Hardness-Dependent Freshwater Quality Criteria for the Protection of Aquatic Organisms for Cadmium in China
"> Figure 1
<p>Flowchart of deriving hardness-dependent freshwater quality criteria for the protection of aquatic organisms for cadmium.</p> "> Figure 2
<p>The proportion of freshwater aquatic organisms of different classes in acute toxicity data (<b>a</b>) and chronic toxicity data in China (<b>b</b>), the species geomean acute toxicity data (<b>c</b>), the species geomean chronic toxicity data (<b>d</b>), the species geomean acute toxicity data with water hardness of 100 mg/L as CaCO<sub>3</sub> (<b>e</b>), and the species geomean chronic toxicity data with water hardness of 100 mg/L as CaCO<sub>3</sub> (<b>f</b>) of cadmium to various classes groups of freshwater aquatic organisms (concentrations in μg/L) in China. The same-colored classes in (<b>c</b>–<b>f</b>) represent the same phylum.</p> "> Figure 3
<p>The linear relationship between the water hardness and (<b>a</b>) acute toxicity data (ATD) of 249 and (<b>b</b>) chronic toxicity data (CTD) of 62 of cadmium in China; different colors represent different classes. (<b>c</b>) the species sensitivity distribution (SSD) curves of cadmium ions of the logarithms of species geomean acute toxicity data [lg(SMAD)]; and (<b>d</b>) the logarithms of species geomean chronic toxicity data [lg(SMCD)] with different water hardness levels of 50, 100, 150, 200, 250, 300, 350, and 450 mg/L as CaCO<sub>3</sub> from left to right.</p> "> Figure 4
<p>Comparison of the limits of GB3838-2002 and the short-term freshwater quality criteria (S-FWQC) (<b>a</b>) and long-term freshwater quality criteria (L-FWQC) (<b>b</b>) of cadmium for the protection of aquatic organisms. The change in S-FWQC (<b>c</b>) and L-FWQC (<b>d</b>) in China, Canada, and USA with water hardness.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Toxicity Data Collection and Screen
2.2. Hardness Adjustment for TD
2.3. Statistical Analysis and the S-FWQC/L-FWQC Derivation by SSD Method
3. Results and Discussion
3.1. The Database of ATD and CTD of Cadmium to Aquatic Organisms
3.2. Derivation of the FWQC for Cadmium
3.2.1. Correlations Between Water Hardness and Toxicity of Cadmium
3.2.2. Hardness-Dependent FWQC for Cadmium
3.3. The Comparison with Other FWQC and WQSs for Cadmium
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, Y.; Jiang, X.; Dou, J.; Xie, R.; Zhao, W.; Cao, Y.; Gao, J.; Yao, F.; Wu, D.; Mei, H.; et al. Investigating the Potential Risk of Cadmium Exposure on Seizure Severity and Anxiety-Like Behaviors through the Ferroptosis Pathway in Epileptic Mice: An Integrated Multi-Omics Approach. J. Hazard. Mater. 2024, 480, 120964. [Google Scholar]
- Lanctot, C.; Callaghan, P.; Cresswell, T. Cadmium Bioaccumulation Dynamics During Amphibian Development and Metamorphosis. J. Hazard. Mater. 2024, 474, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Sang, P.; Guo, Y.; Jin, P.; Cheng, Y.; Yu, H.; Xie, Y.; Yao, W.; Qian, H. Cadmium in Food: Source, Distribution and Removal. Food Chem. 2023, 405, 127135. [Google Scholar] [CrossRef] [PubMed]
- Jannetto, P.J.; Cowl, C.T. Elementary Overview of Heavy Metals. Clin. Chem. 2023, 69, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yang, X.; Zhang, Z.; Jiang, Y.; Gong, Y. Behaviour, Ecological Impacts of Microplastics and Cadmium on Soil Systems: A Systematic Review. Environ. Technol. Innov. 2024, 35, 116643. [Google Scholar] [CrossRef]
- Zhang, H.; Reynolds, M. Cadmium Exposure in Living Organisms: A Short Review. Sci. Total Environ. 2019, 678, 761–767. [Google Scholar] [CrossRef]
- Lee, J.W.; Jo, A.H.; Lee, D.C.; Choi, C.Y.; Kang, J.C.; Kim, J.H. Review of Cadmium Toxicity Effects on Fish: Oxidative Stress and Immune Responses. Environ. Res. 2023, 236, 105525. [Google Scholar] [CrossRef]
