Electrically Conductive Textile Materials—Application in Flexible Sensors and Antennas
<p>Illustration of a capacitive strain sensor (<b>left</b>), and capacitive response curves during loading and unloading (<b>right</b>). Reprinted with permission from [<a href="#B43-textiles-01-00012" class="html-bibr">43</a>]. Copyright 2018 American Chemical Society.</p> "> Figure 2
<p>Illustration of a piezoelectric pressure sensor at different load states (<b>a</b>–<b>d</b>) and output voltage response for each state (<b>e</b>) and under varied pressure (<b>f</b>). Reprinted with permission from Springer Nature [<a href="#B50-textiles-01-00012" class="html-bibr">50</a>]. Copyright 2021 Springer Nature.</p> "> Figure 3
<p>Schematic illustration of a planar microstrip patch antenna.</p> "> Figure 4
<p>Example of a textile-based implementation of the microstrip patch antenna design using copper tape as radiating patch and denim fabric as the substrate. Reprinted with permission from [<a href="#B67-textiles-01-00012" class="html-bibr">67</a>] under the Creative Commons Attribution License.</p> "> Figure 5
<p>Example of a textile-based implementation of the microstrip patch antenna design using woven copper yarn as a radiating patch and woven glass fabric as the substrate. Reprinted with permission from [<a href="#B71-textiles-01-00012" class="html-bibr">71</a>] under the Creative Commons Attribution License.</p> "> Figure 6
<p>Example of a textile-based implementation of the microstrip patch antenna design using embroidered Zari (silver metallic yarn wrapped on a silk core) as radiating patch. Reprinted with permission from [<a href="#B74-textiles-01-00012" class="html-bibr">74</a>]. Copyright 2019, Wiley Periodicals, Inc.</p> "> Figure 7
<p>Conductivity ranges for different applications [<a href="#B78-textiles-01-00012" class="html-bibr">78</a>,<a href="#B79-textiles-01-00012" class="html-bibr">79</a>].</p> "> Figure 8
<p>Example conductivity levels of PANi and PPy based materials according to the literature.</p> "> Figure 9
<p>SEM images of (<b>A</b>) GNR-coated Kevlar fiber; the scale bar is 20 μm, (<b>B</b>) A MWCNT-coated Kevlar fiber; the scale bar is 40 μm; (<b>C</b>) SWCNT-coated Kevlar fiber, scale bar is 20 μm. Adapted with permission from [<a href="#B116-textiles-01-00012" class="html-bibr">116</a>]. Copyright 2011 American Chemical Society.</p> "> Figure 10
<p>Example conductivity levels of carbon-based materials reported in the literature.</p> "> Figure 11
<p>Three-dimensional branched structure of nickel nanostrands [<a href="#B132-textiles-01-00012" class="html-bibr">132</a>].</p> ">
Abstract
:1. Introduction
2. Background—Examples of Applications
2.1. Textile-Based Sensors
2.2. Textile-Based Antennas
3. Alternative Materials for Conductive Textiles
3.1. Inherently Conductive Polymers
3.2. Carbon-Based Fibrous Materials
3.3. Metal Nanocomposite and Nano-Enhanced Conductive Materials
4. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Langenhove, L.; Puers, R.; Matthys, D. Intelligent textiles for protection. In Textiles for Protection; Scott, R.A., Ed.; Woodhead Publishing: Cambridge, UK, 2005; pp. 176–195. [Google Scholar]
- Cherenack, K.; Van Pieterson, L. Smart textiles: Challenges and opportunities. J. Appl. Phys. 2012, 112, 091301. [Google Scholar] [CrossRef] [Green Version]
- van Langenhove, L. Smart Textiles for Protection: An Overview, in Smart Textiles for Protection; Chapman, R.A., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 3–33. [Google Scholar]
- Koncar, V. Introduction to smart textiles and their applications, in Smart Textiles and their Applications; Koncar, V., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 1–8. [Google Scholar]
- Kongahage, D.; Foroughi, J. Actuator Materials: Review on Recent Advances and Future Outlook for Smart Textiles. Fibers 2019, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Köhler, A.R. Challenges for eco-design of emerging technologies: The case of electronic textiles. Mater. Des. 2013, 51, 51–60. [Google Scholar] [CrossRef]
- Bielska, S.; Sibiński, M.; Lukasik, A. Polymer temperature sensor for textronic applications. Mater. Sci. Eng. B 2009, 165, 50–52. [Google Scholar] [CrossRef]
