Design of a Control Chart Using Extended EWMA Statistic
<p>Graph of comparison of ARLs when <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Graph of comparison of ARLs when <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>370</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Graph of simulated data of the proposed EEWMA control chart when <math display="inline"><semantics> <mrow> <msub> <mi>ψ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.30</mn> <mo>,</mo> <mo> </mo> <mo> </mo> <msub> <mi>ψ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.15</mn> <mo>,</mo> <mo> </mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>2.956</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Graph of simulated data of the EWMA control chart when <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.30</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>2.9355</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Graph of real data of the proposed EEWMA control chart when <math display="inline"><semantics> <mrow> <msub> <mi>ψ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>ψ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.03</mn> <mo>,</mo> <mo> </mo> <mi>k</mi> <mo>=</mo> <mn>2.8248</mn> <mo>,</mo> <mo> </mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Graph of real data of the EWMA control chart when <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.30</mn> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>2.8250</mn> <mo>,</mo> <mo> </mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. The Classical EWMA Control Chart
3. Design of the Proposed Control Chart
3.1. Derivation of the Mean and Variance of the EEWMA Statistic
Algorithm 1: Monte Carlo Simulation R Program for in-control process of an EEWMA control chart |
The algorithmic steps involved in the Monte Carlo Simulation R program are given below. (1) Computation of the proposed EEWMA statistic . (1.1) Fix the value of the in-control ARL, say , and smoothing constants . (1.2) Generate , a random sample of size 1 at each subgroup from normal distribution having specified parameters for the in-control process; that is, Generate 2500 such subgroups. (1.3) Compute the EEWMA statistic . (2) Compute the variable control limits. (2.1) Set up the value of the control chart coefficient such that the in-control ARL of the EEWMA control chart reaches the desired value of . (2.2) Calculate from 2500 subgroups. (2.3) Declare the process to be in control if ; otherwise, declare the process to be out of control. (2.4) If the process is in control, repeat steps 1.1–2.3. If the process is declared out of control, then count the number of subgroups as the run length; i.e., the process remains in control before it is declared to be out of control. (3) Compute the average run length (ARL). (3.1) Repeat steps 1.1–2.4 for a large number of times (for example, 10,000) to calculate the in-control ARL. If the calculated in-control ARL is equal to the specified , then stop the process and go to Algorithm 2. Otherwise, change the values of the control chart coefficient and repeat steps 1.1–3.1. |
Algorithm 2: Monte Carlo Simulation R Program for shifted process of an EEWMA control chart in which the mean is shifted from |
The algorithmic steps involved in the Monte Carlo Simulation R program are given below. (1) Compute the proposed EEWMA statistic . (1.1) Specify the values of smoothing constants and shift (1.2) Generate , a random sample of size 1 at each subgroup from normal distribution considering a mean shift; that is, Generate 2500 such subgroups. (1.3) Compute EEWMA statistic . (2) Compute the variable control limits (2.1) Take the value of the control coefficient from the output of Algorithm 1. (2.2) Calculate from 2500 subgroups. (2.3) Declared the process to be in control if ; otherwise, declared it to be out of control. (2.4) If the process is in control, repeat steps 1.1–2.3. If the process is declared as out of control, then count the number of subgroups as the run length; i.e., the process remains in control before it is declared to be out of control. (3) Compute the average run length (ARL1) for the shifted process. (3.1) Repeat steps 1.1–2.4 a large number of times (for example, 10,000) to calculate the ARL for the shifted process. |
3.2. Results and Discussion
- When the ARL is close to .
- For a fixed value of , the values of ARL1 increase as the smoothing constant increases.
- For other fixed values, the values of ARL1 increase as the value of increases. For example, when the value of ARL1 is 106.32; the value of ARL1 is 129.52 when .
- We also note that a large shift in process is detected more quickly. For example, when the value of ARL1 is and for it is just .
- From these tables we observed that if the value of is large, the decreasing trend of ARL1 is large. For example, when , the value of ARL1 decreases to of ARL0 for and for , while the value of ARL1 decreases to of ARL0 for and for when .
