International Proficiency Test Targeting a Large Panel of Botulinum Neurotoxin Sero- and Subtypes in Different Matrices
<p>Results reported by the participants after anonymization (lines) for each BoNT and by sample described in <a href="#toxins-16-00485-t001" class="html-table">Table 1</a> (columns). Green indicates that the participant reached a correct conclusion based on the results of one or more methods implemented. Red indicates a wrong conclusion. The absence of reported data is indicated as (-). For some reported data, more details are provided according to the figure legend: partially false (yellow) and no final conclusion (grey). The samples spiked with the indicated BoNT serotype are indicated with a blue arrowhead and blank samples with a grey arrowhead.</p> "> Figure 2
<p>Normal probability plots of selected samples. The normal probability plots show z’-scores without extremes (z’ > 10), and without responses “<LoD” or “<LoQ” for samples with x<sub>pt</sub> > 0.</p> "> Figure 3
<p>Overall z’-scores means for BoNT/A or BoNT/B quantification. The plots show the z’-score means (points) and their standard deviations (error bars span mean ± sd) as computed from the individual scores (results < LoD or <LoQ for BoNT-containing samples excluded).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of the Samples
2.2. General Aspects of the Exercise and Reported Results
2.3. Qualitative Results by Method and Groups of Methods
2.4. Evaluation of Qualitative Results by Principle, Analyte, and Sample
2.5. Quantitative Results
3. Conclusions and Perspectives
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Stability Test
4.2.2. Homogeneity Test
4.2.3. General Considerations of Methods Implemented by the Participants
4.2.4. Statistical Analysis and Data Visualization
- A result that gives |z| ≤ 2.0 is considered to be acceptable.
- A result that gives 2.0 < |z| < 3.0 is considered to give a warning signal.
- A result that gives |z| ≥ 3.0 is considered to be unacceptable (or action signal).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, A.K.; Sobel, J.; Chatham-Stephens, K.; Luquez, C. Clinical Guidelines for Diagnosis and Treatment of Botulism, 2021. MMWR Recomm. Rep. 2021, 70, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Parrera, G.S.; Astacio, H.; Tunga, P.; Anderson, D.M.; Hall, C.L.; Richardson, J.S. Use of Botulism Antitoxin Heptavalent (A, B, C, D, E, F, G)-(Equine) (BAT®) in Clinical Study Subjects and Patients: A 15-Year Systematic Safety Review. Toxins 2021, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.-H.; Jin, R. Architecture of the botulinum neurotoxin complex: A molecular machine for protection and delivery. Curr. Opin. Struct. Biol. 2015, 31, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Peck, M.W.; Webb, M.D.; Goodburn, K.E. Assessment of the risk of botulism from chilled, vacuum/modified atmosphere packed fresh beef, lamb and pork held at 3 °C–8 °C. Food Microbiol. 2020, 91, 103544. [Google Scholar] [CrossRef]
- Peck, M.W.; Stringer, S.C.; Carter, A.T. Clostridium botulinum in the post-genomic era. Food Microbiol. 2011, 28, 183–191. [Google Scholar] [CrossRef]
- Rossetto, O.; Pirazzini, M.; Fabris, F.; Montecucco, C. Botulinum Neurotoxins: Mechanism of Action. Handb. Exp. Pharmacol. 2021, 263, 35–47. [Google Scholar]
- Kongsaengdao, S.; Samintarapanya, K.; Rusmeechan, S.; Wongsa, A.; Pothirat, C.; Permpikul, C.; Pongpakdee, S.; Puavilai, W.; Kateruttanakul, P.; Phengtham, U.; et al. An outbreak of botulism in Thailand: Clinical manifestations and management of severe respiratory failure. Clin. Infect. Dis. 2006, 43, 1247–1256. [Google Scholar] [CrossRef]
- Courtot-Melciolle, L.; Jauvain, M.; Siefridt, M.; Prevel, R.; Peuchant, O.; Guisset, O.; Mourissoux, G.; Diancourt, L.; Mazuet, C.; Delvallez, G.; et al. Food-borne botulism outbreak during the Rugby World Cup linked to marinated sardines in Bordeaux, France, September 2023. Eurosurveillance 2023, 28, 2300513. [Google Scholar] [CrossRef]
- ECDC. Annual Epidemiological Report for 2022. 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/BOTU_AER_2022_Report%20FINAL.pdf (accessed on 4 November 2024).