- Saidon, N.B.; Szabo, R.; Budai, P.; Lehel, J. Trophic Transfer and Biomagnification Potential of Environmental Contaminants (Heavy Metals) in Aquatic Ecosystems. Environ. Pollut. 2024, 340, 345–360. [Google Scholar] [CrossRef]
- Yang, Z.; Wong, J.; Wang, L.; Sun, F.; Lee, M.; Yue, G.H. Unveiling the Underwater Threat: Exploring Cadmium’s Adverse Effects on Tilapia. Sci. Total Environ. 2024, 912, 119000. [Google Scholar] [CrossRef]
- Bach, L.; Sonne, C.; Riget, F.F.; Dietz, R.; Asmund, G. A Simple Method to Reduce the Risk of Cadmium Exposure from Consumption of Iceland Scallops (Chlamys islandica) Fished in Greenland. Environ. Int. 2014, 69, 100–103. [Google Scholar] [CrossRef]
- Robohm, R.A. Paradoxical Effects of Cadmium Exposure on Antibacterial Antibody-Responses in 2 Fish Species—Inhibition in Cunners (Tautoglabrus-Adspersus) and Enhancement in Striped Bass (Morone-Saxatilis). Vet. Immunol. Immunopathol. 1986, 12, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Santojanni, A.; Gorbi, G.; Sartore, F. Prediction of Fecundity in Chronic Toxicity Tests on Daphnia magna. Water Res. 1998, 32, 3146–3156. [Google Scholar] [CrossRef]
- Irfan, M.; Liu, X.; Hussain, K.; Mushtaq, S.; Cabrera, J.; Zhang, P. The Global Research Trend on Cadmium in Freshwater: A Bibliometric Review. Environ. Sci. Pollut. Res. 2023, 30, 71585–71598. [Google Scholar] [CrossRef] [PubMed]
- El Rasafi, T.; Oukarroum, A.; Haddioui, A.; Song, H.; Kwon, E.E.; Bolan, N.; Tack, F.M.G.; Sebastian, A.; Prasad, M.N.V.; Rinklebe, J. Cadmium Stress in Plants: A Critical Review of the Effects, Mechanisms, and Tolerance Strategies. Crit. Rev. Environ. Sci. Technol. 2022, 52, 675–726. [Google Scholar] [CrossRef]
- Peana, M.; Pelucelli, A.; Chasapis, C.T.; Perlepes, S.P.; Bekiari, V.; Medici, S.; Zoroddu, M.A. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules 2023, 13, 36. [Google Scholar] [CrossRef]
- European Parliament and Council. Directive 2013/39/EU of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Off. J. Eur. Union 2013. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:en:PDF (accessed on 4 August 2024).
- Wu, F.; Meng, W.; Zhao, X.; Li, H.; Zhang, R.; Cao, Y.; Liao, H. China Embarking on Development of Its Own National Water Quality Criteria System. Environ. Sci. Technol. 2010, 44, 7992–7993. [Google Scholar] [CrossRef]
- Feng, C.; Li, H.; Yan, Z.; Wang, Y.; Wang, C.; Fu, Z.; Liao, W.; Giesy, J.P.; Bai, Y. Technical Study on National Mandatory Guideline for Deriving Water Quality Criteria for the Protection of Freshwater Aquatic Organisms in China. J. Environ. Manag. 2019, 250, 109539. [Google Scholar] [CrossRef]
- Wu, F.; Meng, W.; Cao, Y.; Li, H.; Zhang, R.; Feng, C.; Yan, Z. Derivation of Aquatic Life Water Quality Criteria for Cadmium in Freshwater in China. Res. Environ. Sci. 2011, 24, 172–184. [Google Scholar]
- EPA. National Recommended Water Ouality Criteria; U.S. Environmental Protection Agency: Washington, DC, USA, 2009.
- CCME. Canadian Tissue Residue Guidelines for the Protection of Wildlifeconsumers of Aquatic Biota; Canadian Council of Ministers of the Environment: Winnepeg, MB, Canada, 2000. [Google Scholar]
- ANZECC; ARMCANZ. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Canberra 2000, 1, 1–314. [Google Scholar]
- Wu, F. Water Quality Criteria Theory, Methodology and Case Studies; Science Press: Beijing, China, 2012. [Google Scholar]
- Wu, F. Medium and Long-Term Roadmap for the Development of the Environmental Quality Standard System in China, 2nd ed.; Science Press: Beijing, China, 2020. [Google Scholar]
- GB3838-2002; Environmental Quality Standard for Surface Water. State Environmental Protection Administration of China: Beijing, China, 2002.
