Assessment of the Effects of Anatoxin-a In Vitro: Cytotoxicity and Uptake
<p>Reduction in tetrazolium salt MTS in (<b>a</b>) neuronal cells (SH-SY5Y and N2a), (<b>b</b>) Caco-2 and HepG2 cells and (<b>c</b>) immune system cells (THP-1, Jurkat and L5178Y Tk<sup>+/−</sup>) after 24 h of exposure to 0–200 µg/mL ATX-a fumarate. In addition, 0.3% <span class="html-italic">v</span>/<span class="html-italic">v</span> Triton X-100 was used as the positive control. All experiments were performed at least in triplicate per concentration. Data are expressed as mean ± SD compared to negative control group. Note: * <span class="html-italic">p</span> < 0.05 and *** <span class="html-italic">p</span> < 0.001 indicated significant difference from negative control.</p> "> Figure 2
<p>Reduction in tetrazolium salt MTS in THP-1 cells exposed to 0–3 µg/mL CYN for 24 h. In addition, 0.3% <span class="html-italic">v</span>/<span class="html-italic">v</span> Triton X-100 was used as the positive control. Experiments were performed in triplicate per concentration. Data are expressed as mean ± SD compared to negative control group. Note: * <span class="html-italic">p</span> < 0.05 and *** <span class="html-italic">p</span> < 0.001 indicate significant difference from the negative control.</p> "> Figure 3
<p>Chromatograms obtained by UHPLC-MS/MS of ATX-a in THP-1 cells exposed to 50 µg/mL ATX-a fumarate for 24 h. (<b>a</b>) Negative control, (<b>b</b>) intracellular fraction and (<b>c</b>) extracellular fraction.</p> "> Figure 4
<p>Effects of ATX-a on the expression of mRNA of genes involved in apoptosis/necrosis in THP-1 cells. Cells were exposed to 5 or 50 µg/mL ATX-a fumarate for 24 h. CPT (0.5 µM) was used as positive control and chloroform/methanol (4:1) as solvent control. Results are expressed as relative mRNA expression normalized to the negative control group. * <span class="html-italic">p</span> < 0.05 and **** <span class="html-italic">p</span> < 0.0001 indicate significantly difference from negative controls.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Cytotoxicity Assays
2.2. Uptake of ATX-a
2.3. Uptake CYN
2.4. Gene Expression Analysis by Quantitative Real-Time PCR
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals
5.2. Cell Lines and Culture Conditions
5.3. Test Solutions
5.4. Cytotoxicity Assays
5.5. Evaluation of ATX-a Uptake
5.5.1. Exposure
5.5.2. Extraction and Purification Procedures
5.5.3. UHPLC-MS/MS
5.6. Evaluation of CYN Uptake
5.6.1. Exposure, Extraction and Purification Procedures
5.6.2. UPLC-MS/MS Determination of CYN
5.7. Real-Time Quantitative PCR (qRT-PCR) Analysis After ATX-a Exposure
5.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017, 91, 1049–1130. [Google Scholar] [CrossRef]
