Anti-Tumor Effects of Vespa bicolor Venom on Liver Cancer: In Vitro and In Vivo Studies
"> Figure 1
<p>Quality evaluation of collected <span class="html-italic">Vespa bicolor</span> venom (VBV) samples, including (<b>a</b>) analysis of protein components by SDS-PAGE electrophoresis and (<b>b</b>) HPLC fingerprint analysis.</p> "> Figure 2
<p>In vitro efficacy of VBV as a treatment for liver cancers either as a monotherapy or in conjunction with the chemotherapeutic drug cisplatin (DDP). (<b>a</b>) Cytotoxic effects of varying concentrations of VBV on HepG2 cells and L-02 cells. (<b>b</b>) Comparative analysis of the cytotoxicity of DDP alone versus its combination with 15 µg/mL VBV on HepG2 cells. (<b>c</b>) Comparative analysis of the cytotoxicity of DDP alone and in combination with 15 µg/mL VBV on L-02 cells. Data are expressed as means ± SD. Each experiment represents the mean values of six independent experiments. * <span class="html-italic">p</span> < 0.05 compared with negative controls.</p> "> Figure 3
<p>In vitro anti-tumor efficacy of VBV as a monotherapy against HepG2 cells. The effects of varying concentrations of VBV on HepG2 cells: (<b>a</b>) proliferation assessed using EdU, (<b>b</b>) migration assessed using scratch assays, (<b>c</b>) invasion measured using Transwell assays, and (<b>d</b>) apoptosis analyzed via flow cytometry. Data are expressed as means ± SD. Each experiment represents the mean values of three independent experiments. *** <span class="html-italic">p</span> < 0.001, significant difference; ns, no significant difference.</p> "> Figure 4
<p>In vitro anti-tumor efficacy of combined with DDP. The effects of 15 µg/mL VBV combined with 4 µg/mL DDP on HepG2 cells: (<b>a</b>) proliferation assessed using EdU assays; (<b>b</b>) migration assessed using scratch assay; (<b>c</b>) invasion measured using Transwell assays; and (<b>d</b>) apoptosis analyzed via flow cytometry. Data are expressed as means ± SD. Each experiment represents the mean values of three independent experiments. ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, significant difference; ns, no significant difference.</p> "> Figure 5
<p>Tumor-suppressive effects of VBV alone and in combination with DDP in the murine model. (<b>a</b>) Weight changes of mice across different treatment groups over 20 days after tumor implantation. (<b>b</b>) Changes in tumor volume among the treatment groups. (<b>c</b>) Tumor weights in each group following 20 days of drug treatment. (<b>d</b>) Images of tumor tissue in each experimental group. (<b>e</b>) HE stained images of tumors in each experimental group. Data represent mean ± SD; n = 6 mice/group. * <span class="html-italic">p</span> < 0.05, significant difference.</p> "> Figure 6
<p>Hepatorenal toxicity and immunomodulatory effects of VBV alone and in combination with DDP evaluated in a murine model. Following 20 days of various drug treatments, we analyzed the differences in the following: (<b>a</b>) liver index, (<b>b</b>) kidney index, (<b>d</b>) spleen index, and (<b>e</b>) thymus index (<b>f</b>), as well as (<b>c</b>) ALT and (<b>d</b>) AST levels in serum among the different groups of mice. Data represent mean ± SD; n = 6 mice/group. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, significant difference; ns, no significant difference.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Quality Control of Venom
2.2. Cell Viability Assay
2.3. In Vitro Anti-Tumor Activity of VBV
2.4. In Vitro Anti-Tumor Activity of VBV in Combination with DDP
2.5. In Vivo Anti-Tumor Effect of VBV Alone and in Combination with DDP
2.5.1. Tumor Suppression Effect