- Danzig, R.; Sageman, M.; Leighton, T.; Hough, L.; Yuki, H.; Kotani, R.; Hosford, Z.M. Aum Shinrikyo. In Insights into How Terrorists Develop Biological and Chemical Weapons, 2nd ed.; Center for a New American Security: Washington, DC, USA, 2012; Volume 12. [Google Scholar]
- Dembek, Z.F. Botulism: Cause, effects, diagnosis, clinical and laboratory identification, and treatment modalities. Disaster Med. Public. Health Prep. 2007, 1, 337–353. [Google Scholar] [CrossRef]
- Pirazzini, M.; Montecucco, C.; Rossetto, O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: An update. Arch. Toxicol. 2022, 96, 1521–1539. [Google Scholar] [CrossRef]
- Carruthers, A.; Kane, M.A.; Flynn, T.C.; Huang, P.; Kim, S.D.; Solish, N.; Kaeuper, G. The convergence of medicine and neurotoxins: A focus on botulinum toxin type A and its application in aesthetic medicine—A global, evidence-based botulinum toxin consensus education initiative: Part I: Botulinum toxin in clinical and cosmetic practice. Dermatol. Surg. 2013, 39, 493–509. [Google Scholar] [CrossRef] [PubMed]
- Dorner, M.B.; Schulz, K.M.; Kull, S.; Dorner, B.G. Complexity of botulinum neurotoxins: Challenges for detection technology. Curr. Top. Microbiol. Immunol. 2013, 364, 219–255. [Google Scholar] [PubMed]
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G.; et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Lou, J.; Geren, I.N.; Forsyth, C.M.; Tsai, R.; LaPorte, S.L.; Tepp, W.H.; Bradshaw, M.; Johnson, E.A.; Smith, L.A.; et al. Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect. Immun. 2005, 73, 5450–5457. [Google Scholar] [CrossRef]
- Rasetti-Escargueil, C.; Lemichez, E.; Popoff, M.R. Human Botulism in France, 1875–2016. Toxins 2020, 12, 338. [Google Scholar] [CrossRef]
- Simpson, L.L.; Tapp, J.T. Actions of calcium and magnesium on the rate of onset of botulinum toxin paralysis of the rat diaphragm. Int. J. Neuropharmacol. 1967, 6, 485–492. [Google Scholar] [CrossRef]
- Habermann, E.; Dreyer, F.; Bigalke, H. Tetanus toxin blocks the neuromuscular transmission in vitro like botulinum a toxin. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1980, 311, 33–40. [Google Scholar] [CrossRef]
- Cheng, L.W.; Stanker, L.H. Detection of botulinum neurotoxin serotypes A and B using a chemiluminescent versus electro-chemiluminescent immunoassay in food and serum. J. Agric. Food Chem. 2013, 61, 755–760. [Google Scholar] [CrossRef]
- Pauly, D.; Kirchner, S.; Stoermann, B.; Schreiber, T.; Kaulfuss, S.; Schade, R.; Zbinden, R.; Avondet, M.A.; Dorner, M.B.; Dorner, B.G. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst 2009, 134, 2028–2039. [Google Scholar] [CrossRef]
- Sharma, S.K.; Ferreira, J.L.; Eblen, B.S.; Whiting, R.C. Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immuno-sorbent assay with digoxigenin-labeled antibodies. Appl. Environ. Microbiol. 2006, 72, 1231–1238. [Google Scholar] [CrossRef]