- Gniotek, K.; Krucińska, I. The basic problems of textronics. Fibers Text. East. Eur. 2004, 12, 13–16. [Google Scholar]
- Ho, D.H.; Cheon, S.; Hong, P.; Park, J.H.; Suk, J.W.; Kim, D.H.; Han, J.T.; Cho, J.H. Multifunctional Smart Textronics with Blow-Spun Nonwoven Fabrics. Adv. Funct. Mater. 2019, 29, 1900025. [Google Scholar] [CrossRef]
- Shawl, R.K.; Long, B.R.; Werner, D.H.; Gavrin, A. The Characterization of Conductive Textile Materials Intended for Radio Frequency Applications. IEEE Antennas Propag. Mag. 2007, 49, 28–40. [Google Scholar] [CrossRef]
- Kranz, M.; Holleis, P.; Schmidt, A. Embedded Interaction: Interacting with the Internet of Things. IEEE Internet Comput. 2009, 14, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, D.; Milliard, S.T.; Gomez, M.; Schwartz, M. Wearables and the Internet of Things for Health: Wearable, Interconnected Devices Promise More Efficient and Comprehensive Health Care. IEEE Pulse 2016, 7, 35–39. [Google Scholar] [CrossRef]
- Huang, J.; Virji, S.; Weiller, B.H.; Kaner, R.B. Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors. J. Am. Chem. Soc. 2003, 125, 314–315. [Google Scholar] [CrossRef] [PubMed]
- Nambiar, S.; Yeow, J.T. Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 2011, 26, 1825–1832. [Google Scholar] [CrossRef] [PubMed]
- Devaux, E.; Aubry, C.; Campagne, C.; Rochery, M. PLA/Carbon Nanotubes Multifilament Yarns for Relative Humidity Textile Sensor. J. Eng. Fibers Fabr. 2011, 6, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lu, C.; Zhang, K. Textile-Based Strain Sensor for Human Motion Detection. Energy Environ. Mater. 2020, 3, 80–100. [Google Scholar] [CrossRef] [Green Version]
- Bayram, Y.; Zhou, Y.; Shim, B.S.; Xu, S.; Zhu, J.; Kotov, N.; Volakis, J.L. E-Textile Conductors and Polymer Composites for Conformal Lightweight Antennas. IEEE Trans. Antennas Propag. 2010, 58, 2732–2736. [Google Scholar] [CrossRef]
- Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H.D.; Choi, J.W.; Han, S.M.; Cui, Y. Stretchable, Porous, and Conductive Energy Textiles. Nano Lett. 2010, 10, 708–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Meng, J.; Zhang, J.; Chen, X.; Du, M.; Chen, Y.; Hou, C.; Wang, J.; Ju, A.; Wang, X.; et al. Three-Dimensional Hierarchically Porous Graphene Fiber-Shaped Supercapacitors with High Specific Capacitance and Rate Capability. ACS Appl. Mater. Interfaces 2019, 11, 25205–25217. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Lu, C.; Sun, S.; Zhang, K. Electrochemical properties of PEDOT:PSS/V2O5 hybrid fiber based supercapacitors. J. Phys. Chem. Solids 2019, 129, 234–241. [Google Scholar] [CrossRef]
- Schreuder-Gibson, H.L.; Truong, Q.; Walker, J.E.; Owens, J.R.; Wander, J.D.; Jones, W.E. Chemical and Biological Protection and Detection in Fabrics for Protective Clothing. MRS Bull. 2003, 28, 574–578. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, M.A.R.; Wang, L.; Shaid, A.; Shanks, R.A.; Ding, J. Advances and applications of chemical protective clothing system. J. Ind. Text. 2019, 49, 97–138. [Google Scholar] [CrossRef]
- Sharma, S.; Nirkhe, C.; Pethkar, S.; Athawale, A.A. Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuators B Chem. 2002, 85, 131–136. [Google Scholar] [CrossRef]
- Qi, J.; Xu, X.; Liu, X.; Lau, K.T. Fabrication of textile based conductometric polyaniline gas sensor. Sens. Actuators B Chem. 2014, 202, 732–740. [Google Scholar] [CrossRef]
- Castillo-Ortega, M.; Rodriguez, D.; Encinas, J.C.; Plascencia-Jatomea, M.; Méndez-Velarde, F.; Olayo, R. Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline–poly(n-butyl methacrylate) composites. Sens. Actuators B Chem. 2002, 85, 19–25. [Google Scholar] [CrossRef]
- Liu, L.; Jia, N.-Q.; Zhou, Q.; Yan, M.-M.; Jiang, Z.-Y. Electrochemically fabricated nanoelectrode ensembles for glucose biosensors. Mater. Sci. Eng. C 2007, 27, 57–60. [Google Scholar] [CrossRef]
- Mala Ekanayake, E.; Preethichandra, D.; Kaneto, K. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosens. Bioelectron. 2007, 23, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Gualandi, I.; Tessarolo, M.; Mariani, F.; Possanzini, L.; Scavetta, E.; Fraboni, B. Textile Chemical Sensors Based on Conductive Polymers for the Analysis of Sweat. Polymers 2021, 13, 894. [Google Scholar] [CrossRef] [PubMed]
