panel. All the quantities are dimensionless. The boundary conditions are set according to <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Σ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mi>r</mi> <mo>∞</mo> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mo>∂</mo> <mi>r</mi> </msub> <mi mathvariant="sans-serif">Σ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <msub> <mi>r</mi> <mo>∞</mo> </msub> </semantics></math> is the right boundary of the numerical integration). The initial densities <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="sans-serif">Σ</mi> <mi>c</mi> </msub> <mo>,</mo> <msub> <mi mathvariant="sans-serif">Σ</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> </semantics></math> correspond to the ring pairs shown in the left panel, defined according to Equation (<a href="#FD5-universe-11-00088" class="html-disp-formula">5</a>) where <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Σ</mi> <mi>c</mi> </msub> </semantics></math> is composed by two rings (<math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>) with parameters <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>11</mn> <mo>,</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>6</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>/</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>19</mn> <mo>,</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Σ</mi> <mi>d</mi> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and parameters <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>c</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mrow> <mo>(</mo> <mn>1.42</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>12</mn> <mo>,</mo> <mover accent="true"> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo stretchy="false">˜</mo> </mover> <mo>=</mo> <mn>6.5</mn> <mo>,</mo> <msub> <mover accent="true"> <mi>p</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>c</mi> <mo stretchy="false">˜</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>4</mn> <mo>,</mo> <msub> <mover accent="true"> <mi>d</mi> <mo stretchy="false">˜</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mover accent="true"> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo stretchy="false">˜</mo> </mover> <mo>=</mo> <mn>15</mn> <mo>,</mo> <msub> <mover accent="true"> <mi>p</mi> <mo stretchy="false">˜</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics></math>. In the model <math display="inline"><semantics> <mrow> <mo>[</mo> <msub> <mi mathvariant="sans-serif">Σ</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi mathvariant="sans-serif">Σ</mi> <mi>d</mi> </msub> <mo>]</mo> </mrow> </semantics></math> (center panel), fixing the shear viscosity <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>, we solved the problem with the initial data <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">Σ</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi mathvariant="sans-serif">Σ</mi> <mi>d</mi> </msub> </mrow> </semantics></math>. In right panel, we solved the problem with initial data <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Σ</mi> <mi>d</mi> </msub> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math> and the problem with the initial data <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Σ</mi> <mi>d</mi> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. The independent co-evolution of two solutions is shown.</p> "> Figure 5
<p>Equatorial thick disks in the Kerr <b>BH</b> spacetime with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>. Central black sphere is the <b>BH</b>, central light gray surface is the outer ergosurface. There is <math display="inline"><semantics> <mrow> <mo>{</mo> <mi>z</mi> <mo>=</mo> <mi>r</mi> <mo form="prefix">cos</mo> <mi>θ</mi> <mo>,</mo> <mi>y</mi> <mo>=</mo> <mi>r</mi> <mo form="prefix">sin</mo> <mi>θ</mi> <mo form="prefix">sin</mo> <mi>ϕ</mi> <mo>,</mo> <mi>x</mi> <mo>=</mo> <mi>r</mi> <mo form="prefix">sin</mo> <mi>θ</mi> <mo form="prefix">cos</mo> <mi>ϕ</mi> <mo>}</mo> </mrow> </semantics></math>. Outer (counter-rotating, red) torus parameters are <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="script">l</mi> <mo>=</mo> <mo>−</mo> <mn>4.5</mn> <mo>,</mo> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>n</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>6.53436</mn> <mo>)</mo> </mrow> </semantics></math>. Inner (co-rotating, yellow) torus parameters are <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="script">l</mi> <mo>=</mo> <mn>2.51602</mn> <mo>,</mo> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>n</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics></math>. Blue lines are streams of test particles leaving (freely falling) the outer torus inner edge. Left panel: three-dimensional view shows the shape of the torus (equi–pressure surfaces of the barotropic Polish doughnut tori with constant parameter <span class="html-italic">ℓ</span>) and the streams of test particles. Middle panel: stream-lines of the infalling matter in the inner region and the inner torus are shown in <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </semantics></math>-projection (view along the rotation axis <span class="html-italic">z</span>). Right panel: as in the middle panel but in a three-dimensional view.</p> "> Figure 6