- Xia, Q.; Chen, Y.; Liu, X. Water Quality Criteria and Water Quality Standard; China Standards Press: Beijing, China, 2004. [Google Scholar]
- Karthikeyan, P.; Marigoudar, S.R.; Mohan, D.; Sharma, K.V.; Murthy, M.V.R. Prescribing Sea Water Quality Criteria for Arsenic, Cadmium and Lead through Species Sensitivity Distribution. Ecotoxicol. Environ. Saf. 2021, 208, 117249. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Feng, C.; Zhang, R.; Li, Y.; Du, D. Derivation of Water Quality Criteria for Representative Water-Body Pollutants in China. Sci. China Earth Sci. 2012, 55, 900–906. [Google Scholar] [CrossRef]
- EPA. Aquatic Life Ambient Water Quality Criteria Cadmium; U.S. Environmental Protection Agency: Washington, DC, USA, 2016.
- MEEC. Technical Guideline for Deriving Water Quality Criteria for Freshwater Organisms (HJ 831-2022); Minisitry of Ecology and Environment of China: Beijing, China, 2022.
- MEEC. Water Quality Criteria for Freshwater Aquatic Organisms-Cadmium; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020. [Google Scholar]
- MEEC. Water Quality Criteria for Freshwater Aquatic Organisms-Ammonia Nitrogen; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020. [Google Scholar]
- MEEC. Water Quality Criteria for Freshwater Aquatic Organisms-Phenol; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020. [Google Scholar]
- Xu, Y.Q.; Huang, P.; Li, X.W.; Liu, S.S.; Lu, B.Q. Derivation of Water Quality Criteria for Paraquat, Bisphenol a and Carbamazepine Using Quantitative Structure-Activity Relationship and Species Sensitivity Distribution (QSAR-SSD). Sci. Total Environ. 2024, 948, 114539. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, J.R.; Grist, E.P.M.; Leung, K.M.Y.; Morritt, D.; Crane, M. Species Sensitivity Distributions: Data and Model Choice. Mar. Pollut. Bull. 2002, 45, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Xiao, S.; Naraginti, S.; Liao, W.; Feng, C.; Xu, D.; Guo, C.; Jin, X.; Xie, F. Freshwater Water Quality Criteria for Phthalate Esters and Recommendations for the Revision of the Water Quality Standards. Ecotoxicol. Environ. Saf. 2024, 279, 116517. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Bian, J.; Sun, X.; Wang, F.; Xu, L.; Sun, G. Optimization of Ammonia Nitrogen Benchmarks and Ecological Risk Assessment in Monsoon Freezing Lakes Based on Species Sensitivity Distribution with Lake Chagan in Northeastern China as an Example. Ecol. Indic. 2024, 166, 18734–18748. [Google Scholar] [CrossRef]
- Qin, L.; Yu, L.; Wang, M.; Sun, X.; Wang, J.; Liu, J.; Wang, Y.; White, J.C.; Chen, S. The Environmental Risk Threshold (HC5) for Cd Remediation in Chinese Agricultural Soils. J. Environ. Manag. 2024, 362, 119885. [Google Scholar] [CrossRef]
- Sun, X.; Qin, L.; Yu, L.; Wang, J.; Liu, J.; Wang, M.; Chen, S. Ecological Risk Threshold for Chromium in Chinese Soils and Its Prediction Models. Environ. Res. 2024, 262, 120498. [Google Scholar] [CrossRef]