4. Advantages of the Proposed Control Chart
4.1. EEWMA Control Chart versus EWMA Control Chart
4.2. EEWMA Control Chart versus Shewhart Control Chart
5. Simulation Study
6. Health-Related Application
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roberts, S. Control chart tests based on geometric moving averages. Technometrics 1959, 1, 239–250. [Google Scholar] [CrossRef]
- Steiner, S.H. EWMA control charts with time-varying control limits and fast initial response. J. Qual. Technol. 1999, 31, 75–86. [Google Scholar] [CrossRef]
- Eyvazian, M.; Naini, S.J.; Vaghefi, A. Monitoring process variability using exponentially weighted moving sample variance control charts. Int. J. Adv. Manuf. Technol. 2008, 39, 261–270. [Google Scholar] [CrossRef]
- Yang, S.-F.; Lin, J.-S.; Cheng, S.W. A new nonparametric EWMA sign control chart. Expert Syst. Appl. 2011, 38, 6239–6243. [Google Scholar] [CrossRef]
- Abbas, N.; Riaz, M.; Does, R.J. Mixed exponentially weighted moving average–cumulative sum charts for process monitoring. Qual. Reliab. Eng. Int. 2013, 29, 345–356. [Google Scholar] [CrossRef]
- Abbas, N.; Riaz, M.; Does, R.J. An EWMA-type control chart for monitoring the process mean using auxiliary information. Commun. Stat. Theory Methods 2014, 43, 3485–3498. [Google Scholar] [CrossRef]
- Aslam, M.; Azam, M.; Jun, C.-H. A new control chart for exponential distributed life using EWMA. Trans. Inst. Meas. Control 2015, 37, 205–210. [Google Scholar] [CrossRef]
- Hariba, P.S.; Tukaram, S.D. Economic design of a nonparametric EWMA control chart for location. Production 2016, 26, 698–706. [Google Scholar] [CrossRef]
- Santiago, E.; Smith, J. Control charts based on the exponential distribution: Adapting runs rules for the t chart. Qual. Eng. 2013, 25, 85–96. [Google Scholar] [CrossRef]
- Haq, A. A new hybrid exponentially weighted moving average control chart for monitoring process mean. Qual. Reliab. Eng. Int. 2013, 29, 1015–1025. [Google Scholar] [CrossRef]
- Haq, A. A new hybrid exponentially weighted moving average control chart for monitoring process mean: Discussion. Qual. Reliab. Eng. Int. 2017, 33, 1629–1631. [Google Scholar] [CrossRef]
C | Proposed EEWMA | EWMA | Proposed EEWMA | EWMA | ||||
---|---|---|---|---|---|---|---|---|
ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | |
0 | 500.40 | 509.33 | 500.67 | 500.57 | 499.79 | 491.98 | 500.73 | 500.12 |
0.05 | 426.50 | 430.26 | 437.29 | 440.03 | 445.27 | 450.67 | 461.86 | 459.27 |
0.07 | 373.61 | 377.18 | 400.37 | 397.85 | 411.21 | 409.65 | 435.94 | 437.07 |
0.1 | 289.56 | 287.09 | 318.41 | 322.61 | 342.24 | 341.29 | 365.97 | 366.08 |
0.12 | 247.33 | 243.27 | 268.05 | 263.34 | 304.81 | 301.15 | 326.21 | 318.70 |