<p>Combined (independent) evolution of the surface densities <math display="inline"><semantics> <mi mathvariant="sans-serif">Σ</mi> </semantics></math> of the <span class="html-italic">ℓ</span>counter-rotating ring couples composed by two sets of <span class="html-italic">ℓ</span>co-rotating rings for the Kerr spacetime with spin <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mo>±</mo> <mn>0.2</mn> </mrow> </semantics></math> and stress model <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="bold">I</mi> <mo>)</mo> </mrow> </semantics></math>. Dimensionless time values for the different stages of evolution are signed on the panel. Radius <math display="inline"><semantics> <msubsup> <mi>r</mi> <mrow> <mi>IN</mi> </mrow> <mo>±</mo> </msubsup> </semantics></math> are the initial radius of integration and <math display="inline"><semantics> <msubsup> <mi>r</mi> <mrow> <mi>m</mi> <mi>s</mi> <mi>o</mi> </mrow> <mo>±</mo> </msubsup> </semantics></math> are the marginally stable orbits for counter-rotating <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and co-rotating <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> fluids, respectively. The initial density profile is model <math display="inline"><semantics> <mrow> <mo>[</mo> <mi mathvariant="bold">S</mi> <mo>]</mo> <mo>+</mo> <mo>[</mo> <mi mathvariant="bold">T</mi> <mo>]</mo> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>[</mo> <mi mathvariant="bold">S</mi> <mo>]</mo> <mo>,</mo> <mo>[</mo> <mi mathvariant="bold">T</mi> <mo>]</mo> <mo>)</mo> </mrow> </semantics></math> are defined in <a href="#universe-11-00088-t001" class="html-table">Table 1</a>. System <math display="inline"><semantics> <mrow> <mo>[</mo> <mi mathvariant="bold">T</mi> <mo>]</mo> <mo>+</mo> <mo>[</mo> <mi mathvariant="bold">S</mi> <mo>]</mo> </mrow> </semantics></math> is the <span class="html-italic">ℓ</span>counter-rotating quadruplet <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">C</mi> <mo>−</mo> </msub> <mrow> <mo>[</mo> <mi mathvariant="bold">T</mi> <mo>]</mo> </mrow> <mo><</mo> <msub> <mi mathvariant="normal">C</mi> <mo>+</mo> </msub> <mrow> <mo>[</mo> <mi mathvariant="bold">S</mi> <mo>]</mo> </mrow> <mo><</mo> <msub> <mi mathvariant="normal">C</mi> <mo>+</mo> </msub> <mrow> <mo>[</mo> <mi mathvariant="bold">S</mi> <mo>]</mo> </mrow> <mo><</mo> <msub> <mi mathvariant="normal">C</mi> <mo>−</mo> </msub> <mrow> <mo>[</mo> <mi mathvariant="bold">T</mi> <mo>]</mo> </mrow> </mrow> </semantics></math>. There are boundary conditions <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="bold">b</mi> <mn mathvariant="bold">1</mn> </msub> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="bold">b</mi> <mn mathvariant="bold">2</mn> </msub> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="bold">b</mi> <mn mathvariant="bold">3</mn> </msub> <mo>)</mo> </mrow> </semantics></math>, with constant <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mo>[</mo> <mi mathvariant="bold">S</mi> <mo>]</mo> </mrow> </semantics></math>) and <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>41</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mo>[</mo> <mi mathvariant="bold">T</mi> <mo>]</mo> </mrow> </semantics></math>).</p> "> Figure 7
<p>Same as <a href="#universe-11-00088-f006" class="html-fig">Figure 6</a>, for stress model <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="bold">II</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 8
<p>Same as <a href="#universe-11-00088-f006" class="html-fig">Figure 6</a> for stress model <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="bold">III</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 9
<p>As in <a href="#universe-11-00088-f008" class="html-fig">Figure 8</a> for stress model <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="bold">IV</mi> <mo>)</mo> </mrow> </semantics></math>, the initial radius of integration is <math display="inline"><semantics> <msubsup> <mi>r</mi> <mrow> <mi>m</mi> <mi>s</mi> <mi>o</mi> </mrow> <mo>±</mo> </msubsup> </semantics></math> and boundary condition <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="bold">b</mi> <mn mathvariant="bold">1</mn> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 10
