Frequent Occupational Exposure to Fusarium Mycotoxins of Workers in the Swiss Grain Industry
"> Figure 1
<p>Study area in the granary region of Vaud (Switzerland). The white and black dots correspond to the sampled wheat fields and the blue ones to grain terminals. The farming system used in wheat fields is indicated: white circle for organic farming, white square for extensive farming and black square for conventional farming. The background represents the summer rainfall level.</p> "> Figure 2
<p>Co-occurrence of mycotoxins in aerosols. (<b>a</b>–<b>c</b>) The proportions of samples for which the different combinations of mycotoxins were detected in, respectively, overall threshing and grain unloading samples; (<b>d</b>–<b>f</b>) Samples for which all mycotoxins from a particular combination were detected at a quantifiable level.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Mycotoxins in Aerosols Generated during Threshing and Grain Unloading
2.2. Comparison of Mycotoxins Content in Aerosols Generated during Threshing and Grain Unloading
2.3. Personal Exposure of Grain Workers to Mycotoxins
3. Discussion
4. Materials and Methods
4.1. Study Area and Sampling Strategy
4.2. Sample Preparation and Extraction
4.3. Regents and Chemicals
4.4. LC-MS/MS Analysis
4.5. Validation Method
4.6. Statistical Analyses
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dorribo, V.; Wild, P.; Pralong, J.A.; Danuser, B.; Reboux, G.; Krief, P.; Niculita-Hirzel, H. Respiratory health effects of fifteen years of improved collective protection in a wheat-processing worker population. Ann. Agric. Environ. Med. 2015, 22, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Eduard, W.; Heederik, D.; Duchaine, C.; Green, B.J. Bioaerosol exposure assessment in the workplace: The past, present and recent advances. J. Environ. Monit. 2012, 14, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Straumfors, A.; Heldal, K.K.; Wouters, I.M.; Eduard, W. Work tasks as determinants of grain dust and microbial exposure in the Norwegian grain and compound feed industry. Ann. Occup. Hyg. 2015, 59, 724–736. [Google Scholar] [CrossRef] [PubMed]
- Goral, T.; Stuper-Szablewska, K.; Busko, M.; Boczkowska, M.; Walentyn-Goral, D.; Wisniewska, H.; Perkowski, J. Relationships between genetic diversity and Fusarium toxin profiles of winter wheat cultivars. Plant Pathol. J. 2015, 31, 226–244. [Google Scholar] [CrossRef] [PubMed]
- Dill-Macky, R.; Jones, R.K. The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis. 2000, 84, 71–76. [Google Scholar] [CrossRef]
- Wegulo, S.N. Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins 2012, 4, 1157–1180. [Google Scholar] [CrossRef] [PubMed]
- Vogelgsang, S.; Hecker, A.; Musa, T.; Dorn, B.; Forrer, H.R. On-farm experiments over 5 years in a grain maize/winter wheat rotation: Effect of maize residue treatments on Fusarium graminearum infection and deoxynivalenol contamination in wheat. Mycotoxin Res. 2011, 27, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Reichel, M.; Staiger, S.; Biselli, S. Analysis of Fusarium toxins in grain via dust: A promising field of application for rapid test systems. World Mycotoxin J. 2014, 7, 465–477. [Google Scholar] [CrossRef]