- Manjakkal, L.; Dang, W.; Yogeswaran, N.; Dahiya, R. Textile-Based Potentiometric Electrochemical pH Sensor for Wearable Applications. Biosensors 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Parrilla, M.; Cánovas, R.; Jeerapan, I.; Andrade, F.J.; Wang, J. A Textile-Based Stretchable Multi-Ion Potentiometric Sensor. Adv. Health Mater. 2016, 5, 996–1001. [Google Scholar] [CrossRef]
- Meyer, J.; Lukowicz, P.; Troster, G. Textile Pressure Sensor for Muscle Activity and Motion Detection. In Proceedings of the 2006 10th IEEE International Symposium on Wearable Computers, Montreux, Switzerland, 11–14 October 2006; pp. 69–72. [Google Scholar]
- Mattmann, C.; Amft, O.; Harms, H.; Troster, G.; Clemens, F. Recognizing Upper Body Postures using Textile Strain Sensors. In Proceedings of the 2007 11th IEEE International Symposium on Wearable Computers, Boston, MA, USA, 11–13 October 2007; pp. 29–36. [Google Scholar]
- Mattmann, C.; Clemens, F.; Tröster, G. Sensor for Measuring Strain in Textile. Sensors 2008, 8, 3719–3732. [Google Scholar] [CrossRef]
- Huang, C.-T.; Shen, C.-L.; Tang, C.-F.; Chang, S.-H. A wearable yarn-based piezo-resistive sensor. Sens. Actuators A Phys. 2008, 141, 396–403. [Google Scholar] [CrossRef]
- Munro, B.J.; Campbell, T.E.; Wallace, G.; Steele, J. The intelligent knee sleeve: A wearable biofeedback device. Sens. Actuators B Chem. 2008, 131, 541–547. [Google Scholar] [CrossRef]
- Melnykowycz, M.; Koll, B.; Scharf, D.; Clemens, F. Comparison of Piezoresistive Monofilament Polymer Sensors. Sensors 2014, 14, 1278–1294. [Google Scholar] [CrossRef]
- Lee, T.; Lee, W.; Kim, S.-W.; Kim, J.J.; Kim, B.-S. Flexible Textile Strain Wireless Sensor Functionalized with Hybrid Carbon Nanomaterials Supported ZnO Nanowires with Controlled Aspect Ratio. Adv. Funct. Mater. 2016, 26, 6206–6214. [Google Scholar] [CrossRef]
- Oliveri, A.; Maselli, M.; Lodi, M.; Storace, M.; Cianchetti, M. Model-Based Compensation of Rate-Dependent Hysteresis in a Piezoresistive Strain Sensor. IEEE Trans. Ind. Electron. 2018, 66, 8205–8213. [Google Scholar] [CrossRef]
- Yang, Z.; Pang, Y.; Han, X.-L.; Yang, Y.; Ling, J.; Jian, M.; Zhang, Y.; Yang, Y.; Ren, T.-L. Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection. ACS Nano 2018, 12, 9134–9141. [Google Scholar] [CrossRef] [PubMed]
- Raji, R.K.; Miao, X.; Zhang, S.; Li, Y.; Wan, A.; Boakye, A. Knitted piezoresistive strain sensor performance, impact of conductive area and profile design. J. Ind. Text. 2020, 50, 616–634. [Google Scholar] [CrossRef]
- Wang, C.; Tianling, R.; Gao, E.; Jian, M.; Xia, K.; Wang, Q.; Xu, Z.; Ren, T.; Zhang, Y. Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors. Adv. Mater. 2016, 28, 6640–6648. [Google Scholar] [CrossRef] [PubMed]
- Atalay, O. Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications. Materials 2018, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Nur, R.; Matsuhisa, N.; Jiang, Z.; Nayeem, M.O.G.; Yokota, T.; Someya, T. A Highly Sensitive Capacitive-type Strain Sensor Using Wrinkled Ultrathin Gold Films. Nano Lett. 2018, 18, 5610–5617. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.L.; Xia, Y.; Zhang, P.F.; Kirk, T.V.; Chen, X.D. Textile-Only Capacitive Sensors for Facile Fabric Integration without Compromise of Wearability. Adv. Mater. Technol. 2019, 4, 1900485. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Xia, K.; Gong, X.; Wang, H.; Yin, Z.; Guan, B.; Zhang, Y. Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics. ACS Appl. Mater. Interfaces 2017, 9, 13331–13338. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, M.; Wu, B.; Li, Z.; Sun, S.; Wu, P. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci. Adv. 2021, 7, eabg4041. [Google Scholar] [CrossRef]
- Nilsson, E.; Lund, A.; Jonasson, C.; Johansson, C.; Hagström, B. Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sens. Actuators A Phys. 2013, 201, 477–486. [Google Scholar] [CrossRef]
- Åkerfeldt, M.; Nilsson, E.; Gillgard, P.; Walkenström, P. Textile piezoelectric sensors–melt spun bi-component poly(vinylidene fluoride) fibres with conductive cores and poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) coating as the outer electrode. Fash. Text. 2014, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, E.; Mateu, L.; Spies, P.; Hagström, B. Energy Harvesting from Piezoelectric Textile Fibers. Procedia Eng. 2014, 87, 1569–1572. [Google Scholar] [CrossRef]