<p>Same as <a href="#universe-11-00088-f006" class="html-fig">Figure 6</a> for the Kerr spacetime with spin <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mo>±</mo> <mn>0.9</mn> </mrow> </semantics></math> and stress model <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="bold">I</mi> <mo>)</mo> </mrow> </semantics></math>. The initial density profile is model <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">V</mi> <mo>+</mo> </msup> <mo>]</mo> </mrow> <mo>+</mo> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">V</mi> <mo>−</mo> </msup> <mo>]</mo> </mrow> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">V</mi> <mo>±</mo> </msup> <mo>]</mo> </mrow> </semantics></math> are defined in <a href="#universe-11-00088-t001" class="html-table">Table 1</a>, with constant <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">V</mi> <mo>−</mo> </msup> <mo>]</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>41</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">V</mi> <mo>+</mo> </msup> <mo>]</mo> </mrow> </semantics></math>. System <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">V</mi> <mo>+</mo> </msup> <mo>]</mo> </mrow> <mo>+</mo> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">V</mi> <mo>−</mo> </msup> <mo>]</mo> </mrow> </mrow> </semantics></math> is the <span class="html-italic">ℓ</span> counter-rotating quadruplet <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">C</mi> <mo>−</mo> </msub> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">V</mi> <mo>−</mo> </msup> <mo>]</mo> </mrow> <mo><</mo> <msub> <mi mathvariant="normal">C</mi> <mo>+</mo> </msub> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">V</mi> <mo>+</mo> </msup> <mo>]</mo> </mrow> <mo><</mo> <msub> <mi mathvariant="normal">C</mi> <mo>−</mo> </msub> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">V</mi> <mo>−</mo> </msup> <mo>]</mo> </mrow> <mo><</mo> <msub> <mi mathvariant="normal">C</mi> <mo>+</mo> </msub> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">V</mi> <mo>+</mo> </msup> <mo>]</mo> </mrow> </mrow> </semantics></math>. The boundary conditions are <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="bold">b</mi> <mn mathvariant="bold">1</mn> </msub> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="bold">b</mi> <mn mathvariant="bold">2</mn> </msub> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="bold">b</mi> <mn mathvariant="bold">3</mn> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 11
<p>As the analysis shown in <a href="#universe-11-00088-f010" class="html-fig">Figure 10</a> for stress model <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="bold">II</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 12
<p>Same as the analysis shown in <a href="#universe-11-00088-f010" class="html-fig">Figure 10</a> for stress model <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="bold">III</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 13
<p>Same as <a href="#universe-11-00088-f010" class="html-fig">Figure 10</a> for stress model <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="bold">IV</mi> <mo>)</mo> </mrow> </semantics></math>, initial radius of integration <math display="inline"><semantics> <msubsup> <mi>r</mi> <mrow> <mi>m</mi> <mi>s</mi> <mi>o</mi> </mrow> <mo>±</mo> </msubsup> </semantics></math>, with boundary condition <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="bold">b</mi> <mn mathvariant="bold">1</mn> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 14
<p>As <a href="#universe-11-00088-f006" class="html-fig">Figure 6</a> for models <math display="inline"><semantics> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">U</mi> <mo>+</mo> </msup> <mo>]</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">U</mi> <mo>−</mo> </msup> <mo>]</mo> </mrow> </semantics></math> of <a href="#universe-11-00088-t001" class="html-table">Table 1</a>. System <math display="inline"><semantics> <mrow> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">U</mi> <mo>−</mo> </msup> <mo>]</mo> </mrow> <mo>+</mo> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">U</mi> <mo>+</mo> </msup> <mo>]</mo> </mrow> </mrow> </semantics></math> is the <span class="html-italic">ℓ</span>counter-rotating couple <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">C</mi> <mo>+</mo> </msub> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">U</mi> <mo>+</mo> </msup> <mo>]</mo> </mrow> <mo><</mo> <msub> <mi mathvariant="normal">C</mi> <mo>−</mo> </msub> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">U</mi> <mo>−</mo> </msup> <mo>]</mo> </mrow> </mrow> </semantics></math>. Stress model <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="bold">II</mi> <mo>)</mo> </mrow> </semantics></math> is considered with constant <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>41</mn> </mrow> </semantics></math>, with boundary condition <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="bold">b</mi> <mn mathvariant="bold">1</mn> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure A1