2.5.2. Hepatorenal Toxicity and Immunomodulatory Effects
3. Discussions
4. Conclusions
5. Materials and Methods
5.1. Venom
5.2. Instrument and Regent
5.3. In Vitro Anti-Tumor Assay
5.3.1. Cell Viability Assay
5.3.2. Analysis of VBV Anti-Tumor Effect
5.3.3. Analysis of the Anti-Tumor Effect of VBV in Combination with DDP
5.4. In Vivo Anti-Tumor Assay
5.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dutta, P.; Sahu, R.K.; Dey, T.; Lahkar, M.D.; Manna, P.; Kalita, J. Beneficial role of insect-derived bioactive components against inflammation and its associated complications (colitis and arthritis) and cancer. Chem. Interactions 2019, 313, 108824. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, S.; Fekri, H.S.; Hashemi, F.; Hushmandi, K.; Mohammadinejad, R.; Ashrafizadeh, M.; Zarrabi, A.; Garg, M. Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol. Res. 2021, 164, 105327. [Google Scholar] [CrossRef] [PubMed]
- Duffy, C.; Sorolla, A.; Wang, E.; Golden, E.; Woodward, E.; Davern, K.; Ho, D.; Johnstone, E.; Pfleger, K.; Redfern, A.; et al. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precis. Oncol. 2020, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Rady, I.; Siddiqui, I.A.; Rady, M.; Mukhtar, H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017, 402, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.; Falcão, S.I.; El Mehdi, I.; Vilas-Boas, M.; Vale, N. Honeybee Venom Synergistically Enhances the Cytotoxic Effect of CNS Drugs in HT-29 Colon and MCF-7 Breast Cancer Cell Lines. Pharmaceutics 2022, 14, 511. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-K.; Zhang, G.-S.; Huang, G.-Z. Evaluation of anti-aging and anti-inflammatory effects of four bee venoms in vitro by HDF and HUVEC cell models. China Surfactant Deterg. Cosmet. 2019, 49, 668–673+693. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Zhang, Y.; Fang, D.-Q.; Chen, J.; Wang, J.-A.; Jiang, L.; Lv, Z.-F. Characterization of the Composition and Biological Activity of the Venom from Vespa bicolor Fabricius, a Wasp from South China. Toxins 2022, 14, 59. [Google Scholar] [CrossRef]
- Wang, J.-A.; Guo, Y.-J.; Jiang, L. Overview of the Principles and Prospects of Wasp Apitherapy in Traditional Chinese Medicine. In Proceedings of the 3rd World Bee Therapy Conference, Beijing, China, 22 October 2021. [Google Scholar] [CrossRef]
- Chen, W.; Yang, X.; Yang, X.; Zhai, L.; Lu, Z.; Liu, J.; Yu, H. Antimicrobial peptides from the venoms of Vespa bicolor Fabricius. Peptides 2008, 29, 1887–1892. [Google Scholar] [CrossRef]
- Yan, H.-L.; Chen, W.-L.; Chen, L.-L.; Lai, R.; Liu, J.-Z. A Novel Bioactive Peptide with Myotropic Activity from Wasp Venoms. Chin. J. Nat. Med. 2011, 9, 317–320. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Lu, Z.; Zhai, L.; Jiang, J.; Liu, J.; Yu, H. A novel serine protease inhibitor from the venom of Vespa bicolor Fabricius. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2009, 153, 116–120. [Google Scholar] [CrossRef]
- Moreno, M.; Giralt, E. Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and Biotechnological Use: Melittin, Apamin and Mastoparan. Toxins 2015, 7, 1126–1150. [Google Scholar] [CrossRef]
- Perez-Riverol, A.; dos Santos-Pinto, J.R.A.; Lasa, A.M.; Palma, M.S.; Brochetto-Braga, M.R. Wasp venomic: Unravelling the toxins arsenal of Polybia paulista venom and its potential pharmaceutical applications. J. Proteom. 2017, 161, 88–103. [Google Scholar] [CrossRef]