- Tan, Y.; Yang, K.; Wang, B.; Li, H.; Wang, L.; Wang, C. High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application. Nano Res. 2021, 1–8. [Google Scholar] [CrossRef]
- Granstrom, J.; Feenstra, J.; Sodano, H.A.; Farinholt, K.M. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater. Struct. 2007, 16, 1810–1820. [Google Scholar] [CrossRef]
- Liu, J.; Xie, F.; Zhou, Y.; Zou, Q.; Wu, J. A wearable health monitoring system with multi-parameters. In Proceedings of the 2013 6th International Conference on Biomedical Engineering and Informatics, Hangzhou, China, 16–18 December 2013. [Google Scholar]
- Ahn, Y.; Song, S.; Yun, K.-S. Woven flexible textile structure for wearable power-generating tactile sensor array. Smart Mater. Struct. 2015, 24, 075002. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, T.; Li, G.; Li, T.; Inoue, Y. Wearable Sensor Systems for Infants. Sensors 2015, 15, 3721–3749. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; He, Q.; Meng, K.; Tan, X.; Zhou, Z.; Zhang, G.; Yang, J.; Wang, Z.L. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 2020, 6, eaay2840. [Google Scholar] [CrossRef] [Green Version]
- Keum, K.; Eom, J.; Lee, J.H.; Heo, J.S.; Park, S.K.; Kim, Y.-H. Fully-integrated wearable pressure sensor array enabled by highly sensitive textile-based capacitive ionotronic devices. Nano Energy 2021, 79, 105479. [Google Scholar] [CrossRef]
- Salonen, P.; Keskilammi, M.; Rantanen, J.; Sydänheimo, L. A novel Bluetooth antenna on flexible substrate for smart clothing. In Proceedings of the 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236), Tucson, AZ, USA, 7–10 October 2001. [Google Scholar]
- Kennedy, T.; Fink, P.; Chu, A.; Studor, G. Potential space applications for body-centric wireless and E-textile antennas. In Proceedings of the 2007 IET Seminar on Antennas and Propagation for Body-Centric Wireless Communications, London, UK, 24–24 April 2007; Institution of Engineering and Technology (IET): London, UK, 2007; pp. 77–83. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, T.F.; Fink, P.W.; Chu, A.W.; Champagne, N.J.; Lin, G.Y.; Khayat, M.A. Body-Worn E-Textile Antennas: The Good, the Low-Mass, and the Conformal. IEEE Trans. Antennas Propag. 2009, 57, 910–918. [Google Scholar] [CrossRef]
- SankarGanesh, S.; Sreelatha, P.; Rekha, V.B.; Puttumraju, A.K.; Murugesan, B.; Sakthisudhan, K. Textile antennas for breast carcinoma diagnosis application. Mater. Today Proc. 2021, 45, 3147–3152. [Google Scholar] [CrossRef]
- Hertleer, C.; Van Langenhove, L.; Rogier, H.; Vallozzi, L. A Textile Antenna For Fire Fighter Garments. In Proceedings of the Autex 2007 Conference, Tampere, Finland, 26–28 June 2007. [Google Scholar]
- Vallozzi, L.; Van Torre, P.; Hertleer, C.; Rogier, H.; Moeneclaey, M.; Verhaevert, J. Wireless Communication for Firefighters Using Dual-Polarized Textile Antennas Integrated in Their Garment. IEEE Trans. Antennas Propag. 2010, 58, 1357–1368. [Google Scholar] [CrossRef] [Green Version]
- Galehdar, A.; Thiel, D.V. Flexible, light-weight antenna at 2.4 GHz for athlete clothing. In Proceedings of the 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, USA, 9–15 June 2007. [Google Scholar]
- Locher, I.; Klemm, M.; Kirstein, T.; Troster, G. Design and Characterization of Purely Textile Patch Antennas. IEEE Trans. Adv. Packag. 2006, 29, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Salonen, P.; Rahmat-Samii, Y. Textile antennas: Effects of antenna bending on input matching and impedance bandwidth. Aerosp. Electron. Syst. Mag. 2007, 22, 18–22. [Google Scholar] [CrossRef]
- Hertleer, C.; Tronquo, A.; Rogier, H.; van Langenhove, L. The Use of Textile Materials to Design Wearable Microstrip Patch Antennas. Text. Res. J. 2008, 78, 651–658. [Google Scholar] [CrossRef]
- Purohit, S.; Rava, F. Wearable—Textile Patch Antenna using Jeans as Substrate at 2.45 GHz. Int. J. Eng. Res. Technol. 2014, 3, 2456–2460. Available online: https://www.ijert.org/wearable-textile-patch-antenna-using-jeans-as-substrate-at-2.45-ghz (accessed on 6 May 2021).