<p>Evolution of the viscosity functions (left panels) and of the surface density <math display="inline"><semantics> <mi mathvariant="sans-serif">Σ</mi> </semantics></math> (right panels) of an <span class="html-italic">ℓ</span>co-rotating pair of co-rotating rings in the Kerr metric with spin <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>. Radius <math display="inline"><semantics> <msubsup> <mi>r</mi> <mrow> <mi>m</mi> <mi>s</mi> <mi>o</mi> </mrow> <mo>−</mo> </msubsup> </semantics></math> is the marginally stable orbit for co-rotating particles. The initial density profile is model <math display="inline"><semantics> <mrow> <mo>[</mo> <msup> <mi mathvariant="bold">Z</mi> <mo>−</mo> </msup> <mo>]</mo> </mrow> </semantics></math> of <a href="#universe-11-00088-t001" class="html-table">Table 1</a>. The viscosity profile is the function <math display="inline"><semantics> <msub> <mi>ν</mi> <mn>1</mn> </msub> </semantics></math> (upper panels) and <math display="inline"><semantics> <msub> <mi>ν</mi> <mn>2</mn> </msub> </semantics></math> (bottom panels), based on the stress model <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="bold">V</mi> <mo>)</mo> </mrow> </semantics></math>, considered in the case <math display="inline"><semantics> <mrow> <mo>(</mo> <mi mathvariant="bold">ii</mi> <mo>)</mo> </mrow> </semantics></math> of Equation (<a href="#FD9-universe-11-00088" class="html-disp-formula">A2</a>) with <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> and condition <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="bold">b</mi> <mn mathvariant="bold">2</mn> </msub> <mo>)</mo> </mrow> </semantics></math>. Dashed line is the standard viscosity prescription at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure A2
<p>Apparent (gravitationally and Doppler-red-shifted) image of an equatorial thin disk in the Kerr <b>BH</b> spacetime with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> </mrow> </semantics></math>. There is <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>23.8416</mn> <mo>,</mo> <msub> <mi>r</mi> <mrow> <mi>c</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>6.53436</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi mathvariant="script">l</mi> <mo>=</mo> <mn>4.5</mn> </mrow> </semantics></math>. Each panel is for a different view angle <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>≡</mo> <msup> <mo form="prefix">sin</mo> <mn>2</mn> </msup> <mi>θ</mi> </mrow> </semantics></math>. The observer is placed at asymptotic infinity.</p> "> Figure A3
<p>Apparent (gravitationally and Doppler-red-shifted) image of an equatorial thin disk in the Kerr <b>BH</b> spacetime with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>. There is <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>3.76166</mn> <mo>,</mo> <msub> <mi>r</mi> <mrow> <mi>c</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>2.777</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi mathvariant="script">l</mi> <mo>=</mo> <mn>2.516</mn> </mrow> </semantics></math>. Each panel is for a different view angle <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>≡</mo> <mo form="prefix">arcsin</mo> <msqrt> <mi>σ</mi> </msqrt> </mrow> </semantics></math>. The observer is placed at asymptotic infinity.</p> "> Figure A4
<p>Apparent image of an equatorial thick disk in the Kerr <b>BH</b> spacetime with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>0.9</mn> </mrow> </semantics></math> as seen by a distant observer at different inclination angle <math display="inline"><semantics> <mi>σ</mi> </semantics></math> indicated on the panels. Each panel is for a different view angle <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>≡</mo> <msup> <mo form="prefix">sin</mo> <mn>2</mn> </msup> <mi>θ</mi> </mrow> </semantics></math>. There is <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>23.8416</mn> <mo>,</mo> <msub> <mi>r</mi> <mrow> <mi>c</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mo>≈</mo> <mn>12.4</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi mathvariant="script">l</mi> <mo>=</mo> <mn>4.5</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Evolution of Viscous Tori
3. Evolution of Viscous General Relativistic Tori
- (1)
- Spin (Section 3.1) We study the ℓcounter-rotating quadruplet in Figure 6, Figure 7, Figure 8 and Figure 9. In this case, we explore the evolution of the independently combined ℓco-rotating pairs and . Finally, we shall analyse in Figure 14 the ℓcounter-rotating pair model for the independently combined evolution of the doublet constituted by single disks having different relative rotation orientation and composed by an inner counter-rotating ring and an outer co-rotating ring . Description of each model and and is in Table 1.
- (2)
3.1. RADs Orbiting BHs with
3.2. RADs Orbiting BHs with
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Modified Viscosity Prescription in the Region of Ring Interspace