0.15 | 192.96 | 185.94 | 218.31 | 213.47 | 247.63 | 243.76 | 281.54 | 280.87 |
0.17 | 164.04 | 154.53 | 184.47 | 180.31 | 217.35 | 209.71 | 244.67 | 243.42 |
0.2 | 129.52 | 123.19 | 147.50 | 144.35 | 177.45 | 171.78 | 200.35 | 197.71 |
0.22 | 111.15 | 103.55 | 127.04 | 124.80 | 152.62 | 146.56 | 178.75 | 175.32 |
0.25 | 89.81 | 82.79 | 102.68 | 98.30 | 126.73 | 121.19 | 148.05 | 145.56 |
0.27 | 78.94 | 71.42 | 91.18 | 85.65 | 111.66 | 106.28 | 130.11 | 125.79 |
0.3 | 65.73 | 57.76 | 75.05 | 68.41 | 92.63 | 87.61 | 110.81 | 108.55 |
0.35 | 49.41 | 41.83 | 57.46 | 51.09 | 69.47 | 63.78 | 84.27 | 78.62 |
0.4 | 39.36 | 32.46 | 43.47 | 36.92 | 54.35 | 48.33 | 64.62 | 61.05 |
0.45 | 32.34 | 24.95 | 35.24 | 29.45 | 42.94 | 37.33 | 50.01 | 45.67 |
0.5 | 26.61 | 20.20 | 28.67 | 23.43 | 35.02 | 29.25 | 41.06 | 37.73 |
0.6 | 19.47 | 13.61 | 20.40 | 15.26 | 24.27 | 18.95 | 27.35 | 23.80 |
0.7 | 14.75 | 9.76 | 15.56 | 11.00 | 18.16 | 13.31 | 19.93 | 16.29 |
0.8 | 11.68 | 7.62 | 12.11 | 8.16 | 14.11 | 9.56 | 15.05 | 11.57 |
0.9 | 9.60 | 5.96 | 9.88 | 6.46 | 11.43 | 7.48 | 11.86 | 8.64 |
1 | 8.13 | 4.96 | 8.23 | 5.24 | 9.52 | 5.82 | 9.62 | 6.57 |
C | ||||||||
---|---|---|---|---|---|---|---|---|
ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | |
0 | 499.47 | 502.80 | 501.77 | 500.71 | 499.0083 | 491.849 | 499.04 | 495.16 |
0.05 | 458.21 | 452.95 | 477.20 | 477.67 | 472.5636 | 469.7511 | 478.47 | 476.75 |
0.07 | 428.71 | 425.58 | 449.86 | 449.35 | 460.7111 | 460.8278 | 465.64 | 465.23 |
0.1 | 371.73 | 368.29 | 402.13 | 405.74 | 420.4581 | 413.6637 | 431.35 | 442.43 |
0.12 | 342.82 | 341.73 | 365.19 | 358.15 | 393.3217 | 385.4409 | 407.54 | 416.50 |
0.15 | 285.11 | 281.53 | 322.42 | 320.04 | 354.1489 | 347.0692 | 369.92 | 367.61 |
0.17 | 250.73 | 251.85 | 290.81 | 287.00 | 326.8243 | 321.0665 | 347.55 | 346.85 |
0.2 | 208.66 | 203.88 | 248.91 | 241.65 | 291.058 | 290.0307 | 311.45 | 317.14 |
0.22 | 185.47 | 180.56 | 221.17 | 217.78 | 270.4333 | 270.6571 | 291.37 | 298.55 |
0.25 | 154.07 | 148.04 | 188.18 | 187.22 | 233.9017 | 232.4271 | 253.96 | 253.04 |
0.27 | 140.01 | 134.44 | 168.68 | 166.61 | 211.3791 | 209.7757 | 235.48 | 235.87 |
0.3 | 115.22 | 110.70 | 141.55 | 140.52 | 184.0313 | 183.2404 | 207.36 | 205.74 |
0.35 | 89.20 | 82.77 | 110.80 | 108.62 | 149.6311 | 144.5011 | 165.47 | 161.99 |
0.4 | 68.80 | 62.78 | 87.12 | 85.46 | 117.3987 | 111.655 | 133.40 | 135.53 |
0.45 | 53.49 | 46.55 | 67.54 | 65.49 | 95.10514 | 91.35121 | 106.22 | 104.98 |
0.5 | 43.96 | 37.49 | 54.25 | 52.16 | 76.31657 | 72.88563 | 85.60 | 84.52 |
0.6 | 30.42 | 24.42 | 36.00 | 33.20 | 52.07457 | 48.20057 | 60.25 | 58.32 |