- Ding, T.; Du, S.; Zhang, Y.; Wang, H.; Zhang, Y.; Cao, Y.; Zhang, J.; He, L. Hardness-Dependent Water Quality Criteria for Cadmium and an Ecological Risk Assessment of the Shaying River Basin, China. Ecotoxicol. Environ. Saf. 2020, 198, 110666. [Google Scholar] [CrossRef]
- Xie, D.; Wei, H.; Huang, Y.; Qian, J.; Zhang, Y.; Wang, M. Elevated Temperature as a Dominant Driver to Aggravate Cadmium Toxicity: Investigations through Toxicokinetics and Omics. J. Hazard. Mater. 2024, 474, 116614. [Google Scholar] [CrossRef]
- Davies, P.H.; Gorman, W.C.; Carlson, C.A.; Brinkman, S.F. Effect of Hardness on Bioavailability and Toxicity of Cadmium to Rainbow-Trout. Chem. Spec. Bioavailab. 1993, 5, 67–77. [Google Scholar] [CrossRef]
- Yim, J.H.; Kim, K.W.; Kim, S.D. Effect of Hardness on Acute Toxicity of Metal Mixtures Using Daphnia magna: Prediction of Acid Mine Drainage Toxicity. J. Hazard. Mater. 2006, 138, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Palawski, D.; Hunn, J.B.; Dwyer, F.J. Sensitivity of Young Striped Bass to Organic and Inorganic Contaminants in Fresh and Saline Waters. Trans. Am. Fish. Soc. 1985, 114, 748–753. [Google Scholar] [CrossRef]
- Pilehvar, A.; Cordery, K.I.; Town, R.M.; Blust, R. The Synergistic Toxicity of Cd (II) and Cu (II) to Zebrafish (Danio rerio): Effect of Water Hardness. Chemosphere 2020, 247, 113759. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Feng, C.; Xia, P.; Bai, Y. Hardness-Dependent Water Quality Criteria for Protection of Freshwater Aquatic Organisms for Silver in China. Int. J. Environ. Res. Public Health 2022, 19, 6067. [Google Scholar] [CrossRef]
- Ding, R.; Wei, D.; Wu, Y.; Liao, Z.; Lu, Y.; Chen, Z.; Gao, H.; Xu, H.; Hu, H. Profound Regional Disparities Shaping the Ecological Risk in Surface Waters: A Case Study on Cadmium across China. J. Hazard. Mater. 2024, 465, 121054. [Google Scholar] [CrossRef]
- Canli, E.G.; Canli, M. Calcium Reduces the Effects of Cadmium on the Responses of Biomarkers in Freshwater Fish (Oreochromis niloticus). Chem. Ecol. 2024, 40, 664–677. [Google Scholar] [CrossRef]
- Adams, W.; Blust, R.; Dwyer, R.; Mount, D.; Nordheim, E.; Rodriguez, P.H.; Spry, D. Bioavailability Assessment of Metals in Freshwater Environments: A Historical Review. Environ. Toxicol. Chem. 2020, 39, 48–59. [Google Scholar] [CrossRef]
- Zhou, H.; Peng, W.; Du, X.; Huang, H. Evaluation of Surface Water Quality in China. Water Resour. 2004, 24, 21–30. [Google Scholar]
Rank | Species | N | Hardness (mg/L) | ATD (μg/L) | SMAD100,i |
---|---|---|---|---|---|
1 | Morone saxatilis | 3 | 40–475 | 4–10 | 3.05 |
2 | Oncorhynchus mykiss | 7 | 20–427 | 2.07–7.56 | 3.21 |
3 | Salvelinus confluentus | 13 | 29.3–31.7 | 0.9–6.6 | 5.14 |
4 | Salmo trutta | 13 | 29.2–151 | 1.23–15.1 | 7.34 |
5 | Oncorhynchus tshawytscha | 6 | 21–343 | 1.1–57 | 9.61 |
6 | Oncorhynchus kisutch | 5 | 22–90 | 2–17.5 | 15.73 |
7 | Gammarus pulex | 2 | 94.6–117.4 | 20–50 | 29.97 |
8 | Duphnia magna | 6 | 30–250 | 30–244 | 38.24 |