Appendix B. The Double-Ring System
1 | With rapid multiple phases of accretion, this effect could provide a way to increase the mass accretion rate and the mass of the super-massive black hole. |
2 | There are several models of corona accretion framing the AGN X-ray [19,20,21,22]. Our analysis here focuses on the accretion disk morphology and its possible influence on the emission spectra, independently of the specifics of the accretion and emission processes. On the other hand, the existence and significance of peaks in the luminosity profiles from sequences of general relativistic orbiting disks, having the same rotation orientation, have been presented in [3]. |
3 | These might be observable by the planned X-ray observatory NewATHENA: (Advanced Telescope for High ENergy Astrophysics): https://www.cosmos.esa.int/web/athena (accessed on 2 March 2025). |
4 | |
5 | Only radial advection is dominant when the assumption of geometrical thinness is justified and, therefore, the problem is essentially radial. A similar geometrical approximation also holds for general relativistic geometrically thick disks which are essentially governed by radial pressure gradients on the disk equatorial plane; therefore, such disks are also essentially a one-dimensional (radial) system. In the thin disks, on the other hand, because the viscous time is much longer than the dynamical timescale, during the viscous processes the disk vertical structure can be considered in hydrostatic equilibrium and therefore neglected. |
6 | For a Keplerian disk, the radial (drift) velocity in Equation (2) induced by the viscous torque is |
7 | The equation is independent of the fluid rotation orientation. |
8 | Assuming time-steady disks ; integrating radially the equation within this assumption at disk inner edge , the viscous torque vanishes (and the mass flow is constant at every radius). Condition (marginally stable circular orbit) is assumed; as at , matter may radially infall (without centrifugal effects) in the general relativistic onset. |
9 | |
10 | Surface densities and of Equation (5) are considered to model two distinct profiles for the RAD density distribution. The physical distinction between the two profiles is fixed by the parameters and . In the integrations studied in this section, the density profile describes the number of rings (maximum points of the RAD density function), the height of the maximum (value of the maximum density in the single ring), spacing between the rings, and the spreading of the maximum (i.e., extension of the single ring on the equatorial plane). Therefore, the parameters of the functions describing the density profile fix these quantities (only). Obviously, in certain limits on r, the profile can reduce to . The two distinct functional forms (,) were adopted for convenience for the integrations of the two profiles evolved, separately and in combination, in Figure 4. |
11 | The issue of the boundary conditions on the density and its radial derivative at the inner edge will also be treated in the general relative case in the sequel of this analysis. |
12 | In the first approximation, the viscosity is the most relevant factor when the viscosity fluctuation in the RAD distribution is the greatest. |
13 | Parameter is the metric spin, where total angular momentum is J and the gravitational mass parameter is M. A Kerr BH is defined by the condition . We adopt the geometrical units and the signature; Latin indices run in . The radius r has unit of mass , and the angular momentum units of , the velocities and with and . For the sake of convenience, we always consider the dimensionless energy an angular momentum per unit of mass . |
14 | For the barotropic tori, the tori centers are the points of maximum pressure and density in the disks, while the inner edge is the point of minimum density and pressure. |
15 | We stress that the tori are orbiting (not–self gravitating) around a central Kerr BH of fixed mass and spin. The accretion feedback on the BH parameter is not considered. The shape of tori is reduced to an equi-potential surface. In fact, in the geometrically thick Polish doughnut (P-D) tori models, only the Euler equation describes the axially symmetric stationary GRHD perfect fluid barotropic tori. The equation governs the force balance in the disk, composed by one-species particles. The Euler equation encodes the centrifugal, pressure and gravitational forces, which are dominant with respect to the dissipative ones in determining the disk instability. In these models, the von Zeipel condition holds, and the surfaces of constant relativistic velocity and of constant specific angular momentum ℓ coincide. Therefore, we use the rotation law independently of the equation of state. These tori are optical opaque, and radiation-pressure supported, cooled by advection (with low viscosity) and with super-Eddington