0.7 | 22.24 | 16.96 | 25.00 | 21.97 | 38.42114 | 34.41338 | 42.46 | 40.74 |
0.8 | 17.06 | 12.30 | 18.26 | 15.60 | 27.74443 | 23.68217 | 29.85 | 27.58 |
0.9 | 13.76 | 8.92 | 14.44 | 11.62 | 20.79757 | 17.28215 | 22.44 | 20.71 |
1 | 11.15 | 6.89 | 11.42 | 8.66 | 16.66486 | 12.80979 | 17.26 | 15.37 |
C | ||||||||
---|---|---|---|---|---|---|---|---|
ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | |
0 | 371.51 | 369.45 | 370.59 | 362.34 | 369.71 | 361.94 | 371.43 | 363.40 |
0.05 | 322.85 | 323.91 | 334.43 | 334.99 | 338.73 | 340.10 | 347.05 | 335.37 |
0.07 | 284.42 | 291.09 | 296.74 | 296.18 | 312.98 | 306.63 | 325.71 | 322.39 |
0.1 | 234.56 | 229.78 | 250.15 | 248.29 | 268.36 | 262.47 | 291.84 | 289.82 |
0.12 | 197.99 | 197.73 | 213.80 | 215.88 | 242.45 | 236.21 | 254.90 | 251.64 |
0.15 | 157.83 | 153.86 | 171.90 | 168.79 | 196.30 | 194.50 | 220.87 | 214.65 |
0.17 | 135.39 | 130.88 | 150.91 | 149.73 | 173.10 | 170.08 | 191.13 | 188.94 |
0.2 | 106.32 | 99.27 | 121.84 | 118.90 | 143.45 | 138.97 | 160.62 | 155.67 |
0.22 | 94.36 | 87.66 | 104.74 | 99.92 | 125.92 | 121.66 | 141.15 | 140.23 |
0.25 | 77.63 | 70.15 | 86.33 | 81.07 | 102.78 | 98.57 | 120.83 | 116.86 |
0.27 | 68.23 | 61.44 | 76.44 | 72.10 | 93.43 | 86.49 | 105.67 | 101.47 |
0.3 | 57.28 | 49.50 | 63.70 | 58.72 | 78.10 | 71.58 | 91.28 | 88.30 |
0.35 | 44.58 | 37.53 | 49.02 | 42.74 | 59.55 | 53.62 | 69.96 | 65.96 |
0.4 | 35.52 | 28.85 | 38.45 | 32.72 | 46.75 | 40.97 | 54.36 | 49.81 |
0.45 | 29.57 | 23.44 | 31.33 | 25.94 | 37.92 | 31.96 | 43.17 | 38.85 |
0.5 | 24.19 | 18.15 | 25.78 | 20.75 | 30.47 | 24.83 | 34.83 | 31.34 |
0.6 | 17.82 | 12.76 | 18.63 | 14.02 | 22.08 | 17.09 | 24.40 | 20.95 |
0.7 | 13.55 | 9.32 | 14.07 | 10.15 | 16.57 | 12.06 | 17.68 | 14.13 |
0.8 | 11.06 | 7.31 | 11.25 | 7.78 | 13.14 | 8.85 | 13.48 | 10.30 |
0.9 | 9.02 | 5.75 | 9.25 | 6.16 | 10.61 | 6.95 | 10.82 | 7.85 |
1 | 7.51 | 4.62 | 7.67 | 4.97 | 8.80 | 5.48 | 9.00 | 6.18 |
C | ||||||||
---|---|---|---|---|---|---|---|---|
ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | |
0 | 370.30 | 361.41 | 370.21 | 365.87 | 371.49 | 362.67 | 371.65 | 359.30 |
0.05 | 345.23 | 329.67 | 361.72 | 353.53 | 355.73 | 343.79 | 360.03 | 358.62 |
0.07 | 326.95 | 319.77 | 343.33 | 337.31 | 334.60 | 328.38 | 340.59 | 335.63 |
0.1 | 288.87 | 282.00 | 311.19 | 304.70 | 317.12 | 317.27 | 325.14 | 320.77 |
0.12 | 263.88 | 260.75 | 283.10 | 288.42 | 298.78 | 296.66 | 308.95 | 302.54 |
0.15 | 220.84 | 219.08 | 252.72 | 250.59 | 273.27 | 267.42 | 281.65 | 278.94 |
0.17 | 198.87 | 197.36 | 228.90 | 227.96 | 248.53 | 243.72 | 270.42 | 267.20 |
0.2 | 170.93 | 165.94 | 195.49 | 193.74 | 228.74 | 225.84 | 238.79 | 236.31 |
0.22 | 148.54 | 141.67 | 178.26 | 175.04 | 212.04 | 208.78 | 223.88 | 221.88 |