- Ouyang, Y.; Karayianni, E.; Chappell, W.J. Effect of fabric patterns on electrotextile patch antennas. In Proceedings of the Antennas and Propagation Society International Symposium, 2005 IEEE, Washington, DC, USA, 3–8 July 2005. [Google Scholar]
- Ouyang, Y.; Chappell, W.J. High Frequency Properties of Electro-Textiles for Wearable Antenna Applications. IEEE Trans. Antennas Propag. 2008, 56, 381–389. [Google Scholar] [CrossRef]
- Yao, L.; Qiu, Y. Design and fabrication of microstrip antennas integrated in three dimensional orthogonal woven composites. Compos. Sci. Technol. 2009, 69, 1004–1008. [Google Scholar] [CrossRef]
- Xu, F.; Yao, L.; Zhao, D.; Jiang, M.; Qiu, Y. Effect of Weaving Direction of Conductive Yarns on Electromagnetic Performance of 3D Integrated Microstrip Antenna. Appl. Compos. Mater. 2013, 20, 827–838. [Google Scholar] [CrossRef] [Green Version]
- Kohls, E.; Abler, A.; Siemsen, P.; Hughes, J.L.A.; Perez, R.V.; Widdoes, D. A multi-band body-worn antenna vest. In Proceedings of the IEEE Antennas and Propagation Society Symposium, Monterey, CA, USA, 20–25 June 2004; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2004; Volume 1, pp. 447–450. [Google Scholar]
- Wang, Z.; Zhang, L.; Bayram, Y.; Volakis, J.L. Embroidered Conductive Fibers on Polymer Composite for Conformal Antennas. IEEE Trans. Antennas Propag. 2012, 60, 4141–4147. [Google Scholar] [CrossRef]
- Anbalagan, A.; Sundarsingh, E.F.; Ramalingam, V.S. Design and experimental evaluation of a novel on-body textile antenna for unicast applications. Microw. Opt. Technol. Lett. 2020, 62, 789–799. [Google Scholar] [CrossRef]
- Cheng, K.B.; Ueng, T.H.; Dixon, G. Electrostatic Discharge Properties of Stainless Steel/Polyester Woven Fabrics. Text. Res. J. 2001, 71, 732–738. [Google Scholar] [CrossRef]
- Hebeish, A.A.; El-Gamal, M.A.; Said, T.S.; El-Hady, R.A.A. Major factors affecting the performance of ESD-protective fabrics. J. Text. Inst. 2010, 101, 389–398. [Google Scholar] [CrossRef]
- Zhang, X. 2—Antistatic and conductive textiles. In Functional Textiles for Improved Performance, Protection and Health; Pan, N., Sun, G., Eds.; Woodhead Publishing: Southston, UK, 2011; pp. 27–44. [Google Scholar]
- Electrostatic Discharge Association ESD Association Advisory for Electrostatic Discharge Terminology-Glossary. ESD ADV1.0–2009. Available online: www.esda.org/assets/Documents/c23d92d4ab/Fundamentals-of-ESD-Part-1-An-Introduction-to-ESD.pdf (accessed on 25 March 2018).
- Hyperion Catalysis International. Electrical Resistivity in Semi-Crystalline Polymers. 2002. Available online: www.hyperioncatalysis.com (accessed on 24 August 2012).
- Nordén, B.; Krutmeijer, E. The Nobel Prize in Chemistry, 2000: Conductive Polymers; The Royal Swedish Academy of Sciences: Stockholm, Sweden, 2000. [Google Scholar]
- Maity, S.; Singha, K.; Pandit, P. 11—Advanced applications of green materials in electromagnetic shielding. In Applications of Advanced Green Materials; Ahmed, S., Ed.; Woodhead Publishing: Duxford, UK, 2021; pp. 265–292. [Google Scholar]
- Heinze, J. Self-Doped Conducting Polymers. By Michael S. Freund and Bhavana Deore. Angew. Chem. Int. Ed. 2007, 46, 7922. [Google Scholar] [CrossRef]
- Aldissi, M. Advances in inherently conducting polymers. Makromol. Chem. Macromol. Symp. 1989, 24, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Gregory, R.; Kimbrell, W.; Kuhn, H. Conductive textiles. Synth. Met. 1989, 28, 823–835. [Google Scholar] [CrossRef]
- Kang, E.T.; Neoh, K.G.; Tan, K.L. Polyaniline: A polymer with many interesting intrinsic redox states. Prog. Polym. Sci. 1998, 23, 277–324. [Google Scholar] [CrossRef]
- Ramanavičius, A.; Ramanavičienė, A.; Malinauskas, A. Electrochemical sensors based on conducting polymer—Polypyrrole. Electrochim. Acta 2006, 51, 6025–6037. [Google Scholar] [CrossRef]
- Jang, J.; Chang, M.; Yoon, H. Chemical Sensors Based on Highly Conductive Poly(3,4-ethylenedioxythiophene) Nanorods. Adv. Mater. 2005, 17, 1616–1620. [Google Scholar] [CrossRef]
- Yan, H.; Jo, T.; Okuzaki, H. Highly Conductive and Transparent Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate) (PEDOT/PSS) Thin Films. Polym. J. 2009, 41, 1028–1029. [Google Scholar] [CrossRef]
- Xia, Y.; Ouyang, J. PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells. J. Mater. Chem. 2011, 21, 4927–4936. [Google Scholar] [CrossRef]
- Oh, K.W.; Hong, K.H.; Kim, S.H. Electrically conductive textiles byin situ polymerization of aniline. J. Appl. Polym. Sci. 1999, 74, 2094–2101. [Google Scholar] [CrossRef]
- Diaz-de Leon, M.J. Electrospinning Nanofibers of Polyaniline and Polyaniline/(Polystyrene and Polyehtylene Oxide) Blends. In Proceedings of the National Conference on Undergraduate Research (NCUR), Lexington, KY, USA, 15–17 March 2001. [Google Scholar]