- Sanders, M.; Landschoot, S.; Audenaert, K.; Haesaert, G.; Eeckhout, M.; de Saeger, S. Deoxynivalenol content in wheat dust versus wheat grain: A comparative study. World Mycotoxin J. 2014, 7, 285–290. [Google Scholar] [CrossRef]
- Pellissier, L.; Oppliger, A.; Hirzel, A.H.; Savova-Bianchi, D.; Mbayo, G.; Mascher, F.; Kellenberger, S.; Niculita-Hirzel, H. Airborne and grain dust fungal community compositions are shaped regionally by plant genotypes and farming practices. Appl. Environ. Microbiol. 2016, 82, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Bryla, M.; Waskiewicz, A.; Podolska, G.; Szymczyk, K.; Jedrzejczak, R.; Damaziak, K.; Sulek, A. Occurrence of 26 mycotoxins in the grain of cereals cultivated in Poland. Toxins 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Tralamazza, S.M.; Bemvenuti, R.H.; Zorzete, P.; de Souza Garcia, F.; Correa, B. Fungal diversity and natural occurrence of deoxynivalenol and zearalenone in freshly harvested wheat grains from Brazil. Food Chem. 2016, 196, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Krysinska-Traczyk, E.; Perkowski, J.; Dutkiewicz, J. Levels of fungi and mycotoxins in the samples of grain and grain dust collected from five various cereal crops in eastern Poland. Ann. Agric. Environ. Med. 2007, 14, 159–167. [Google Scholar] [PubMed]
- Thrane, U.; Adler, A.; Clasen, P.E.; Galvano, F.; Langseth, W.; Logrieco, A.; KNielsen, F.; Ritieni, A. Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. Int. J. Food Microbiol. 2004, 95, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, M.; Beyer, M.; Logrieco, A.; Audenaert, K.; Balmas, V.; Basler, R.; Boutigny, A.L.; Chrpova, J.; Czembor, E.; Gagkaeva, T.; et al. A European database of Fusarium graminearum and F. culmorum trichothecene genotypes. Front. Microbiol. 2016, 7, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piec, J.; Pallez, M.; Beyer, M.; Vogelgsang, S.; Hoffmann, L.; Pasquali, M. The Luxembourg database of trichothecene type B F. graminearum and F. culmorum producers. Bioinformation 2016, 12, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.; Engelhart, S.; Kolk, A.; Blome, H. The significance of mycotoxins in the framework of assessing workplace related risks. Mycotoxin Res. 2008, 24, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Olenchock, S.A.; Mull, J.C.; Major, P.C.; Peach, M.J., 3rd; Gladish, M.E.; Taylor, G. In vitro activation of the alternative pathway of complement by settled grain dust. J. Allergy Clin. Immunol. 1978, 62, 295–300. [Google Scholar] [CrossRef]
- Boonen, J.; Malysheva, S.V.; Taevernier, L.; Diana Di Mavungu, J.; de Saeger, S.; de Spiegeleer, B. Human skin penetration of selected model mycotoxins. Toxicology 2012, 301, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Pinton, P.; Guzylack-Piriou, L.; Kolf-Clauw, M.; Oswald, I.P. The effect on the intestine of some fungal toxins: The trichothecenes. Curr. Immunol. Rev. 2012, 8, 193–208. [Google Scholar] [CrossRef]
- Hardin, B.D.; Robbins, C.A.; Fallah, P.; Kelman, B.J. The concentration of no toxicologic concern (CoNTC) and airborne mycotoxins. J. Toxicol. Environ. Health A 2009, 72, 585–598. [Google Scholar] [CrossRef] [PubMed]