- Weingart, O.G.; Schreiber, T.; Mascher, C.; Pauly, D.; Dorner, M.B.; Berger, T.F.H.; Egger, C.; Gessler, F.; Loessner, M.J.; Avondet, M.-A.; et al. The case of botulinum toxin in milk: Experimental data. Appl. Environ. Microbiol. 2010, 76, 3293–3300. [Google Scholar] [CrossRef] [PubMed]
- Dorner, M.B.; Wilking, H.; Skiba, M.; Wilk, L.; Steinberg, M.; Worbs, S.; Çeken, S.; Kaygusuz, S.; Simon, S.; Becher, F.; et al. A large travel-associated outbreak of iatrogenic botulism in four European countries following in-tragastric botulinum neurotoxin injections for weight reduction, Türkiye, February to March 2023. Eurosurveillance 2023, 28, 2300203. [Google Scholar] [CrossRef] [PubMed]
- Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; et al. Botulinum toxin as a biological weapon: Medical and public health management. Jama 2001, 285, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Boyer, A.E.; Moura, H.; Woolfitt, A.R.; Kalb, S.R.; McWilliams, L.G.; Pavlopoulos, A.; Schmidt, J.G.; Ashley, D.L.; Barr, J.R. From the mouse to the mass spectrometer: Detection and differentiation of the endoproteinase activities of botulinum neurotoxins A-G by mass spectrometry. Anal. Chem. 2005, 77, 3916–3924. [Google Scholar] [CrossRef]
- Jones, R.G.; Ochiai, M.; Liu, Y.; Ekong, T.; Sesardic, D. Development of improved SNAP25 endopeptidase immuno-assays for bot-ulinum type A and E toxins. J. Immunol. Methods 2008, 329, 92–101. [Google Scholar] [CrossRef]
- Hallis, B.; James, B.A.; Shone, C.C. Development of novel assays for botulinum type A and B neurotoxins based on their endo-peptidase activities. J. Clin. Microbiol. 1996, 34, 1934–1938. [Google Scholar] [CrossRef]
- Bagramyan, K.; Barash, J.R.; Arnon, S.S.; Kalkum, M. Attomolar detection of botulinum toxin type A in complex biological matrices. PLoS ONE 2008, 3, e2041. [Google Scholar] [CrossRef]
- Fernández-Salas, E.; Wang, J.; Molina, Y.; Nelson, J.B.; Jacky, B.P.S.; Aoki, K.R. Botulinum neurotoxin serotype a specific cell-based potency assay to replace the mouse bioassay. PLoS ONE 2012, 7, e49516. [Google Scholar] [CrossRef]
- Kiris, E.; Kota, K.P.; Burnett, J.C.; Soloveva, V.; Kane, C.D.; Bavari, S. Recent developments in cell-based assays and stem cell tech-nologies for botulinum neurotoxin research and drug discovery. Expert. Rev. Mol. Diagn. 2014, 14, 153–168. [Google Scholar] [CrossRef]
- Jenko, K.L.; Zhang, Y.; Kostenko, Y.; Fan, Y.; Garcia-Rodriguez, C.; Lou, J.; Marks, J.D.; Varnum, S.M. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins. Analyst 2014, 139, 5093–5102. [Google Scholar] [CrossRef]