- Testai, E. Cyanobacterial toxins. In Toxic Cyanobacteria in Water a Guide to Their Public Health Consequences, Monitoring and Management, 2nd ed.; Chorus, I., Welker, M., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 72–94. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Cyanobacterial Toxins: Anatoxin-a and Analogues; Background Document for Development of WHO Guidelines for Drinking-Water Quality and Guidelines for safe Recreational Water Environments; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Testai, E.; Scardala, S.; Vichi, S.; Buratti, F.M.; Funari, E. Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit. Rev. Toxicol. 2016, 46, 385–419. [Google Scholar] [CrossRef]
- Ballot, A.; Krienitz, L.; Kotut, K.; Wiegand, C.; Pflugmacher, S. Cyanobacteria and cyanobacterial toxins in the alkaline crater lakes Sonachi and Simbi, Kenya. Harmful Algae 2005, 4, 139–150. [Google Scholar] [CrossRef]
- Kotut, K.; Ballot, A.; Krienitz, L. Toxic cyanobacteria and their toxins in standing waters of Kenya: Implications for water resource use. J. Water Health 2006, 4, 233–245. [Google Scholar] [CrossRef]
- Park, H.D.; Watanabe, M.F.; Harda, K.; Nagai, H.; Suzuki, M.; Watanabe, M.; Hayashi, H. Hepatotoxin (microcystin) and neurotoxin (anatoxin-a) contained in natural blooms and strains of cyanobacteria from Japanese freshwaters. Nat. Toxins 1993, 1, 353–360. [Google Scholar] [CrossRef]
- Joung, S.; Kim, J.H.; Ahn, C.; Choi, S.S.; Kim, H.S.; Oh, H.M. Water quality and cyanobacterial anatoxin-a concentration in Daechung reservoir. Korean J. Limnol. 2002, 35, 257–265. [Google Scholar]
- Carrasco, D.; Moreno, E.; Paniagua, T.; de Hoyos, C.; Wormer, L.; Sanchis, D.; Cirés, S.; Martín-del-Pozo, D.; Codd, G.; Quesada, A. Anatoxin-a occurrence and potential cyanobacterial anatoxin-a producers in Spanish reservoirs. J. Phycol. 2007, 43, 1120–1125. [Google Scholar] [CrossRef]
- Ballot, A.; Fastner, J.; Lentz, M.; Wiedner, C. First report of anatoxin-a-producing cyanobacterium Aphanizomenon issatschenkoi in northeastern Germany. Toxicon 2010, 56, 964–971. [Google Scholar] [CrossRef]
- Blahova, L.; Sehnal, L.; Lepsova-Skacelova, O.; Szmucova, V.; Babica, P.; Hilscherova, K.; Teikari, J.; Sivonen, K.; Blaha, L. Occurrence of cylindrospermopsin, anatoxin-a and their homologs in the southern Czech Republic—Taxonomical, analytical, and molecular approaches. Harmful Algae 2021, 108, 102101. [Google Scholar] [CrossRef] [PubMed]
- Bauer, F.; Wolfschlaeger, I.; Geist, J.; Fastner, J.; Schmalz, C.W.; Raeder, U. Occurrence, Distribution and Toxins of Benthic Cyanobacteria in German Lakes. Toxics 2023, 11, 643. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.; Galanti, L.; Ruibal, A.L.; Rodríguez, M.I.; Wunderlin, D.A.; Amé, M.V. First report of microcystins and anatoxin-a co-occurrence in San Roque reservoir (Córdoba, Argentina). Water Air Soil Pollut. 2013, 224, 1593. [Google Scholar] [CrossRef]
- Bouma-Gregson, K.; Kudela, R.M.; Power, M.E. Widespread anatoxin-a detection in benthic cyanobacterial mats throughout a river network. PLoS ONE 2018, 13, e0197669. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.G.; Wood, S.A.; Atalah, J.; Hawes, I. Spatiotemporal dynamics of Phormidium cover and anatoxin concentrations in eight New Zealand rivers with contrasting nutrient and flow regimes. Sci. Total Environ. 2018, 612, 71–80. [Google Scholar] [CrossRef] [PubMed]