0.25 | 126.24 | 120.53 | 152.67 | 149.57 | 183.70 | 182.97 | 196.06 | 193.23 |
0.27 | 111.27 | 106.42 | 134.15 | 132.73 | 171.11 | 170.81 | 185.02 | 182.51 |
0.3 | 97.51 | 91.91 | 118.06 | 117.65 | 145.47 | 141.75 | 154.64 | 152.63 |
0.35 | 74.41 | 68.30 | 91.41 | 88.88 | 117.04 | 112.65 | 129.39 | 130.08 |
0.4 | 59.13 | 53.26 | 71.79 | 69.71 | 94.14 | 88.96 | 108.44 | 106.36 |
0.45 | 46.55 | 41.09 | 57.44 | 54.18 | 76.33 | 71.85 | 88.10 | 84.11 |
0.5 | 38.51 | 32.99 | 46.97 | 44.57 | 62.62 | 59.37 | 71.01 | 69.33 |
0.6 | 27.04 | 21.75 | 31.46 | 29.43 | 44.48 | 39.91 | 49.62 | 47.39 |
0.7 | 20.22 | 15.16 | 23.00 | 19.83 | 31.97 | 28.23 | 35.28 | 34.28 |
0.8 | 15.45 | 10.75 | 16.91 | 14.27 | 23.34 | 19.27 | 26.02 | 24.14 |
0.9 | 12.66 | 8.38 | 12.95 | 10.36 | 18.43 | 15.05 | 19.33 | 17.57 |
1 | 10.28 | 6.41 | 10.44 | 8.07 | 14.39 | 10.89 | 15.06 | 13.23 |
C | ||||||||
---|---|---|---|---|---|---|---|---|
ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | |
0 | 301.12 | 298.85 | 299.12 | 299.11 | 301.14 | 299.85 | 299.68 | 295.20 |
0.05 | 267.23 | 267.69 | 272.74 | 274.09 | 278.00 | 272.73 | 284.19 | 276.50 |
0.07 | 236.26 | 239.92 | 248.93 | 249.91 | 258.99 | 256.28 | 266.46 | 264.59 |
0.1 | 196.43 | 199.12 | 212.08 | 211.30 | 224.42 | 223.88 | 235.56 | 233.41 |
0.12 | 168.00 | 167.81 | 183.55 | 181.79 | 200.02 | 194.82 | 212.64 | 213.51 |
0.15 | 136.03 | 134.26 | 149.00 | 149.51 | 168.75 | 163.58 | 183.21 | 181.62 |
0.17 | 117.89 | 112.87 | 130.50 | 127.43 | 145.94 | 141.69 | 164.67 | 164.18 |
0.2 | 94.46 | 89.52 | 104.97 | 102.58 | 123.56 | 118.22 | 137.87 | 134.95 |
0.22 | 83.53 | 77.49 | 93.54 | 89.50 | 109.44 | 104.62 | 122.66 | 120.90 |
0.25 | 69.66 | 63.66 | 77.69 | 73.65 | 91.55 | 86.92 | 103.05 | 98.27 |
0.27 | 62.14 | 55.64 | 68.25 | 63.36 | 81.13 | 75.34 | 93.49 | 89.66 |
0.3 | 52.60 | 46.78 | 57.57 | 52.97 | 69.50 | 65.17 | 78.70 | 75.19 |
0.35 | 40.98 | 34.64 | 44.73 | 40.06 | 52.88 | 48.58 | 60.83 | 58.27 |
0.4 | 32.60 | 26.69 | 34.99 | 30.04 | 42.68 | 38.54 | 47.67 | 44.14 |
0.45 | 26.70 | 20.94 | 28.93 | 24.06 | 34.43 | 28.85 | 38.81 | 35.59 |
0.5 | 22.47 | 17.39 | 23.85 | 19.31 | 28.20 | 23.28 | 31.72 | 28.89 |
0.6 | 16.51 | 12.00 | 17.40 | 13.33 | 20.26 | 15.53 | 22.15 | 18.51 |
0.7 | 12.80 | 8.97 | 13.22 | 9.58 | 15.30 | 11.14 | 16.38 | 13.23 |
0.8 | 10.38 | 7.03 | 10.52 | 7.32 | 12.25 | 8.38 | 12.62 | 9.48 |
0.9 | 8.52 | 5.49 | 8.60 | 5.80 | 10.07 | 6.53 | 10.26 | 7.45 |
1 | 7.17 | 4.48 | 7.28 | 4.74 | 8.32 | 5.11 | 8.40 | 5.83 |
C | ||||||||
---|---|---|---|---|---|---|---|---|
ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | |
0 | 300.89 | 293.42 | 301.64 | 297.91 | 300.27 | 293.21 | 300.08 | 292.94 |