- Alassane-Kpembi, I.; Puel, O.; Oswald, I.P. Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Arch. Toxicol. 2015, 89, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
Variables | DON | 3-ADON | 15-ADON | NIV | ZEN |
---|---|---|---|---|---|
Recovery rate (%) 1 | 96 | 74 | 92 | 99 | 95 |
LOD 2 | 0.35 | 0.45 | 0.66 | 0.33 | 0.03 |
LOQ 2 | 1.15 | 1.50 | 2.21 | 1.16 | 0.12 |
Variables | DON | 3-ADON | 15-ADON | NIV | ZEN |
---|---|---|---|---|---|
Overall samples (N = 137) | |||||
N > LOD 1 (%) | 123 (90) | 17 (12) | 12 (9) | 123 (90) | 106 (77) |
N > LOQ 1 (%) | 48 (35) | 3 (2) | 1 (1) | 61 (44) | 106 (77) |
Mean concentration ± SD 2 | 35.7 ± 40.8 | 9.6 ± 7.0 | 21.8 | 28.5 ± 41.4 | 2.4 ± 2.5 |
Highest concentration | 243.9 | 17.2 | 21.8 | 297.2 | 15.6 |
During threshing (N = 78) | |||||
N > LOD (%) | 73 (94) | 10 (13) | 6 (8) | 73 (94) | 67 (86) |
N > LOQ (%) | 33 (42) | 3 (4) | 1 (1) | 41 (53) | 67 (86) |
Mean concentration ± SD | 27.8 ± 42.3 | 9.6 ± 7.0 | 21.8 | 20.0 ± 22.9 | 1.3 ± 0.7 |
Highest concentration | 243.9 | 17.2 | 21.8 | 107.4 | 3.8 |
During grain unloading (N = 59) | |||||
N > LOD (%) | 50 (85) | 7 (12) | 6 (10) | 50 (85) | 39 (66) |
N > LOQ (%) | 15 (25) | 0 (0) | 0 (0) | 20 (34) | 39 (66) |
Mean concentration ± SD | 53.1 ± 32.4 | <LOQ 3 | <LOQ 4 | 45.9 ± 62.1 | 4.4 ± 3.3 |
Highest concentration | 121.4 | <LOQ 3 | <LOQ 4 | 297.2 | 15.6 |
Variables | DON | 3-ADON | 15-ADON | NIV | ZEN |
---|---|---|---|---|---|
Threshing | |||||
in the cab 1 (N = 7) | 3.0 ± 1.8 | <LOQ 2 | <LOD 3 | 2.1 ± 1.7 | 0.2 ± 0.2 |
N > LOD (%) | 7 (100) | 1 (14) | 0 (0) | 5 (71) | 4 (57) |
Grain unloading | |||||
in the office 1 (N = 5) | 1.6 ± 0.4 | <LOD 4 | <LOQ 5 | 0.9 ± 1.3 | 0,08 ± 0.1 |
N > LOD (%) | 5 (100) | 0 (0) | 1 (20) | 2 (40) | 2 (40) |
in-out 1 (N = 6) | 6.7 ± 3.0 | < LOQ 2 | < LOD 3 | 3.6 ± 1.7 | 0.6 ± 0.3 |
N > LOD (%) | 6 (100) | 2 (33) | 0 (0) | 6 (100) | 6 (100) |
at terminal 1 (N = 1) | 16.1 | 4.2 | < LOD 3 | 6.6 | 0.8 |
N > LOD (%) | 1 (100) | 1 (100) | 0 (0) | 1 (100) | 1 (100) |
Cleaning harvester | |||||
around the machine 1 (N = 4) | 64.7 ± 79.0 | 6.2 ± 10.7 | <LOD 3 | 58.9 ± 65.9 | 3.3 ± 2.3 |
N > LOD (%) | 3 (75) | 1 (25) | 0 (0) | 4 (100) | 3 (75) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niculita-Hirzel, H.; Hantier, G.; Storti, F.; Plateel, G.; Roger, T. Frequent Occupational Exposure to Fusarium Mycotoxins of Workers in the Swiss Grain Industry. Toxins 2016, 8, 370. https://doi.org/10.3390/toxins8120370
Niculita-Hirzel H, Hantier G, Storti F, Plateel G, Roger T. Frequent Occupational Exposure to Fusarium Mycotoxins of Workers in the Swiss Grain Industry. Toxins. 2016; 8(12):370. https://doi.org/10.3390/toxins8120370
Chicago/Turabian StyleNiculita-Hirzel, Hélène, Gregoire Hantier, Ferdinand Storti, Gregory Plateel, and Thierry Roger. 2016. "Frequent Occupational Exposure to Fusarium Mycotoxins of Workers in the Swiss Grain Industry" Toxins 8, no. 12: 370. https://doi.org/10.3390/toxins8120370
APA StyleNiculita-Hirzel, H., Hantier, G., Storti, F., Plateel, G., & Roger, T. (2016). Frequent Occupational Exposure to Fusarium Mycotoxins of Workers in the Swiss Grain Industry. Toxins, 8(12), 370. https://doi.org/10.3390/toxins8120370