- John, N.; Baker, L.; Ansell, B.R.; Newham, S.; Crosbie, N.D.; Jex, A.R. First report of anatoxin-a producing cyanobacteria in Australia illustrates need to regularly up-date monitoring strategies in a shifting global distribution. Sci. Rep. 2019, 9, 10894. [Google Scholar] [CrossRef]
- Mazur, H.; Pliński, M. Nodularia spumigena blooms and the occurrence of hepatotoxin in the Gulf of Gdańsk. Oceanología 2003, 45, 305–316. [Google Scholar]
- Tango, P.J.; Butler, W. Cyanotoxins in Tidal Waters of Chesapeake Bay. Northeast. Nat. 2008, 15, 403–416. [Google Scholar] [CrossRef]
- Wood, S.A.; Rasmussen, J.P.; Holland, P.T.; Campbell, R.; Crowe, A.L.M. First report of the cyanotoxin anatoxin-a from Aphanizomenon issatschenkoi (cyanobacteria). J. Phycol. 2007, 43, 356–365. [Google Scholar] [CrossRef]
- Wood, S.A.; Smith, F.M.J.; Heath, M.W.; Palfroy, T.; Gaw, S.; Young, R.G.; Ryan, K.G. Within-mat variability in anatoxin-a and homoanatoxin-a production among benthic Phormidium (cyanobacteria) strains. Toxins 2012, 4, 900–912. [Google Scholar] [CrossRef]
- Gugger, M.; Lenoir, S.; Berger, C.; Ledreux, A.; Druart, J.; Humbert, J.; Guette, C.; Bernard, C. First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxin-a associated with dog neurotoxicosis. Toxicon 2005, 45, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Fastner, J.; Beulker, C.; Geiser, B.; Hoffmann, A.; Kröger, R.; Teske, K.; Hoppe, J.; Mundhenk, L.; Neurath, H.; Sagebiel, D.; et al. Fatal neurotoxicosis in dogs associated with tychoplanktic, anatoxin-a producing Tychonema sp. in mesotrophic Lake Tegel, Berlin. Toxins 2018, 10, 60. [Google Scholar] [CrossRef]
- Bauer, F.; Fastner, J.; Bartha-Dima, B.; Breuer, W.; Falkenau, A.; Mayer, C.; Raeder, U. Mass ocurrence of anatoxin-a and dihydroanatoxin-a producing Tychonema sp. in mesotrophic reservoir mandichosee (River Lech, Germany) as a cause of neurotoxicosis in dogs. Toxins 2020, 12, 726. [Google Scholar] [CrossRef]
- Fastner, J.; Teikari, J.; Hoffmann, A.; Köhler, A.; Hoppe, S.; Dittmann, E.; Welker, M. Cyanotoxins associated with macrophytes in Berlin (Germany) water bodies—Occurrence and risk assessment. Sci. Total Environ. 2023, 858, 159433. [Google Scholar] [CrossRef] [PubMed]
- McCarron, P.; Rafuse, C.; Scott, S.; Lawrence, J.; Bruce, M.R.; Doothwright, E.; Murphy, C.; Reith, M.; Beach, D.G. Anatoxins from benthic cyanobacteria responsible for dog mortalities in New Brunswick, Canada. Toxicon 2023, 227, 107086. [Google Scholar] [CrossRef] [PubMed]
- Codd, G.A.; Testai, E.; Funari, E.; Sviřcev, Z. Cyanobacteria, Cyanotoxins, and Human Health. In Water Treatment for Purification from Cyanobacteria and Cyanotoxins, 1st ed.; Hiskia, E., Triantis, T.M., Antoniou, M.G., Kaloudis, T., Dionysiou, D.D., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2020; pp. 37–68. [Google Scholar]
- Biré, R.; Bertin, T.; Dom, I.; Hort, V.; Schmitt, C.; Diogène, J.; Lemée, R.; De Haro, L.; Nicolas, M. First Evidence of the presence of anatoxin-a in sea figs associated with human food poisonings in France. Mar. Drugs 2020, 18, 285. [Google Scholar] [CrossRef]