0.05 | 283.39 | 271.30 | 288.49 | 287.04 | 286.27 | 278.79 | 291.43 | 286.49 |
0.07 | 266.87 | 262.20 | 276.24 | 277.45 | 278.10 | 268.70 | 289.67 | 284.50 |
0.1 | 234.41 | 234.63 | 253.70 | 249.42 | 258.65 | 251.23 | 273.66 | 270.67 |
0.12 | 215.30 | 212.61 | 231.84 | 230.77 | 243.86 | 244.22 | 256.31 | 252.09 |
0.15 | 187.50 | 182.72 | 204.51 | 201.97 | 223.23 | 218.36 | 234.82 | 231.23 |
0.17 | 167.14 | 162.35 | 188.35 | 186.31 | 206.99 | 207.41 | 219.98 | 216.62 |
0.2 | 140.80 | 135.11 | 165.42 | 166.79 | 189.58 | 185.05 | 199.28 | 197.47 |
0.22 | 128.05 | 123.49 | 148.60 | 148.02 | 174.54 | 176.66 | 181.59 | 181.04 |
0.25 | 107.10 | 102.67 | 128.54 | 126.16 | 150.34 | 150.85 | 167.68 | 164.71 |
0.27 | 98.24 | 92.36 | 116.15 | 114.05 | 142.00 | 140.28 | 149.87 | 151.07 |
0.3 | 82.92 | 77.78 | 99.86 | 98.66 | 123.26 | 120.12 | 134.66 | 133.04 |
0.35 | 65.71 | 60.62 | 78.80 | 75.86 | 102.87 | 100.71 | 110.61 | 108.38 |
0.4 | 51.07 | 45.45 | 61.66 | 59.17 | 81.01 | 77.16 | 90.64 | 88.63 |
0.45 | 41.37 | 35.67 | 51.00 | 47.43 | 67.60 | 63.56 | 75.31 | 74.63 |
0.5 | 34.20 | 28.68 | 41.40 | 38.81 | 55.60 | 51.77 | 61.88 | 60.34 |
0.6 | 24.71 | 19.74 | 28.30 | 25.91 | 38.81 | 35.32 | 42.93 | 41.05 |
0.7 | 18.41 | 13.66 | 20.10 | 17.33 | 28.33 | 24.58 | 31.18 | 28.89 |
0.8 | 14.61 | 10.17 | 15.10 | 12.55 | 21.44 | 17.47 | 22.98 | 21.79 |
0.9 | 11.56 | 7.51 | 12.08 | 9.51 | 16.46 | 13.13 | 17.28 | 15.72 |
1 | 9.84 | 6.08 | 9.85 | 7.53 | 13.28 | 9.93 | 13.49 | 11.87 |
C | ||||||
---|---|---|---|---|---|---|
ARL | SDRL | ARL | SDRL | ARL | SDRL | |
0 | 499.31 | 497.92 | 368.68 | 363.90 | 299.76 | 290.14 |
0.05 | 496.81 | 494.54 | 365.02 | 358.26 | 295.98 | 289.79 |
0.07 | 483.98 | 481.18 | 362.18 | 354.95 | 294.77 | 287.41 |
0.1 | 474.34 | 467.71 | 351.47 | 351.61 | 286.72 | 284.85 |
0.12 | 464.28 | 460.25 | 346.68 | 349.1719 | 282.85 | 281.57 |
0.15 | 444.36 | 441.14 | 333.58 | 333.04 | 276.12 | 271.07 |
0.17 | 427.02 | 424.81 | 322.51 | 323.1653 | 263.80 | 263.79 |
0.2 | 406.48 | 406.06 | 312.21 | 312.95 | 255.16 | 253.37 |
0.22 | 393.90 | 393.65 | 292.96 | 290.36 | 246.73 | 246.55 |
0.25 | 373.57 | 370.55 | 275.75 | 275.31 | 231.39 | 228.29 |
0.27 | 352.44 | 351.30 | 269.72 | 264.17 | 223.14 | 222.53 |
0.3 | 335.42 | 331.72 | 254.30 | 250.11 | 209.54 | 206.37 |
0.35 | 299.14 | 301.32 | 229.52 | 230.90 | 185.57 | 184.66 |
0.4 | 257.07 | 254.35 | 199.82 | 200.77 | 164.69 | 163.85 |
0.45 | 229.69 | 229.07 | 175.98 | 175.87 | 144.58 | 145.76 |
0.5 | 200.08 | 200.22 | 159.69 | 157.19 | 129.65 | 129.03 |
0.6 | 155.91 | 155.98 | 119.24 | 118.42 | 100.99 | 98.99 |
0.7 | 116.59 | 116.10 | 93.10 | 91.07 | 79.16 | 79.74 |