luminosity. The accretion occurs from a Roche lobe overflow from the tori cusps by hydro-mechanic instability. These symmetry conditions imply that the toroidal surfaces are closed-cusped or closed-quiescent (without cusp). The maximum density points in the disk (and ringed disk) are fixed, and the pressure gradients (from the Euler equations) are regulated by the gradients of an effective potential function for the fluid parametrized with constant ℓ and regulated by the force balance in the disk [41], where equipressure surfaces are the toroidal surfaces given by the equipotential surfaces of the effective potential. The minimum of the effective potential are the maxima of pressure in the torus (torus center ), and the minimum of pressure are the surfaces cusp for closed cusped tori—see [40]. |
16 | The location of the inner edge of the innermost ring is fixed considering or , and constrained by the condition , for counter-rotating and co-rotating tori, respectively (see Section 3 and Appendix A). Radii are functions of the BH spin a and, for co-rotating (counter-rotating) disks, the radii and their difference, , decrease (increase) in magnitude with the spin—[3,16,30,42]. The values of for and are given in Appendix B. This range is spin-dependent, while the precise location of the inner edge in the range is arbitrary, with smaller-cusped disks having, in general, inner edges close to . The extension of the radial range for the inner edge (setting also the disk maximum extension) and its location with respect to the central attractor depend uniquely on the BH spin. In Appendix A are further notes on disk construction—see also [16,30]. The selection of other parameters such as the viscosity constants or the number of rings displayed in Table 1 has been done to more efficiently consider the different effects of the parameters on the evolution in comparison with the literature. The viscosity prescriptions have been selected from the study of the ℓco-rotating sequences in [3] and the analyses of the single disk evolution [4,5,6,7,8,9], where the physical relevance for the single disk is also explained at length. |
17 | The issue of finite or vanishing stress at the ISCO (marginally stable circular orbit) is still a debated (and controversial) issue, as the adoption of either of the two conditions requires a careful discussion of the radial gradients at the ISCO. This problematic aspect of the disk modelization is inherited from the single-disk analysis in GR and related to the disk inner-edge definition. This issue is complicated, in the RAD framework, by the existence of inter-disk inner edges, shaping the internal ringed structure of the disk. Therefore, two main situations may occur in the RAD framework: (1) tRhe single ring inner edge can be located at radius smaller than the marginally stable orbit (ISCO); (2) In the case of ℓcounter-rotating rings orbiting the central attractor, the two corresponding ISCO radii for co-rotating and counter-rotating rings need to be taken into account together. In general, two conditions have been explored based on the quantity and its radial gradient, evaluated at the marginally stable circular orbit: the so-called “finite ISCO stress” condition and the “vanishing ISCO stress” condition, respectively. In the single ring model, there is the requirement that the first derivative of the quantity vanishes at the ISCO (because under the usual circular orbit assumption), a feature characterizing any finite ISCO stress (in the finite stress condition, the radial gradient of vanishes). Vice versa, for the “vanishing ISCO stress” condition, vanishes at the ISCO. See also [43], where geometrically thin accretion disks crossing the ISCO are studied in 3D pseudo-Newtonian simulation with the zero-torque boundary condition at the radius. A GRMHD simulation investigating the magnetic stresses close to ISCO is in [44], where the radiation edge in magnetized BH accretion disc is considered. In [45], the magnetic torque at ISCO is studied with a 3D simulation of a thin accretion disk orbiting a non-spinning BH. |
18 | Matter accretes into the central BH from the inner edge of the innermost ring. The accreting flow from the ringed disk eventually crosses the BH horizon at . Radius , for and , is in Appendix B (note, on the equatorial plane, the outer ergosurface is independent on the spin and it is located at ). |
19 | Note, an evaluation of the torsion in the spacing area in the first instances of the evolution could provide an indication of the effective viscosity felt in the later stages of evolution. |
20 | |
21 | Most of the analysis in this section has been performed with Gradus.jl “Spacetime generic, general relativistic ray-tracing (GRRT) in Julia”, https://github.com/astro-group-bristol/Gradus.jl, accessed on 2 March 2025 [49] (using DifferentialEquations.jl [50] and ForwardDiff.jl [51] packages), written in Julia programming language [52]: (https://julialang.org/release, accessed on 2 March 2025). |