- Amzil, Z.; Derrien, A.; Terre Terrillon, A.; Savar, V.; Bertin, T.; Peyrat, M.; Duval, A.; Lhaute, K.; Arnich, N.; Hort, V.; et al. Five years monitoring the emergence of unregulated toxins in shellfish in France (EMERGTOX 2018-2022). Mar. Drugs 2023, 21, 435. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.L.; Allen, C.N.; Aronstam, R.S.; Rapoport, H.; Albuquerque, E.X. Molecular mechanisms of the potent and stereospecific nicotinic receptor agonist (+)-anatoxin-a. Mol. Pharmacol. 1986, 29, 250–257. [Google Scholar]
- Zhang, X.; Stjernlöf, P.; Adem, A.; Nordberg, A. Anatoxin-a a potent ligand for nicotinic cholinergic receptors in rat brain. Eur. J. Pharmacol. 1987, 135, 457–458. [Google Scholar] [CrossRef]
- Molloy, L.; Wonnacott, S.; Gallagher, T.; Brough, P.A.; Livett, B.G. Anatoxin-a is a potent agonist of the nicotinic acetylcholine receptor of bovine adrenal chromaffin cells. Eur. J. Pharmacol. 1995, 289, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Takser, L.; Benachour, N.; Husk, B.; Cabana, H.; Gris, D. Cyanotoxins at low doses induce apoptosis and inflammatory effects in murine brain cells: Potential implications for neurodegenerative diseases. Toxicol. Rep. 2016, 3, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Kubickova, B.; Martinkova, S.; Bohaciakova, D.; Hilscherova, K. Cyanobacterial anatoxin-a does not induce in vitro developmental neurotoxicity, but changes gene expression patterns in co-exposure with all-trans retinoic acid. Toxicol. Lett. 2024, 391, 39–44. [Google Scholar] [CrossRef]
- Rao Lakshmana, P.V.; Bhattacharya, R.; Gupta, N.; Parida, M.M.; Bhaskar, A.S.; Dubey, R. Involvement of caspase and reactive oxygen species in cyanobacterial toxin anatoxin-a-induced cytotoxicity and apoptosis in rat thymocytes and Vero cells. Arch. Toxicol. 2002, 76, 227–235. [Google Scholar] [CrossRef]
- Teneva, I.; Mladenov, R.; Popov, N.; Dzhambazov, B. Cytotoxicity and apoptotic effects of microcystin-LR and anatoxin-a in mouse lymphocytes. Folia Biol. 2005, 51, 62–67. [Google Scholar]
- Bownik, A.; Rymuszka, A.; Sierosławska, A.; Skowronski, T. Anatoxin-a induces apoptosis of leukocytes and decreases the proliferative ability of lymphocytes of common carp (Cyprinus carpio L.) in vitro. Pol. J. Vet. Sci. 2012, 15, 531–535. [Google Scholar] [CrossRef]
- Zhong, Y.; Shen, L.; Ye, X.; Zhou, D.; He, Y.; Li, Y.; Ding, Y.; Zhu, W.; Ding, J.; Zhang, H. Neurotoxic anatoxin-a can also exert immunotoxicity by the induction of apoptosis on Carassius auratus lymphocytes in vitro when exposed to environmentally relevant concentrations. Front. Physiol. 2020, 11, 316. [Google Scholar] [CrossRef]
- Rymuszka, A. Cytotoxic activity of the neurotoxin anatoxin-a on fish leukocytes in vitro and in vivo studies. Acta Vet. Brno 2012, 81, 175–182. [Google Scholar] [CrossRef]