- Silva, J.C.; Neto, L.M.; Neves, R.C.; Gonçalves, J.C.; Trentini, M.M.; Mucury-Filho, R.; Smidt, K.S.; Fensterseifer, I.C.; Silva, O.N.; Lima, L.D.; et al. Evaluation of the antimicrobial activity of the mastoparan Polybia-MPII isolated from venom of the social wasp Pseudopolybia vespiceps testacea (Vespidae, Hymenoptera). Int. J. Antimicrob. Agents 2017, 49, 167–175. [Google Scholar] [CrossRef]
- Lee, V.S.Y.; Tu, W.; Jinn, T.; Peng, C.; Lin, L.; Tzen, J.T.C. Molecular cloning of the precursor polypeptide of mastoparan B and its putative processing enzyme, dipeptidyl peptidase IV, from the black-bellied hornet, Vespa basalis. Insect Mol. Biol. 2007, 16, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Lopes, K.S.; Campos, G.A.A.; Camargo, L.C.; de Souza, A.C.B.; Ibituruna, B.V.; Magalhães, A.C.M.; da Rocha, L.F.; Garcia, A.B.; Rodrigues, M.C.; Ribeiro, D.M.; et al. Characterization of two peptides isolated from the venom of social wasp Chartergellus communis (Hymenoptera: Vespidae): Influence of multiple alanine residues and C-terminal amidation on biological effects. Peptides 2017, 95, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, M.P.d.S.; Alvares, D.S.; Leite, N.B.; de Souza, B.M.; Palma, M.S.; Riske, K.A.; Neto, J.R. New Insight into the Mechanism of Action of Wasp Mastoparan Peptides: Lytic Activity and Clustering Observed with Giant Vesicles. Langmuir 2011, 27, 10805–10813. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Martel, C.; Belzacq-Casagrande, A.-S.; Brenner, C.; Howl, J. Mitoparan and target-selective chimeric analogues: Membrane translocation and intracellular redistribution induces mitochondrial apoptosis. Biochim. Biophys. Acta BBA Mol. Cell Res. 2008, 1783, 849–863. [Google Scholar] [CrossRef]
- Jones, S.; Howl, J. Enantiomer-Specific Bioactivities of Peptidomimetic Analogues of Mastoparan and Mitoparan: Characterization of Inverso Mastoparan as a Highly Efficient Cell Penetrating Peptide. Bioconjugate Chem. 2012, 23, 47–56. [Google Scholar] [CrossRef]
- de Azevedo, R.A.; de Figueiredo, C.R.; Ferreira, A.K.; Matsuo, A.L.; Massaoka, M.H.; Girola, N.; Auada, A.V.; Farias, C.F.; Pasqualoto, K.F.; Rodrigues, C.P.; et al. Mastoparan induces apoptosis in B16F10-Nex2 melanoma cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Peptides 2015, 68, 113–119. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.M.B.; Silva-Gonçalves, L.C.; Oliveira, F.A.; Arcisio-Miranda, M. Pro-necrotic Activity of Cationic Mastoparan Peptides in Human Glioblastoma Multiforme Cells Via Membranolytic Action. Mol. Neurobiol. 2018, 55, 5490–5504. [Google Scholar] [CrossRef]
- Hilchie, A.L.; Sharon, A.J.; Haney, E.F.; Hoskin, D.W.; Bally, M.B.; Franco, O.L.; Corcoran, J.A.; Hancock, R.E. Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma. Biochim. Biophys. Acta BBA Biomembr. 2016, 1858, 3195–3204. [Google Scholar] [CrossRef]
- Baek, J.H.; Oh, J.H.; Kim, Y.H.; Lee, S.H. Comparative transcriptome analysis of the venom sac and gland of social wasp Vespa tropica and solitary wasp Rhynchium brunneum. J. Asia-Pacific Èntomol. 2013, 16, 497–502. [Google Scholar] [CrossRef]
- Bazon, M.L.; Silveira, L.H.; Simioni, P.U.; Brochetto-Braga, M.R. Current Advances in Immunological Studies on the Vespidae Venom Antigen 5: Therapeutic and Prophylaxis to Hypersensitivity Responses. Toxins 2018, 10, 305. [Google Scholar] [CrossRef] [PubMed]
- dos Santos-Pinto, J.R.A.; Perez-Riverol, A.; Lasa, A.M.; Palma, M.S. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon 2018, 148, 172–196. [Google Scholar] [CrossRef] [PubMed]