- Zhou, Y.; Freitag, M.; Hone, J.; Staii, C.; Johnson, A.T.; Pinto, N.J.; MacDiarmid, A.G. Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm. Appl. Phys. Lett. 2003, 83, 3800–3802. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, H.; Zabihzadeh, S.M.; Ghorbani, M. The application of response surface methodology on the synthesis of conductive polyaniline/cellulosic fiber nanocomposites. Carbohydr. Polym. 2018, 194, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Kaynak, A.; Najar, S.S.; Foitzik, R.C. Conducting nylon, cotton and wool yarns by continuous vapor polymerization of pyrrole. Synth. Met. 2008, 158, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Wang, P.; Bi, X. Continuous vapor phase polymerization of pyrrole. I. Electrically conductive composite fiber of polypyrrole with poly(p-phenylene terephthalamide). J. Appl. Polym. Sci. 1995, 58, 2155–2159. [Google Scholar] [CrossRef]
- Barani, H.; Miri, A.; Sheibani, H. Comparative study of electrically conductive cotton fabric prepared through the in situ synthesis of different conductive materials. Cellulose 2021, 28, 6629–6649. [Google Scholar] [CrossRef]
- Crispin, X.; Jakobsson, F.L.E.; Crispin, A.; Grim, P.C.M.; Andersson, P.; Volodin, A.; Van Haesendonck, C.; Van der Auweraer, M.; Salaneck, W.R.; Berggren, M. The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)−Poly(styrenesulfonate) (PEDOT−PSS) Plastic Electrodes. Chem. Mater. 2006, 18, 4354–4360. [Google Scholar] [CrossRef]
- Crispin, X.; Marciniak, S.; Osikowicz, W.; Zotti, G.; Van Der Gon, A.A.D.; Louwet, F.; Fahlman, M.; Groenendaal, L.B.; De Schryver, F.; Salaneck, W.R. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 2561–2583. [Google Scholar] [CrossRef]
- Zhang, D. On the conductivity measurement of polyaniline pellets. Polym. Test. 2007, 26, 9–13. [Google Scholar] [CrossRef]
- Seyedin, S.; Razal, J.M.; Innis, P.; Wallace, G.G. Strain-Responsive Polyurethane/PEDOT:PSS Elastomeric Composite Fibers with High Electrical Conductivity. Adv. Funct. Mater. 2014, 24, 2957–2966. [Google Scholar] [CrossRef] [Green Version]
- Seyedin, S.; Razal, J.M.; Innis, P.C.; Jeiranikhameneh, A.; Beirne, S.; Wallace, G.G. Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers. ACS Appl. Mater. Interfaces 2015, 7, 21150–21158. [Google Scholar] [CrossRef] [PubMed]
- Seyedin, S.; Moradi, S.; Singh, C.; Razal, J.M. Continuous production of stretchable conductive multifilaments in kilometer scale enables facile knitting of wearable strain sensing textiles. Appl. Mater. Today 2018, 11, 255–263. [Google Scholar] [CrossRef]
- Clingerman, M.L.; Weber, E.H.; King, J.A.; Schulz, K.H. Development of an additive equation for predicting the electrical conductivity of carbon-filled composites. J. Appl. Polym. Sci. 2003, 88, 2280–2299. [Google Scholar] [CrossRef]
- Mahmoodi, M.; Arjmand, M.; Sundararaj, U.; Park, S. The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites. Carbon 2012, 50, 1455–1464. [Google Scholar] [CrossRef]
- Munalli, D.; Dimitrakis, G.; Chronopoulos, D.; Greedy, S.; Long, A. Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Compos. Part B Eng. 2019, 173, 106906. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, C.; Yang, K.S. Preparation of carbonized fiber web from electrospinning of isotropic pitch. Synth. Met. 2004, 143, 175–179. [Google Scholar] [CrossRef]
- Minus, M.L.; Kumar, S. The processing, properties, and structure of carbon fibers. JOM 2005, 57, 52–58. [Google Scholar] [CrossRef]
- Morales-Asencio, J.M.; Gonzalo-Jiménez, E.; Martin-Santos, F.; Morilla-Herrera, J.; Celdráan-Mañas, M.; Carrasco, A.M.; García-Arrabal, J.; Toral-López, I. Effectiveness of a nurse-led case management home care model in Primary Health Care. A quasi-experimental, controlled, multi-centre study. BMC Health Serv. Res. 2008, 8, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibbetts, G.; Lake, M.; Strong, K.; Rice, B. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol. 2007, 67, 1709–1718. [Google Scholar] [CrossRef]
- Ali Farshidfar, V.H.A.; Nazokdast, H. Electrical and Mechanical Properties Of Conducive Carbon Black/Polyolefin Composites Mixed With Carbon Fiber. In COMPOSITES 2006; Convention and Trade Show American Composites Manufacturers Association: St. Louis, MO, USA, 2006. [Google Scholar]
- Bryning, M.B.; Islam, M.; Kikkawa, J.M.; Yodh, A.G. Very Low Conductivity Threshold in Bulk Isotropic Single-Walled Carbon Nanotube-Epoxy Composites. Adv. Mater. 2005, 17, 1186–1191. [Google Scholar] [CrossRef]
- Ko, F.; Gogotsi, Y.; Ali, A.; Naguib, N.; Ye, H.; Yang, G.; Li, C.; Willis, P. Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns. Adv. Mater. 2003, 15, 1161–1165. [Google Scholar] [CrossRef]
- Lima, M.D.; Fang, S.; Lepró, X.; Lewis, C.; Ovalle-Robles, R.; Carretero-González, J.; Castillo-Martínez, E.; Kozlov, M.E.; Oh, J.; Rawat, N.; et al. Biscrolling Nanotube Sheets and Functional Guests into Yarns. Science 2011, 331, 51–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosca, I.D.; Hoa, S.V. Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling. Carbon 2009, 47, 1958–1968. [Google Scholar] [CrossRef]