- Adamski, M.; Zimolag, E.; Kaminski, A.; Drukała, J.; Bialczyk, J. Effects of cylindrospermopsin, its decomposition products, and anatoxin-a on human keratinocytes. Sci. Total Environ. 2021, 765, 142670. [Google Scholar] [CrossRef] [PubMed]
- Plata-Calzado, C.; Diez-Quijada, L.; Medrano-Padial, C.; Prieto, A.I.; Cameán, A.M.; Jos, A. In vitro mutagenic and genotoxic assessment of anatoxin-a alone and in combination with cylindrospermopsin. Toxins 2023, 15, 458. [Google Scholar] [CrossRef] [PubMed]
- Sirén, A.L.; Feuerstein, G. Cardiovascular effects of anatoxin-A in the conscious rat. Toxicol. Appl. Pharmacol. 1990, 102, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Adeyemo, O.M.; Sirén, A.L. Cardio-respiratory changes and mortality in the conscious rat induced by (+)- and (±)-anatoxin-a. Toxicon 1992, 30, 899–905. [Google Scholar] [CrossRef]
- Oberemm, A.; Becker, J.; Codd, G.A.; Steinberg, C. Effects of cyanobacterial toxins and aqueous crude extracts of cyanobacteria on the development of fish and amphibians. Environ. Toxicol. Int. J. 1999, 14, 77–88. [Google Scholar] [CrossRef]
- Abdallah, M.; Van Hassel, W.H.R.; Andjelkovic, M.; Wilmotte, A.; Rajkovic, A. Cyanotoxins and food contamination in developing countries: Review of their types, toxicity, analysis, occurrence and mitigation strategies. Toxins 2021, 13, 786. [Google Scholar] [CrossRef]
- Pichardo, S.; Cameán, A.M.; Jos, A. In Vitro Toxicological Assessment of Cylindrospermopsin: A Review. Toxins 2017, 9, 402. [Google Scholar] [CrossRef]
- Plata-Calzado, C.; Prieto, A.I.; Cameán, A.M.; Jos, A. Toxic Effects Produced by Anatoxin-a under Laboratory Conditions: A Review. Toxins 2022, 14, 861. [Google Scholar] [CrossRef]
- Lukas, R.J.; Norman, S.A.; Lucero, L. Characterization of nicotinic acetylcholine receptors expressed by cells of the SH-SY5Y human neuroblastoma clonal line. Mol. Cell Neurosci. 1993, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Valero, T.; Jacobs, T.; Moschopoulou, G.; Naumann, M.; Hauptmann, P.; Kintzios, S. Electrical impedance analysis of N2a neuroblastoma cells in gel matrices after ACh-receptor triggering with an impedimetric biosensor. Procedia Chem. 2009, 1, 734–737. [Google Scholar] [CrossRef]
- Hinojosa, M.G.; Prieto, A.I.; Gutiérrez-Praena, D.; Moreno, F.J.; Cameán, A.M.; Jos, A. Neurotoxic assessment of Microcystin-LR, cylindrospermopsin and their combination on the human neuroblastoma SH-SY5Y cell line. Chemosphere 2019, 224, 751–764. [Google Scholar] [CrossRef]
- Osswald, J.; Carvalho, A.P.; Guimarães, L.; Guilhermino, L. Toxic effects of pure anatoxin-a on biomarkers on rainbow trout, Oncorhynchus mykiss. Toxicon 2013, 70, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hernández, S.E.; Swift, S.; Singhal, N. Estrogenic activity of cylindrospermopsin and anatoxin-a and their oxidative products by FeIII-B*/H2O2. Water Res. 2018, 132, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Diez-Quijada, L.; Puerto, M.; Gutiérrez-Praena, D.; Turkina, M.V.; Campos, A.; Vasconcelos, V.; Cameán, A.M.; Jos, A. In Vitro toxicity evaluation of cyanotoxins cylindrospermopsin and microcystin-LR on human kidney HEK293 cells. Toxins 2022, 14, 429. [Google Scholar] [CrossRef] [PubMed]