- Herrera, C.; Leza, M.; Martínez-López, E. Diversity of compounds in Vespa spp. venom and the epidemiology of its sting: A global appraisal. Arch. Toxicol. 2020, 94, 3609–3627. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, A.; Pereira, F.D.C.; Lasa, A.M.; Fernandes, L.G.R.; dos Santos-Pinto, J.R.A.; Justo-Jacomini, D.L.; de Azevedo, G.O.; Bazon, M.L.; Palma, M.S.; de Lima Zollner, R. Molecular cloning, expression and IgE-immunoreactivity of phospholipase Al, a major allergen from Polybia paulista (Hymenoptera: Vespidae) venom. Toxicon 2016, 124, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Rungsa, P.; Peigneur, S.; Daduang, S.; Tytgat, J. Purification and biochemical characterization of VesT1s, a novel phospholipase A1 isoform isolated from the venom of the greater banded wasp Vespa tropica. Toxicon 2018, 148, 74–84. [Google Scholar] [CrossRef]
- Bazon, M.L.; Perez-Riverol, A.; Dos Santos-Pinto, J.R.A.; Fernandes, L.G.R.; Lasa, A.M.; Justo-Jacomini, D.L.; Palma, M.S.; De Lima Zollner, R.; Brochetto-Braga, M.R. Heterologous Expression, Purification and Immunoreactivity of the Antigen 5 from Polybia paulista Wasp Venom. Toxins 2017, 9, 259. [Google Scholar] [CrossRef] [PubMed]
- Rungsa, P.; Incamnoi, P.; Sukprasert, S.; Uawonggul, N.; Klaynongsruang, S.; Daduang, J.; Patramanon, R.; Roytrakul, S.; Daduang, S. Comparative proteomic analysis of two wasps venom, Vespa tropica and Vespa affinis. Toxicon 2016, 119, 159–167. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Chen, L.; Wei, J.-F.; Yang, X.; Ma, D.; Xu, X.; Xu, X.; He, S.; Lu, J.; Lai, R. Purification and Characterization of Two New Allergens from the Venom of Vespa magnifica. PLoS ONE 2012, 7, e31920. [Google Scholar] [CrossRef] [PubMed]
- Justo Jacomini, D.L.; Campos Pereira, F.D.; Aparecido dos Santos Pinto, J.R.; dos Santos, L.D.; da Silva Neto, A.J.; Giratto, D.T.; Palma, M.S.; de Lima Zollner, R.; Brochetto Braga, M.R. Hyaluronidase from the venom of the social wasp Polybia paulista (Hymenoptera, Vespidae): Cloning, structural modeling, purification, and immunological analysis. Toxicon 2013, 64, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Moawad, T.I.; Hoffman, D.R.; Zalat, S. Isolation, cloning and characterization of Polistes dominulus Venom phospholipase A1 and its isoforms. Acta Biol. Hung. 2005, 56, 261–274. [Google Scholar] [CrossRef]
- Monteiro, M.C.; Romao, P.R.; Soares, A.M. Pharmacological Perspectives of Wasp Venom. Protein Pept. Lett. 2009, 16, 944–952. [Google Scholar] [CrossRef]
- Rungsa, P.; Incamnoi, P.; Sukprasert, S.; Uawonggul, N.; Klaynongsruang, S.; Daduang, J.; Patramanon, R.; Roytrakul, S.; Daduang, S. Cloning, structural modelling and characterization of VesT2s, a wasp venom hyaluronidase (HAase) from Vespa tropica. J. Venom. Anim. Toxins Incl. Trop. Dis. 2016, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.S.; Liu, J.N.; Hur, G.-Y.; Hwang, E.-K.; Nam, Y.H.; Jin, H.J.; Lee, S.M.; Ye, Y.-M.; Nahm, D.-H.; Park, H.-S. Clinical Features and the Diagnostic Value of Component Allergen-Specific IgE in Hymenoptera Venom Allergy. Allergy, Asthma Immunol. Res. 2012, 4, 284–289. [Google Scholar] [CrossRef]
- Anooshiravani, N.; Nagarajan, S.; Vastardi, M.-A.; Joks, R. Inverse association of asthma and hay fever with cancer in the 2015 National Health Interview Survey database. Ann. Allergy, Asthma Immunol. 2019, 123, 219–220. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Hill, A.W. Atopy and Specific Cancer Sites: A Review of Epidemiological Studies. Clin. Rev. Allergy Immunol. 2016, 51, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Halling-Overgaard, A.S.; Ravnborg, N.; Silverberg, J.I.; Egeberg, A.; Thyssen, J.P. Atopic dermatitis and cancer in solid organs: A systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2019, 33, E81–E82. [Google Scholar] [CrossRef] [PubMed]