9 | Hydra viridissima | 2 | 19.5–210 | 3–210 | 39.62 |
10 | Cherax quadricarinatus | 3 | 43.79 | 8.48–44.8 | 43.18 |
11 | Ceriodaphnia dubia | 8 | 40–172 | 31.47–361.1 | 79.28 |
12 | Gammarus pseudolimnaeus | 5 | 43.5–76.8 | 22–68.3 | 81.23 |
13 | Ceriodaphnia rericulata | 6 | 45–240 | 66–184 | 82.20 |
14 | Simocephalus vetulus | 2 | 45–67 | 24–89.3 | 85.47 |
15 | Daphnia pulex | 9 | 40–240 | 44.96–99 | 103.16 |
16 | Simocephalus serrulatus | 9 | 9.7–67 | 3.5–123 | 105.69 |
17 | Moina macrocopa | 5 | 82.00 | 71.25–412 | 133.82 |
18 | lemra minor | 1 | 39.00 | 650.00 | 141.45 |
19 | Hydra oligactis | 1 | 210.00 | 320.00 | 149.84 |
20 | Hydra vulgaris | 5 | 19.5–210 | 82.5–520 | 167.75 |
21 | Aplexa hypnorum | 2 | 44.4–44.8 | 93.00 | 212.38 |
22 | Neocaridina denticulate | 4 | 30–400 | 230–2592 | 299.04 |
23 | Oryzias latipes | 2 | 50–100 | 130–350 | 304.04 |
24 | Diaphanosoma brachyurum | 2 | 67.1–93 | 69.8–1060 | 346.18 |
25 | Nais elinguis | 5 | 17.89–18.72 | 27–158 | 347.60 |
26 | Lumbriculus variegatus | 5 | 10–290 | 74–780 | 408.34 |
27 | Lymnaea stagnalis | 3 | 250.00 | 752–1585 | 477.07 |
28 | Chydorus sphaericus | 6 | 10.5–83.6 | 149–560 | 1419.18 |
29 | Limnodrilus hoffmeisteri | 4 | 5.3–152 | 170–2400 | 1542.59 |
30 | Brachionus calyciflorus | 1 | 36.20 | 650.00 | 1837.48 |
31 | Anguilla rostrata | 3 | 55.00 | 820–1500 | 2038.44 |
32 | Procambarus acutus | 11 | 85.5–262.5 | 1390–7160 | 2397.29 |
33 | Hyriopsis cumingii | 3 | 51.43 | 388–6346 | 2669.07 |
34 | Prychocheilus oregonensis | 4 | 25–347 | 1092–5555 | 2715.64 |
35 | Bufo gargarizans | 1 | 90.00 | 2592.00 | 2886.90 |
36 | Xenopus laevis | 4 | 85–116 | 1600–4000 | 3064.99 |
37 | Poecilia reticulata | 9 | 18.72–209.2 | 170–16,000 | 4691.95 |
38 | Tubifex tubifex | 6 | 5.3–305 | 320–56,000 | 6150.98 |
39 | Gasterosteus aculeatus | 2 | 107.15–115 | 6500–23,000 | 10,988.70 |
40 | Tanichthys albonubes | 2 | 39.16–44.5 | 4610–4447 | 11,063.56 |
41 | Ctenopharyngod on idella | 5 | 42.72–210.1 | 3490–24,500 | 11,348.44 |
42 | Oreochromis mossambica | 2 | 17–28.4 | 1000–6000 | 11,538.02 |
43 | Ictalurus punctatus | 5 | 44.4–67 | 4610–10,200 | 12,849.68 |
44 | Carassius auratus | 4 | 20–144 | 2130–46,800 | 14,828.01 |
45 | Lepomis macrochirus | 16 | 20–350 | 1700–48,200 | 15,968.42 |
46 | Cyprinus carpio | 8 | 100–312.5 | 6500–220,770 | 18,273.53 |
47 | Lepomis cyanellus | 7 | 20–360 | 2840–88,600 | 19,967.71 |
48 | Cirrhinus mrigala | 2 | 19.5–72 | 5300–13,700 | 23,253.70 |
49 | Aristichthys nobilis | 3 | 2.50 | 245–2250 | 29,040.73 |
50 | Branchiura sowerbyi | 10 | 5.3–195 | 240–88,780 | 29,461.18 |
51 | Pseudorasbora parva | 1 | 5.80 | 5170.00 | 95,089.54 |
52 | Chironomus riparius | 4 | 10–170 | 128,840–1,106,000 | 389,447.18 |
Rank | Species | N | Hardness (mg/L) | CTD (μg/L) | SMCD100,i |
---|---|---|---|---|---|
1 | Daphnia magna | 5 | 99–200 | 0.3–2.39 | 0.79 |
2 | Oncorhynchus mykiss | 17 | 6.8–413.8 | 0.4–4.31 | 1.94 |