22 | Colours indicate combined gravitational and Doppler shifts. The false colour represents the redshift of the emission (largest values for lighter colours) that comes from the surface of the disk. |
References
- Lynden-Bell, D.; Pringle, J.E. The evolution of viscous discs and the origin of the nebular variables. MNRAS 1974, 168, 603–637. [Google Scholar] [CrossRef]
- Pringle, J.E. Accretion discs in astrophysics. ARA&A 1981, 19, 137–162. [Google Scholar]
- Pugliese, D.; Stuchlik, Z.; Karas, V. Notes on the general relativistic viscous ringed disc evolution. MNRAS 2024, 534, 2875–2893. [Google Scholar]
- Balbus, S.A. The general relativistic thin disk evolution equation. MNRAS 2017, 471, 4832–4838. [Google Scholar] [CrossRef]
- Balbus, S.A.; Mummery, A. The evolution of Kerr disks and late-time tidal disruption event light curves. MNRAS 2018, 481, 3348–3356. [Google Scholar] [CrossRef]
- Balbus, S.A.; Mummery, A. An upper observable black hole mass scale for tidal destruction events with thermal X-ray spectra. MNRAS 2021, 505, 1629–1644. [Google Scholar]
- Mummery, A.; Balbus, S.A. The spectral evolution of disk dominated tidal disruption events. MNRAS 2000, 492, 5655–5674. [Google Scholar] [CrossRef]
- Mummery, A. A unified model of tidal destruction events in the disk-dominated phase. arXiv 2021, arXiv:2104.06212. [Google Scholar]
- Mummery, A.; Balbus, S.A. Evolution of relativistic thin disks with a finite ISCO stress I. Stalled accretion. MNRAS 2019, 489, 132–142. [Google Scholar] [CrossRef]
- Nixon, C.J.; Pringle, J.E. Accretion disks with non-zero central torque. New Astron. 2021, 85, 101493. [Google Scholar] [CrossRef]
- Frank, J.; King, A.; Raine, D.J. Accretion Power in Astrophysics, 3rd ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Riffert, H. The Dynamics of a Viscous Gas Ring around a Kerr Black Hole. Astrophys. J. 2000, 529, 119–126. [Google Scholar] [CrossRef]
- Perego, A.; Dotti, M.; Colpi, M.; Volonteri, M. Mass and spin co-evolution during the alignment of a black hole in a warped accretion disc. MNRAS 2009, 399, 2249–2263. [Google Scholar] [CrossRef]
- Mayer, M.; Pringle, J.E. Variability of black hole accretion disks: The cool, thermal disk component. MNRAS 2006, 368, 379–396. [Google Scholar] [CrossRef]
- Falcke, H.; Melia, F. Accretion disk evolution with wind infall. 1. General solution and application to Sgr A*. Astrophys. J. 1997, 479, 740. [Google Scholar] [CrossRef]
- Pugliese, D.; Stuchlik, Z.; Karas, V. On the Viscous Ringed Disk Evolution in the Kerr Black Hole Spacetime. Universe 2024, 10, 435. [Google Scholar] [CrossRef]
- Sochora, V.; Karas, V.; Svoboda, J.; Dovciak, M. Black hole accretion rings revealed by future X-ray spectroscopy. MNRAS 2011, 418, 276–283. [Google Scholar] [CrossRef]
- Karas, V.; Sochora, V. Extremal energy shifts of radiation from a ring near a rotating black hole. Astrophys. J. 2010, 725, 1507–1515. [Google Scholar] [CrossRef]
- Wilkins, D.R.; Gallo, L.C. The Comptonization of accretion disc X-ray emission: Consequences for X-ray reflection and the geometry of AGN coronae. MNRAS 2015, 448, 703–712. [Google Scholar] [CrossRef]
- Laloux, B.; Georgakakis, A.; Alexander, D.M.; Buchner, J.; Andonie, C.; Acharya, N.; Aird, J.; Alonso-Tetilla, A.V.; Bongiorno, A.; Hickox, R.C.; et al. Accretion properties of X-ray AGN: Evidence for radiation-regulated obscuration with redshift-dependent host galaxy contribution. MNRAS 2024, 532, 3459–3479. [Google Scholar] [CrossRef]
- Barlow-Hall, C.L.; Delaney, J.; Aird, J.; Evans, P.A.; Osborne, J.P.; Watson, M.G. Constraints on the X-ray luminosity function of AGN at z = 5.7–6.4 with the Extragalactic Serendipitous Swift Survey. MNRAS 2023, 519, 6055–6064. [Google Scholar] [CrossRef]
- Laha, S.; Ricci, C.; Mather, J.C.; Behar, E.; Gallo, L.C.; Marin, F.; Mbarek, R.; Hankla, A. X-ray properties of coronal emission in radio quiet Active Galactic Nuclei. arXiv 2024, arXiv:2412.11321. [Google Scholar] [CrossRef]
- Volonteri, M.; Sikora, M.; Lasota, J.-P. The Evolution of Active Galactic Nuclei and their Spins. ApJ 2007, 667, 704. [Google Scholar] [CrossRef]
- Volonteri, M. Gravitational Recoil: Signatures on the Massive Black Hole Population. ApJ 2007, 663, L5. [Google Scholar] [CrossRef]
- Volonteri, M. Formation of supermassive black holes. A & AR 2010, 18, 279. [Google Scholar]
- Li, L.X. Accretion, Growth of Supermassive Black Holes, and Feedback in Galaxy Mergers. MNRAS 2012, 424, 1461. [Google Scholar] [CrossRef]
- Oka, T.; Tsujimoto, S.; Iwata, Y.; Nomura, M.; Takekawa, S. Millimetre-wave emission from an intermediate-mass black hole candidate in the Milky Way. Nat. Astron. 2017, 1, 709–712. [Google Scholar] [CrossRef]