- Wang, X.; Zhi, L.; Müllen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8, 323–327. [Google Scholar] [CrossRef]
- Xiang, C.; Lu, W.; Zhu, Y.; Sun, Z.; Yan, Z.; Hwang, C.-C.; Tour, J.M. Carbon Nanotube and Graphene Nanoribbon-Coated Conductive Kevlar Fibers. ACS Appl. Mater. Interfaces 2011, 4, 131–136. [Google Scholar] [CrossRef]
- Lee, T.-W.; Han, M.; Lee, S.-E.; Jeong, Y.G. Electrically conductive and strong cellulose-based composite fibers reinforced with multiwalled carbon nanotube containing multiple hydrogen bonding moiety. Compos. Sci. Technol. 2016, 123, 57–64. [Google Scholar] [CrossRef]
- Bilotti, E.; Zhang, R.; Deng, H.; Baxendale, M.; Peijs, T. Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres. J. Mater. Chem. 2010, 20, 9449–9455. [Google Scholar] [CrossRef]
- Hooshmand, S.; Soroudi, A.; Skrifvars, M. Electro-conductive composite fibers by melt spinning of polypropylene/polyamide/carbon nanotubes. Synth. Met. 2011, 161, 1731–1737. [Google Scholar] [CrossRef]
- Zhu, X.-D.; Zang, C.-G.; Jiao, Q.-J. High electrical conductivity of nylon 6 composites obtained with hybrid multiwalled carbon nanotube/carbon fiber fillers. J. Appl. Polym. Sci. 2014, 131, 131. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, X.; He, Q.; Wei, H.; Long, J.; Guo, J.; Gu, H.; Yu, J.; Liu, J.; Ding, D.; et al. Electrically Conductive Polypropylene Nanocomposites with Negative Permittivity at Low Carbon Nanotube Loading Levels. ACS Appl. Mater. Interfaces 2015, 7, 6125–6138. [Google Scholar] [CrossRef] [PubMed]
- Ra, E.J.; An, K.H.; Kim, K.K.; Jeong, S.Y.; Lee, Y.H. Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem. Phys. Lett. 2005, 413, 188–193. [Google Scholar] [CrossRef]
- Miyauchi, M.; Miao, J.; Simmons, T.J.; Lee, J.-W.; Doherty, T.V.; Dordick, J.S.; Linhardt, R.J. Conductive Cable Fibers with Insulating Surface Prepared by Coaxial Electrospinning of Multiwalled Nanotubes and Cellulose. Biomacromolecules 2010, 11, 2440–2445. [Google Scholar] [CrossRef] [PubMed]
- Geetha, S.; Kumar, K.K.S.; Rao, C.R.; Vijayan, M.; Trivedi, D.C.K. EMI shielding: Methods and materials-A review. J. Appl. Polym. Sci. 2009, 112, 2073–2086. [Google Scholar] [CrossRef]
- Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A Rubberlike Stretchable Active Matrix Using Elastic Conductors. Science 2008, 321, 1468–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalton, A.; Collins, S.; Muñoz, E.; Razal, J.; Ebron, V.H.; Ferraris, J.P.; Coleman, J.; Kim, B.G.; Baughman, R.H. Super-tough carbon-nanotube fibres. Nat. Cell Biol. 2003, 423, 703. [Google Scholar] [CrossRef]
- Shim, B.S.; Chen, W.; Doty, C.; Xu, C.; Kotov, N. Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes. Nano Lett. 2008, 8, 4151–4157. [Google Scholar] [CrossRef]
- Zhou, Z.; Chu, L.; Tang, W.; Gu, L. Studies on the antistatic mechanism of tetrapod-shaped zinc oxide whisker. J. Electrost. 2003, 57, 347–354. [Google Scholar] [CrossRef]
- Xue, C.-H.; Chen, J.; Yin, W.; Jia, S.-T.; Ma, J.-Z. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl. Surf. Sci. 2012, 258, 2468–2472. [Google Scholar] [CrossRef]
- Guo, R.H.; Jiang, S.-X.K.; Yuen, C.W.M.; Ng, M.C.F.; Lan, J.W. Optimization of electroless nickel plating on polyester fabric. Fibers Polym. 2013, 14, 459–464. [Google Scholar] [CrossRef]
- Moazzenchi, B.; Montazer, M. Click electroless plating of nickel nanoparticles on polyester fabric: Electrical conductivity, magnetic and EMI shielding properties. Colloids Surf. A Physicochem. Eng. Asp. 2019, 571, 110–124. [Google Scholar] [CrossRef]
- Lu, C.; Krifa, M.; Koo, J.H. Conductive Poly(3,4-Ethylenedioxythio-phene):Poly(4-styrene sulfonate) (PEDOT:PSS)/Nickel Nanostrands Nanocomposites. In SAMPE 2013; Society for the Advancement of Material and Process Engineering: Long Beach, CA, USA, 2013. [Google Scholar]
- Nagaraju, G.; Raju, G.S.R.; Ko, Y.H.; Yu, J.S. Hierarchical Ni–Co layered double hydroxide nanosheets entrapped on conductive textile fibers: A cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 2016, 8, 812–825. [Google Scholar] [CrossRef] [PubMed]
- Elmoubarki, R.; Mahjoubi, F.Z.; Elhalil, A.; Tounsadi, H.; Abdennouri, M.; Sadiq, M.; Qourzal, S.; Zouhri, A.; Barka, N. Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: Preparation, characterization and application on textile dyes removal. J. Mater. Res. Technol. 2017, 6, 271–283. [Google Scholar] [CrossRef]
- Lu, H.; Chen, J.; Tian, Q. Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles. J. Colloid Interface Sci. 2018, 513, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Conductive Composites. Nanostrands. 2011. Available online: http://www.conductivecomposites.com/nanostrands.html (accessed on 3 September 2012).