0.8 | 88.02 | 87.50 | 71.85 | 71.06 | 61.03 | 59.95 |
0.9 | 70.39 | 70.26 | 55.62 | 56.40 | 48.00 | 47.52 |
1 | 53.77 | 53.67 | 43.90 | 42.51 | 38.24 | 37.30 |
Proposed Extended Exponentially WeightedMoving Average Control Chart (EEWMA) | Exponentially WeightedMoving Average Control Chart (EWMA) | ||||||
---|---|---|---|---|---|---|---|
0.7518 | 0.2256 | −0.9915 | 0.9915 | 0.7518 | 0.2256 | −0.8807 | 0.8807 |
0.9703 | 0.3700 | −1.0123 | 1.0123 | 0.9703 | 0.4490 | −1.0750 | 1.0750 |
−0.6255 | −0.0187 | −1.0271 | 1.0271 | −0.6255 | 0.1266 | −1.1583 | 1.1583 |
0.3026 | 0.1688 | −1.0377 | 1.0377 | 0.3026 | 0.1794 | −1.1971 | 1.1971 |
−1.3796 | −0.3158 | −1.0452 | 1.0452 | −1.3796 | −0.2883 | −1.2156 | 1.2156 |
0.9667 | 0.2285 | −1.0507 | 1.0507 | 0.9667 | 0.0882 | −1.2246 | 1.2246 |
−1.3623 | −0.3595 | −1.0546 | 1.0546 | −1.3623 | −0.3469 | −1.2290 | 1.2290 |
−0.0872 | −0.1274 | −1.0574 | 1.0574 | −0.0872 | −0.2690 | −1.2311 | 1.2311 |
0.5178 | 0.0602 | −1.0594 | 1.0594 | 0.5178 | −0.0330 | −1.2322 | 1.2322 |
0.0386 | −0.0150 | −1.0609 | 1.0609 | 0.0386 | −0.0115 | −1.2327 | 1.2327 |
−0.3936 | −0.1366 | −1.0619 | 1.0619 | −0.3936 | −0.1261 | −1.2329 | 1.2329 |
0.1833 | −0.0021 | −1.0627 | 1.0627 | 0.1833 | −0.0333 | −1.2330 | 1.2330 |
−0.2873 | −0.1154 | −1.0633 | 1.0633 | −0.2873 | −0.1095 | −1.2331 | 1.2331 |
−1.8572 | −0.6122 | −1.0637 | 1.0637 | −1.8572 | −0.6338 | −1.2331 | 1.2331 |
−0.4566 | −0.3788 | −1.0639 | 1.0639 | −0.4566 | −0.5807 | −1.2331 | 1.2331 |
0.7269 | −0.0354 | −1.0642 | 1.0642 | 0.7269 | −0.1884 | −1.2332 | 1.2332 |
0.5091 | 0.0136 | −1.0643 | 1.0643 | 0.5091 | 0.0209 | −1.2332 | 1.2332 |
−0.0464 | −0.0787 | −1.0644 | 1.0644 | −0.0464 | 0.0007 | −1.2332 | 1.2332 |
0.4633 | 0.0790 | −1.0645 | 1.0645 | 0.4633 | 0.1395 | −1.2332 | 1.2332 |
−0.1247 | −0.0397 | −1.0645 | 1.0645 | −0.1247 | 0.0602 | −1.2332 | 1.2332 |
−0.2708 | −0.0963 | −1.0646 | 1.0646 | −0.2708 | −0.0391 | −1.2332 | 1.2332 |
0.4517 | 0.0943 | −1.0646 | 1.0646 | 0.4517 | 0.1081 | −1.2332 | 1.2332 |
−0.4649 | −0.1271 | −1.0646 | 1.0646 | −0.4649 | −0.0638 | −1.2332 | 1.2332 |
−0.4860 | −0.1841 | −1.0647 | 1.0647 | −0.4860 | −0.1904 | −1.2332 | 1.2332 |
−0.6143 | −0.2679 | −1.0647 | 1.0647 | −0.6143 | −0.3176 | −1.2332 | 1.2332 |
1.9589 | 0.4521 | −1.0647 | 1.0647 | 1.9589 | 0.3654 | −1.2332 | 1.2332 |
2.1935 | 0.7485 | −1.0647 | 1.0647 | 2.1935 | 0.9138 | −1.2332 | 1.2332 |
−0.8605 | 0.0491 | −1.0647 | 1.0647 | −0.8605 | 0.3815 | −1.2332 | 1.2332 |
0.1209 | 0.2071 | −1.0647 | 1.0647 | 0.1209 | 0.3033 | −1.2332 | 1.2332 |
−1.2693 | −0.2229 | −1.0647 | 1.0647 | −1.2693 | −0.1685 | −1.2332 | 1.2332 |
−0.0684 | −0.0196 | −1.0647 | 1.0647 | −0.0684 | −0.1385 | −1.2332 | 1.2332 |