- Casas-Rodríguez, A.; Cebadero-Dominguez, Ó.; Puerto, M.; Cameán, A.M.; Jos, A. Immunomodulatory effects of cylindrospermopsin in human T cells and monocytes. Toxins 2023, 15, 301. [Google Scholar] [CrossRef] [PubMed]
- Menezes, C.; Valerio, E.; Días, E. The kidney vero-E6 cell line: A suitable model to study the toxicity of microcystins. In New Insights into Toxicity and Drug Testing; Gowder, S., Ed.; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Gutiérrez-Praena, D.; Pichardo, S.; Jos, A.; Moreno, F.J.; Cameán, A.M. Biochemical and pathological toxic effects induced by the cyanotoxin Cylindrospermopsin on the human cell line Caco-2. Water Res. 2012, 46, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Praena, D.; Guzmán-Guillén, R.; Pichardo, S.; Moreno, F.J.; Vasconcelos, V.; Jos, A.; Cameán, A.M. Cytotoxic and morphological effects of microcystin-LR, cylindrospermopsin, and their combinations on the human hepatic cell line HepG2. Environ. Toxicol. 2018, 34, 240–251. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Cyanobacterial Toxins: Cylindrospermopsins; Background Document for Development of WHO Guidelines for Drinking-Water Quality and Guidelines for Safe Recreational Water Environments; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Dimitrikapoulos, I.K.; Kaloudis, T.S.; Hiskia, A.E.; Thomaidis, N.S.; Koupparis, M. Development of a fast and selective method for the sensitive determination of anatoxin-a in lake waters using liquid chromatography–tandem mass spectrometry and phenylalanine-d5 as internal standard. Anal. Bioanal. Chem. 2010, 397, 2245–2252. [Google Scholar] [CrossRef] [PubMed]
- Plata-Calzado, C.; Prieto, A.I.; Cameán, A.M.; Jos, A. Analytical methods for anatoxin-a determination: A review. Toxins 2024, 16, 198. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Guillén, R.; Prieto, A.I.; Moreno, I.; González, G.; Soria-Díaz, M.E.; Vasconcelos, V.; Cameán, A.M. Development and optimization of a method for the determination of Cylindrospermopsin from strains of Aphanizomenon cultures: Intra-laboratory assessment of its accuracy by using validation standards. Talanta 2012, 100, 356–363. [Google Scholar] [CrossRef]
- Osswald, J.; Rellán, S.; Gago, A.; Vasconcelos, V. Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environ. Int. 2007, 33, 1070–1089. [Google Scholar] [CrossRef] [PubMed]
- Christensen, V.G.; Khan, E. Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin. Sci. Total Environ. 2020, 736, 19515. [Google Scholar] [CrossRef] [PubMed]
ATX-a Fumarate (µg/mL) | % Intracellular Mean ± SD | % Extracellular Mean ± SD | % Total ATX-a Detected Mean ± SD | |
---|---|---|---|---|
N2a | C− | n.d. | n.d. | n.d. |
50 µg/mL | 1.71 ± 1.15 | 59.90 ± 4.32 | 61.61 ± 3.59 | |
100 µg/mL | 1.52 ± 0.66 | 42.03 ± 11.73 | 43.55 ± 11.36 | |
SH-SY5Y | C− | n.d. | n.d. | n.d. |
50 µg/mL | 1.99 ± 0.67 | 127.85 ± 8.71 | 129.84 ± 9.38 | |
100 µg/mL | 2.94 ± 1.91 | 106.91 ± 39.49 | 109.85 ± 40.62 | |