- Koecher, M.; Yeager, J.D.; Park, T.; Fullwood, D.; Colton, J.S.; Mara, N.; Hansen, N. Characterization of nickel nanostrand nanocomposites through dielectric spectroscopy and nanoindentation. Polym. Eng. Sci. 2013, 53, 2666–2673. [Google Scholar] [CrossRef]
- Krifa, M.; Prichard, C. Nanotechnology in textile and apparel research—An overview of technologies and processes. J. Text. Inst. 2020, 111, 1778–1793. [Google Scholar] [CrossRef]
- Hansen, N.; Hansen, G. From Inception to Insertion: Successful Products and Applications using Nickel Nanostrands. In SAMPE International Symposium; Society for the Advancement of Material and Process Engineering: Long Beach, CA, USA, 2011. [Google Scholar]
- Hansen, N.; Adams, D.O.; Fullwood, D.T. Quantitative methods for correlating dispersion and electrical conductivity in conductor–polymer nanostrand composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1939–1946. [Google Scholar] [CrossRef]
- Hansen, N.; Adams, D.O.; Devries, K.L.; Goff, A.; Hansen, G. Investigation of Electrically Conductive Structural Adhesives using Nickel Nanostrands. J. Adhes. Sci. Technol. 2011, 25, 2659–2670. [Google Scholar] [CrossRef]
- Gangopadhyay, R.; De, A. Conducting Polymer Nanocomposites: A Brief Overview. Chem. Mater. 2000, 12, 608–622. [Google Scholar] [CrossRef]
- Morales, D.; Stoute, N.A.; Yu, Z.; Aspnes, D.E.; Dickey, M.D. Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides. Appl. Phys. Lett. 2016, 109, 091905. [Google Scholar] [CrossRef]
- Rotzler, S.; von Krshiwoblozki, M.; Schneider-Ramelow, M. Washability of e-textiles: Current testing practices and the need for standardization. Text. Res. J. 2021, 0040517521996727. [Google Scholar] [CrossRef]
- Rotzler, S.; Schneider-Ramelow, M. Washability of E-Textiles: Failure Modes and Influences on Washing Reliability. Text. Res. J. 2021, 1, 4. [Google Scholar] [CrossRef]
- Niu, B.; Yang, S.; Hua, T.; Tian, X.; Koo, M. Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications. Nano Res. 2021, 14, 1043–1052. [Google Scholar] [CrossRef]
- de Medeiros, M.S.; Goswami, D.; Chanci, D.; Moreno, C.; Martinez, R.V. Washable, breathable, and stretchable e-textiles wirelessly powered by omniphobic silk-based coils. Nano Energy 2021, 87, 106155. [Google Scholar] [CrossRef]
- Afroj, S.; Tan, S.; Abdelkader, A.M.; Novoselov, K.S.; Karim, N. Highly Conductive, Scalable, and Machine Washable Graphene-Based E-Textiles for Multifunctional Wearable Electronic Applications. Adv. Funct. Mater. 2020, 30, 2000293. [Google Scholar] [CrossRef] [Green Version]
- Molla, T.I.; Compton, C.; Dunne, L.E. Launderability of surface-insulated cut and sew E-textiles. In Proceedings of the 2018 ACM International Symposium on Wearable Computers, Singapore, 8–12 October 2018; pp. 104–111. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krifa, M. Electrically Conductive Textile Materials—Application in Flexible Sensors and Antennas. Textiles 2021, 1, 239-257. https://doi.org/10.3390/textiles1020012
Krifa M. Electrically Conductive Textile Materials—Application in Flexible Sensors and Antennas. Textiles. 2021; 1(2):239-257. https://doi.org/10.3390/textiles1020012
Chicago/Turabian StyleKrifa, Mourad. 2021. "Electrically Conductive Textile Materials—Application in Flexible Sensors and Antennas" Textiles 1, no. 2: 239-257. https://doi.org/10.3390/textiles1020012
APA StyleKrifa, M. (2021). Electrically Conductive Textile Materials—Application in Flexible Sensors and Antennas. Textiles, 1(2), 239-257. https://doi.org/10.3390/textiles1020012