- Koh, C.-Y.; Schaff, U.Y.; Piccini, M.E.; Stanker, L.H.; Cheng, L.W.; Ravichandran, E.; Singh, B.-R.; Sommer, G.J.; Singh, A.K. Centrifugal microfluidic platform for ultrasensitive detection of botulinum toxin. Anal. Chem. 2014, 87, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Brennan, M.B.; Wilton, R.; Rowland, C.E.; Rozhkova, E.A.; Forrester, S.; Hannah, D.C.; Carlson, J.; Shevchenko, E.V.; Schabacker, D.S.; et al. Fast, Ratiometric FRET from Quantum Dot Conjugated Stabilized Single Chain Variable Fragments for Quantitative Botulinum Neurotoxin Sensing. Nano Lett. 2015, 15, 7161–7167. [Google Scholar] [CrossRef] [PubMed]
- Lévêque, C.; Ferracci, G.; Maulet, Y.; Mazuet, C.; Popoff, M.; Seagar, M.; El Far, O. Direct biosensor detection of botulinum neurotoxin endopeptidase activity in sera from patients with type A botulism. Biosens. Bioelectron. 2014, 57, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Worbs, S.; Fiebig, U.; Zeleny, R.; Schimmel, H.; Rummel, A.; Luginbühl, W.; Dorner, B.G. Qualitative and Quantitative Detection of Botu-linum Neurotoxins from Complex Matrices: Results of the First International Proficiency Test. Toxins 2015, 7, 4935–4966. [Google Scholar] [CrossRef]
- Busschots, K.; Weisemann, J.; Krez, N.; Winter, B.; Kampa, B.; Skiba, M.; Worbs, S.; Dorner, B.G.; Van Nieuwenhuysen, T.; Rasetti-Escargueil, C.; et al. The Certification of the Protein Mass Concentration of Botulinum Neurotoxin A (BoNT/A) in Buffer: EURM-111; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Worbs, S.; Skiba, M.; Bender, J.; Zeleny, R.; Schimmel, H.; Luginbühl, W.; Dorner, B.G. An international proficiency test to detect, identify and quantify ricin in complex matrices. Toxins 2015, 7, 4987–5010. [Google Scholar] [CrossRef]
- ISO 13528:2015; Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison. International Organization for Standardization (ISO): Geneva, Switzerland, 2015.
- Weisemann, J.; Krez, N.; Fiebig, U.; Worbs, S.; Skiba, M.; Endermann, T.; Dorner, M.B.; Bergström, T.; Muñoz, A.; Zegers, I.; et al. Generation and Characterization of Six Recombinant Botulinum Neurotoxins as Reference Material to Serve in an International Proficiency Test. Toxins 2015, 7, 5035–5054. [Google Scholar] [CrossRef]
- Shone, C.C.; Tranter, H.S. Growth of clostridia and preparation of their neurotoxins. Curr. Top. Microbiol. Immunol. 1995, 195, 143–160. [Google Scholar]
- Evans, E.; Skipper, P.; Shone, C. An assay for botulinum toxin types A, B and F that requires both functional binding and catalytic activities within the neurotoxin. J. Appl. Microbiol. 2009, 107, 1384–1391. [Google Scholar] [CrossRef]
Sample | Matrix | Spiked Toxin | Assigned Concentration [ng/mL] | Theoretical Concentration [ng/mL] |
---|---|---|---|---|
S01 | Soil | – | – | – |
S02 | 0.1% BSA/PBS | BoNT/F1 | 5.31 | 10 |
S03 | Serum | – | – | – |
S04 | Milk | recBoNT/B1 | 6.62 | 10 |
S06 | 0.1% BSA/PBS | BoNT/E1 | 0.59 | 10 |
S07 | Milk | – | – | – |
S08 | Milk | BoNT/B1 | 1.98 | 10 |
S10 | Soil | BoNT/B5a4 | 38.74 (B5) 18.93 (A4) | 40 |
S11 | 0.1% BSA/PBS | recBoNT/B1 | 0.66 | 0.5 |
S12 | 0.1% BSA/PBS | BoNT/A1 | 11.97 | 10 |