L5178YTk+/− | C− | n.d. | n.d. | n.d. |
50 µg/mL | 9.70 ± 4.78 | 72.61 ± 9.54 | 82.31 ± 10.34 | |
100 µg/mL | 6.45 ± 1.31 | 69.44 ± 10.50 | 75.89 ± 9.45 | |
Jurkat | C− | n.d. | n.d. | n.d. |
50 µg/mL | 10.58 ± 0.74 | 75.21 ± 23.23 | 85.78 ± 23.85 | |
100 µg/mL | 13.96 ± 3.48 | 74.14 ± 15.58 | 88.11 ± 15.99 | |
THP-1 | C− | n.d. | n.d. | n.d. |
50 µg/mL | 14.72 ± 4.55 | 93.90 ± 3.35 | 108.62 ± 7.46 | |
100 µg/mL | 6.62 ± 1.37 | 56.35 ± 5.35 | 62.98 ± 4.80 | |
HepG2 | C− | n.d. | n.d. | n.d. |
50 µg/mL | 0.65 ± 0.05 | 104.03 ± 2.82 | 104.72 ± 2.87 | |
100 µg/mL | 0.30 ± 0.02 | 62.52 ± 4.87 | 62.81 ± 4.89 | |
Caco-2 | C− | n.d. | n.d. | n.d. |
50 µg/mL | 0.46 ± 0.15 | 83.72 ± 30.85 | 84.18 ± 30.75 | |
100 µg/mL | 0.52 ± 0.22 | 72.02 ± 21.88 | 72.54 ± 21.88 |
CYN (µg/mL) | % Intracellular Mean ± SD | % Extracellular Mean ± SD | % Total CYN Detected Mean ± SD | |
---|---|---|---|---|
THP-1 | C− | n.d. | n.d. | n.d. |
1.1 µg/mL | 0.38 ± 0.05 | 59.74 ± 1.01 | 60.12 ± 1.06 | |
2.5 µg/mL | 0.71 ± 0.16 | 57.10 ± 2.19 | 57.81 ± 2.21 | |
3 µg/mL | 1.30 ± 0.58 | 64.56 ± 4.29 | 65.85 ± 4.83 |
Cell Line | Cell Type | Tissue Type | Model Organism | Culture Media | Culture Conditions |
---|---|---|---|---|---|
N2a | Neuroblast | Brain | Mouse | 43.5% OptiMEM + 43.5% DMEM high glucose + 10% FBS, 1% piruvate 1% L-glutamine and 1% penicillin–streptomycin | Incubator at 37 °C with 95% relative humidity and 5% CO2 |
SH-SY5Y | Neuroblast | Brain | Human | 43% MEM + 43% Ham’s F12 + 10% FBS, 1% piruvate 1% L-glutamine, 1% NEAA and 1% penicillin–streptomycin | |
Jurkat | T lymphoblast | Peripheral blood | Human | RPMI 1640 medium containing high glucose (R8005, Sigma Aldrich) + 10% FBS, 1% penicillin–streptomycin and 2g/L sodium bicarbonate | |
THP-1 | Monocyte | Peripheral blood | Human | ||
L5178Y Tk+/− | Lymphoblast | Lymph node | Mouse | RPMI 1640 medium + 10% horse serum, 1% pyruvate, 1% L-glutamine and 1% penicillin–streptomycin | |
Caco-2 | Epithelial cell | Colon | Human | MEM medium + 10% FBS, 1% NEAA, 1% pyruvate, 1% L-glutamine and 1% penicillin–streptomycin | |
HepG2 | Hepatocyte | Liver | Human | MEM medium + 10% FBS, 1% L-glutamine and 1% penicillin–streptomycin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plata-Calzado, C.; Prieto, A.I.; Cameán, A.M.; Jos, A. Assessment of the Effects of Anatoxin-a In Vitro: Cytotoxicity and Uptake. Toxins 2024, 16, 541. https://doi.org/10.3390/toxins16120541
Plata-Calzado C, Prieto AI, Cameán AM, Jos A. Assessment of the Effects of Anatoxin-a In Vitro: Cytotoxicity and Uptake. Toxins. 2024; 16(12):541. https://doi.org/10.3390/toxins16120541
Chicago/Turabian StylePlata-Calzado, Cristina, Ana I. Prieto, Ana M. Cameán, and Angeles Jos. 2024. "Assessment of the Effects of Anatoxin-a In Vitro: Cytotoxicity and Uptake" Toxins 16, no. 12: 541. https://doi.org/10.3390/toxins16120541
APA StylePlata-Calzado, C., Prieto, A. I., Cameán, A. M., & Jos, A. (2024). Assessment of the Effects of Anatoxin-a In Vitro: Cytotoxicity and Uptake. Toxins, 16(12), 541. https://doi.org/10.3390/toxins16120541