3 | Ceriodaphnia dubia | 7 | 100–270 | 1.602–6.257 | 2.04 |
4 | Oncorhynchus kisutch | 1 | 44.00 | 2.10 | 3.16 |
5 | Oryzias latipes | 2 | 340.00 | 50.00 | 3.17 |
6 | Oncorhynchus tshawytscha | 2 | 25.00 | 1.57–1.88 | 3.43 |
7 | Salvelinus fontinalis | 4 | 37–188 | 2.045–9.165 | 3.82 |
8 | Salmo trutta | 7 | 30.6–250 | 0.4–16.49 | 5.01 |
9 | Scenedesmus acutus | 1 | 90.00 | 5.00 | 5.27 |
10 | Chlorella vulgaris | 1 | 90.00 | 5.00 | 5.27 |
11 | Aplexa hypnorum | 2 | 45.30 | 3.46–5.801 | 6.65 |
12 | Daphnia pulex | 2 | 65–106 | 5–7.49 | 6.71 |
13 | Salmo salar | 1 | 23.50 | 4.53 | 9.32 |
14 | Esox lucius | 1 | 44.00 | 7.36 | 11.08 |
15 | Lepomis macrochirus | 3 | 147–207 | 4.167–49.8 | 15.00 |
16 | Oreochromisaurea | 1 | 145.00 | 52.00 | 43.21 |
17 | Pseudokirchneri ella subcapitata | 1 | 171.00 | 120.00 | 91.85 |
18 | Cirrhinus mrigala | 2 | 71.50 | 98–132 | 134.43 |
19 | Chlamydomonas Reinhardii | 1 | 24.00 | 99.00 | 201.59 |
20 | Cyprinus carpio | 1 | 188.50 | 650.00 | 473.94 |
21 | Pachydiplax longipennie | 1 | 120.00 | 8249.00 | 7532.61 |
Nation | Short-Term Exposure | Long-Term Exposure |
---|---|---|
China | Morone Saxatilis; | Daphnia magna; |
Oncorhynchus mykiss | Oncorhynchus mykiss | |
Salvelinus confluentus; | Ceriodaphnia dubia; | |
Canada | Oncorhynchus mykiss; | Daphnia magna; |
Hyalella Azteca; | Ceriodaphnia reticulata; | |
Daphnia magna | Hyalella Azteca; | |
USA | Salvelinus confluentus; | Hyalella Azteca; |
Cottus bairdii; | Ceriodaphnia dubia; | |
Salmo trutta | Cottus bairdii |
H (CaCO3, mg/L) | HC5 (μg/L) | FWQC (μg/L) | |
---|---|---|---|
S-FWQC | 50 | 3.12 | 1.56 |
100 | 6.34 | 3.17 | |
150 | 9.60 | 4.80 | |
200 | 12.88 | 6.44 | |
250 | 16.18 | 8.09 | |
300 | 19.50 | 9.75 | |
350 | 22.83 | 11.41 | |
450 | 29.52 | 14.76 | |
L-FWQC | 50 | 0.25 | 0.12 |
100 | 0.35 | 0.17 | |
150 | 0.43 | 0.21 | |
200 | 0.49 | 0.25 | |
250 | 0.55 | 0.28 | |
300 | 0.60 | 0.30 | |
350 | 0.65 | 0.33 | |
450 | 0.74 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Huang, R.; Shen, Z.; Fan, Y.; Feng, C.; Bai, Y. Hardness-Dependent Freshwater Quality Criteria for the Protection of Aquatic Organisms for Cadmium in China. Toxics 2024, 12, 892. https://doi.org/10.3390/toxics12120892
Zhang Z, Huang R, Shen Z, Fan Y, Feng C, Bai Y. Hardness-Dependent Freshwater Quality Criteria for the Protection of Aquatic Organisms for Cadmium in China. Toxics. 2024; 12(12):892. https://doi.org/10.3390/toxics12120892
Chicago/Turabian StyleZhang, Zeya, Rui Huang, Zhongjie Shen, Yili Fan, Chenglian Feng, and Yingchen Bai. 2024. "Hardness-Dependent Freshwater Quality Criteria for the Protection of Aquatic Organisms for Cadmium in China" Toxics 12, no. 12: 892. https://doi.org/10.3390/toxics12120892
APA StyleZhang, Z., Huang, R., Shen, Z., Fan, Y., Feng, C., & Bai, Y. (2024). Hardness-Dependent Freshwater Quality Criteria for the Protection of Aquatic Organisms for Cadmium in China. Toxics, 12(12), 892. https://doi.org/10.3390/toxics12120892