- Strid, J.; Sobolev, O.; Zafirova, B.; Polic, B.; Hayday, A. The Intraepithelial T Cell Response to NKG2D-Ligands Links Lymphoid Stress Surveillance to Atopy. Science 2011, 334, 1293–1297. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Ma, Y.; Adjemian, S.; Mattarollo, S.R.; Yamazaki, T.; Aymeric, L.; Yang, H.; Catani, J.P.P.; Hannani, D.; Duret, H.; Steegh, K.; et al. Anticancer Chemotherapy-Induced Intratumoral Recruitment and Differentiation of Antigen-Presenting Cells. Immunity 2013, 38, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Crawford, G.; Hayes, M.D.; Seoane, R.C.; Ward, S.; Dalessandri, T.; Lai, C.; Healy, E.; Kipling, D.; Proby, C.; Moyes, C.; et al. Epithelial damage and tissue γδ T cells promote a unique tumor-protective IgE response. Nat. Immunol. 2018, 19, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Ferastraoaru, D.; Rosenstreich, D. IgE deficiency and prior diagnosis of malignancy. Ann. Allergy Asthma Immunol. 2018, 121, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Helby, J.; Bojesen, S.E.; Nielsen, S.F.; Nordestgaard, B.G. IgE and risk of cancer in 37 747 individuals from the general population. Ann. Oncol. 2015, 26, 1784–1790. [Google Scholar] [CrossRef]
- Le, T.N.; Da Silva, D.; Colas, C.; Darrouzet, É.; Baril, P.; Leseurre, L.; Maunit, B. Asian hornet Vespa velutina nigrithorax venom: Evaluation and identification of the bioactive compound responsible for human keratinocyte protection against oxidative stress. Toxicon 2020, 176, 1–9. [Google Scholar] [CrossRef]
- Karmakar, S.; Lal, G. Role of serotonin receptor signaling in cancer cells and anti-tumor immunity. Theranostics 2021, 11, 5296–5312. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Denna, T.H.; Storkersen, J.N.; Gerriets, V.A. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol. Res. 2019, 140, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Ding, L.; Wang, D.; Han, J.; Gao, P. Serotonin: A Potent Immune Cell Modulator in Autoimmune Diseases. Front. Immunol. 2020, 11, 186. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, Y.-H.; Wu, Q.-C. A Fingerprint Evaluation Method for the Quality of Vespa bicolor Venom. China Patent CN118443810A, 6 August 2024. [Google Scholar]
- Jiang, L.; Wu, Y.-H.; Zhang, Y. A Rapid Method for Identifying the Authenticity and Determining the Adulteration Amount of Vespa bicolor Venom. China Patent CN112730571B, 30 April 2021. [Google Scholar]
- Ou, W.-F.; Huang, W.-H.; Chiu, H.-F.; Mao, Y.-C.; Wen, M.-C.; Chen, C.-H.; Hung, S.-J.; Wu, M.-J.; Wu, C.-L.; Chao, W.-C. Clinical manifestation of multiple wasp stings with details of whole transcriptome analysis. Medicine 2021, 100, e24492. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.-H.; Xiong, F.; Ou, Z.-W.; Wang, J.-A.; Cui, J.; Jiang, L.; Lan, W.-J. Anti-Tumor Effects of Vespa bicolor Venom on Liver Cancer: In Vitro and In Vivo Studies. Toxins 2025, 17, 4. https://doi.org/10.3390/toxins17010004
Wu Y-H, Xiong F, Ou Z-W, Wang J-A, Cui J, Jiang L, Lan W-J. Anti-Tumor Effects of Vespa bicolor Venom on Liver Cancer: In Vitro and In Vivo Studies. Toxins. 2025; 17(1):4. https://doi.org/10.3390/toxins17010004
Chicago/Turabian StyleWu, Yong-Hua, Feng Xiong, Zheng-Wen Ou, Jing-An Wang, Jing Cui, Lin Jiang, and Wen-Jian Lan. 2025. "Anti-Tumor Effects of Vespa bicolor Venom on Liver Cancer: In Vitro and In Vivo Studies" Toxins 17, no. 1: 4. https://doi.org/10.3390/toxins17010004
APA StyleWu, Y. -H., Xiong, F., Ou, Z. -W., Wang, J. -A., Cui, J., Jiang, L., & Lan, W. -J. (2025). Anti-Tumor Effects of Vespa bicolor Venom on Liver Cancer: In Vitro and In Vivo Studies. Toxins, 17(1), 4. https://doi.org/10.3390/toxins17010004