- Kawakatu, N.; Ohsuga, K. New method for exploring super-Eddington active galactic nuclei by near-infrared observations. MNRAS 2011, 417, 2562–2570. [Google Scholar] [CrossRef]
- Allen, S.W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S. The relation between accretion rate and jet power in x-ray luminous elliptical galaxies. MNRAS 2006, 372, 21. [Google Scholar] [CrossRef]
- Pugliese, D.; Stuchlík, Z. Ringed accretion disks. Astrophys. J. 2015, 221, 25. [Google Scholar] [CrossRef]
- Peißker, F.; Eckart, A.; Zajaček, M.; Ali, B.; Parsa, M. Indications of a Population of Faint Fast-moving Stars inside the S2 Orbit–S4711 on a 7.6 yr Orbit around Sgr A*. ApJ 2020, 899, 50. [Google Scholar] [CrossRef]
- Peißker, F.; Zajaček, M.; Labadie, L.; Bordier, E.; Eckart, A.; Melamed, M.; Karas, V. A binary system in the S cluster close to the supermassive black hole Sagittarius A*. Nat. Commun. 2024, 15, 10608. [Google Scholar] [CrossRef] [PubMed]
- Bardeen, J.M.; Petterson, J.A. The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes. Astrophys. J. 1975, 195, L65. [Google Scholar] [CrossRef]
- Nealon, R.; Price, D.; Nixon, C. On the Bardeen–Petterson effect in black hole accretion disks. MNRAS 2015, 448, 1526. [Google Scholar] [CrossRef]
- Martin, R.G.; Nixon, C.; Lubow, S.H.; Armitage, P.J.; Price, D.J.; Dogan, S.; King, A. The Kozai-Lidov Mechanism in Hydrodynamical Disks. Astrophys. J. 2014, 792, L33. [Google Scholar] [CrossRef]
- King, A.; Nixon, C. Misaligned Accretion and Jet Production. Astrophys. J. 2018, 857, L7. [Google Scholar] [CrossRef]
- Nixon, C.; King, A.; Price, D. Tearing up the disk: Misaligned accretion on to a binary. MNRAS 2013, 434, 1946. [Google Scholar] [CrossRef]
- Nixon, C.J.; King, A.R.; Price, D.J. Rapid AGN accretion from counter-rotating discs. MNRAS 2012, 422, 2547. [Google Scholar] [CrossRef]
- King, A.R.; Lubow, S.H.; Ogilvie, G.I.; Pringle, J.E. Aligning spinning black holes and accretion disks. MNRAS 2005, 363, 49. [Google Scholar] [CrossRef]
- Abramowicz, M.A.; Fragile, P.C. Black Hole Accretion Disks. Living Rev. Relativ. 2013, 16, 1. [Google Scholar] [CrossRef]
- Boyer, R.H. Geodesic Killing orbits and bifurcate Killing horizons. Proc. R. Soc. Lond. A 1969, 311, 245. [Google Scholar]
- Carter, B. Global Structure of the Kerr Family of Gravitational Fields. Phys. Rev. 1968, 174, 1559. [Google Scholar] [CrossRef]
- Armitage, P.J.; Reynolds, C.S.; Chiang, J. Simulations of Accretion Flows Crossing the Last Stable Orbit. ApJ 2001, 548, 868. [Google Scholar] [CrossRef]
- Beckwith, K.; Hawley, J.F.; Krolik, J.H. Where is the radiation edge in magnetized black hole accretion discs? MNRAS 2008, 390, 21–38. [Google Scholar] [CrossRef]
- Shafee, R.; McKinney, J.C.; Narayan, R.; Tchekhovskoy, A.; Gammie, C.F.; McClintock, J.E. Three-Dimensional Simulations of Magnetized Thin Accretion Disks around Black Holes: Stress in the Plunging Region. ApJ 2008, 687, L25. [Google Scholar] [CrossRef]
- Pugliese, D.; Stuchlik, Z. Lense—Thirring effect on accretion flow from counter-rotating tori. MNRAS 2022, 512, 5895–5926. [Google Scholar] [CrossRef]
- Pugliese, D.; Stuchlik, Z. Inter—disks inversion surfaces. EPJC 2024, 84, 1082. [Google Scholar] [CrossRef]
- Pugliese, D.; Stuchlík, Z. Limiting effects in clusters of misaligned toroids orbiting static SMBHs. MNRAS 2020, 493, 4229. [Google Scholar] [CrossRef]
- Baker, F.; Young, A. Gradus.jl; Version 0.1.0.; Zenodo: Bruxelles/Brussel, Belgium, 2022. [Google Scholar] [CrossRef]
- Rackauckas, C.; Nie, Q. DifferentialEquations.jl —A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia. J. Open Res. Softw. 2017, 1, 5. [Google Scholar] [CrossRef]
- Revels, J.; Lubin, M.; Papamarkou, T. Forward-Mode Automatic Differentiation in Julia. arXiv 2016, arXiv:1607.07892. [Google Scholar] [CrossRef]
- Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98. [Google Scholar] [CrossRef]
- Bardeen, J.M. Black Holes; DeWitt, C., DeWitt, B.S., Eds.; Gordon & Breach: New York, NY, USA, 1973; p. 215. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pugliese, D.; Stuchlík, Z.; Karas, V. Keplerian Ringed-Disk Viscous-Diffusive Evolution and Combined Independent General Relativistic Evolutions. Universe 2025, 11, 88. https://doi.org/10.3390/universe11030088
Pugliese D, Stuchlík Z, Karas V. Keplerian Ringed-Disk Viscous-Diffusive Evolution and Combined Independent General Relativistic Evolutions. Universe. 2025; 11(3):88. https://doi.org/10.3390/universe11030088
Chicago/Turabian StylePugliese, Daniela, Zdenek Stuchlík, and Vladimir Karas. 2025. "Keplerian Ringed-Disk Viscous-Diffusive Evolution and Combined Independent General Relativistic Evolutions" Universe 11, no. 3: 88. https://doi.org/10.3390/universe11030088
APA StylePugliese, D., Stuchlík, Z., & Karas, V. (2025). Keplerian Ringed-Disk Viscous-Diffusive Evolution and Combined Independent General Relativistic Evolutions. Universe, 11(3), 88. https://doi.org/10.3390/universe11030088