1.1986 | 0.3532 | −1.0647 | 1.0647 | 1.1986 | 0.2627 | −1.2332 | 1.2332 |
1.5792 | 0.5941 | −1.0647 | 1.0647 | 1.5792 | 0.6576 | −1.2332 | 1.2332 |
0.7117 | 0.4817 | −1.0647 | 1.0647 | 0.7117 | 0.6738 | −1.2332 | 1.2332 |
0.6674 | 0.5029 | −1.0647 | 1.0647 | 0.6674 | 0.6719 | −1.2332 | 1.2332 |
0.8396 | 0.5792 | −1.0647 | 1.0647 | 0.8396 | 0.7222 | −1.2332 | 1.2332 |
−0.4498 | 0.2315 | −1.0647 | 1.0647 | −0.4498 | 0.3706 | −1.2332 | 1.2332 |
1.2839 | 0.6494 | −1.0647 | 1.0647 | 1.2839 | 0.6446 | −1.2332 | 1.2332 |
1.6919 | 0.8670 | −1.0647 | 1.0647 | 1.6919 | 0.9588 | −1.2332 | 1.2332 |
−0.9250 | 0.2056 | −1.0647 | 1.0647 | −0.9250 | 0.3936 | −1.2332 | 1.2332 |
0.9674 | 0.6037 | −1.0647 | 1.0647 | 0.9674 | 0.5658 | −1.2332 | 1.2332 |
1.9360 | 0.9489 | −1.0647 | 1.0647 | 1.9360 | 0.9768 | −1.2332 | 1.2332 |
−0.1734 | 0.4641 | −1.0647 | 1.0647 | −0.1734 | 0.6318 | −1.2332 | 1.2332 |
−0.0786 | 0.3969 | −1.0647 | 1.0647 | −0.0786 | 0.4187 | −1.2332 | 1.2332 |
1.8742 | 0.9114 | −1.0647 | 1.0647 | 1.8742 | 0.8553 | −1.2332 | 1.2332 |
0.1886 | 0.5502 | −1.0647 | 1.0647 | 0.1886 | 0.6553 | −1.2332 | 1.2332 |
2.1844 | 1.0947 | −1.0647 | 1.0647 | 2.1844 | 1.1140 | −1.2332 | 1.2332 |
0.8693 | 0.8636 | −1.0647 | 1.0647 | 0.8693 | 1.0406 | −1.2332 | 1.2332 |
0.8745 | 0.8660 | −1.0647 | 1.0647 | 0.8745 | 0.9908 | −1.2332 | 1.2332 |
0.5815 | 0.7794 | −1.0647 | 1.0647 | 0.5815 | 0.8680 | −1.2332 | 1.2332 |
0.5701 | 0.0333 | 0.1194 |
0.1201 | 0.3264 | 0.2222 |
0.2708 | 0.1840 | 1.0889 |
0.0743 | 0.0868 | 0.0521 |
0.1146 | 0.6493 | 0.2951 |
0.0451 | 0.7083 | 0.0521 |
0.1528 | 0.3368 | 0.1250 |
0.0035 | 0.1493 | 0.5347 |
0.1354 | 0.1563 | 0.0278 |
0.1458 | 0.0382 | 0.2500 |
0.1201 | 0.0139 | 0.1514 |
0.0868 | 0.2465 | 0.0347 |
0.1389 | 0.2465 | 0.4007 |
0.0486 | 0.0382 | 0.5257 |
0.4035 | 0.0451 | 0.2361 |
0.1493 | 0.2951 | 0.0250 |
0.0278 | 0.4681 | 0.0799 |
0.1264 | 0.0174 | 0.3597 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naveed, M.; Azam, M.; Khan, N.; Aslam, M. Design of a Control Chart Using Extended EWMA Statistic. Technologies 2018, 6, 108. https://doi.org/10.3390/technologies6040108
Naveed M, Azam M, Khan N, Aslam M. Design of a Control Chart Using Extended EWMA Statistic. Technologies. 2018; 6(4):108. https://doi.org/10.3390/technologies6040108
Chicago/Turabian StyleNaveed, Muhammad, Muhamma Azam, Nasrullah Khan, and Muhammad Aslam. 2018. "Design of a Control Chart Using Extended EWMA Statistic" Technologies 6, no. 4: 108. https://doi.org/10.3390/technologies6040108
APA StyleNaveed, M., Azam, M., Khan, N., & Aslam, M. (2018). Design of a Control Chart Using Extended EWMA Statistic. Technologies, 6(4), 108. https://doi.org/10.3390/technologies6040108