S13 | Serum | recBoNT/A1 | 0.64 | 0.5 |
S14 | 0.1% BSA/PBS | BoNT/A3 | 17.45 | 10 |
S15 | 0.1% BSA/PBS | BoNT/B1 | 0.15 | 0.5 |
S16 | Milk | recBoNT/B1 | 0.38 | 0.5 |
S17 | Milk | BoNT/B1 | 0.12 | 0.5 |
S18 | 0.1% BSA/PBS | BoNT/B2 | 1.31 | 10 |
METHODS | BoNT/A | BoNT/B | BoNT/E | BoNT/F | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Count | Correct Positive [%] | Correct Negative [%] | Correct [%] | Total Count | Correct Positive [%] | Correct Negative [%] | Correct [%] | Total Count | Correct Positive [%] | Correct Negative [%] | Correct [%] | Total Count | Correct Positive [%] | Correct Negative [%] | Correct [%] | |
ALL METHODS | 901 | 21.5 | 69.6 | 91.1 | 849 | 37.1 | 46.6 | 83.7 | 640 | 5.5 | 90.6 | 96.1 | 389 | 5.1 | 91.8 | 96.9 |
FUNCTIONAL METHODS | 286 | 21.7 | 71 | 92.7 | 256 | 47.6 | 49.2 | 96.8 | 229 | 3.9 | 91.7 | 95.6 | 223 | 5 | 91 | 96 |
Endopep-ELISA Bead A+B | 16 | 25 | 75 | 100 | 16 | 50 | 50 | 100 | - | - | - | - | - | - | - | - |
Endopep-MS | 181 | 21 | 70.2 | 91.2 | 145 | 50.3 | 48.3 | 98.6 | 144 | 4.9 | 91 | 95.9 | 144 | 6.3 | 90.3 | 96.6 |
Hemidiaphragm assay (HDA or MPN) | 19 | 21.1 | 73.7 | 94.8 | 19 | 36.8 | 63.2 | 100 | 19 | 0 | 100 | 100 | 19 | 10.5 | 89.5 | 100 |
Mouse Bioassay (MBA) | 70 | 22.9 | 71.4 | 94.3 | 76 | 44.7 | 47.4 | 92.1 | 66 | 3 | 90.9 | 93.9 | 60 | 0 | 93.3 | 93.3 |
IMMUNOLOGICAL METHODS | 603 | 21.2 | 69 | 90.2 | 576 | 32.7 | 44.8 | 77.5 | 399 | 6.5 | 89.8 | 96.3 | 154 | 5.9 | 92.2 | 98.1 |
ELISA CEA A, B or E | 46 | 30.4 | 65.2 | 95.6 | 54 | 51.9 | 33.3 | 85.2 | 32 | 6.3 | 93.8 | 100 | - | - | - | - |
BioSentinel E | - | - | - | - | - | - | - | - | 8 | 0 | 75 | 75 | - | - | - | - |
ELISA in-house 2A or 2B | 32 | 12.5 | 68.8 | 81.3 | 32 | 37.5 | 37.5 | 75 | - | - | - | - | - | - | - | - |
ELISA RKI 1A, 1B, 1E or 1F | 201 | 27.9 | 70.6 | 98.5 | 104 | 49 | 46.2 | 95.2 | 112 | 6.3 | 93.8 | 100 | 32 | 6.3 | 90.6 | 96.9 |
ELISA RKI 2F or 2E | - | - | - | - | - | - | - | - | 2 | 100 | - | 100 | 2 | 100 | - | 100 |
ELISA RKI 3A, 3B or 3F | 32 | 15.6 | 53.1 | 68.7 | 70 | 42.9 | 45.7 | 88.6 | - | - | - | - | 32 | - | 93.8 | 93.8 |
ELISA RKI 3Bi | - | - | - | - | 32 | 12.5 | 50 | 62.5 | - | - | - | - | - | - | - | - |
ELISA RKI 4F | - | - | - | - | - | - | - | - | - | - | - | - | 32 | 6.3 | 93.8 | 100 |
LFA CEA Multiplex | 196 | 15.3 | 71.9 | 87.2 | 196 | 18.4 | 48 | 66.4 | 196 | 6.1 | 87.8 | 93.9 | - | - | - | - |
LFA Miprolab A or B | 40 | 17.5 | 65 | 82.5 | 32 | 37.5 | 43.8 | 81.3 | - | - | - | - | - | - | - | - |
Microarray (ELISA-based) pBDi | 8 | 0 | 62.5 | 62.5 | 8 | 0 | 50 | 50 | 1 | 0 | 0 | 0 | 8 | 0 | 100 | 100 |
Microarray (ELISA-based) Bead commercial | 32 | 25 | 65.6 | 90.6 | 32 | 25 | 37.5 | 62.5 | 32 | 6.3 | 93.8 | 100 | 32 | 6.3 | 93.8 | 100 |
Microarray (ELISA-based) Bead in-house | 16 | 25 | 75 | 100 | 16 | 43.8 | 50 | 93.8 | 16 | 6.3 | 93.8 | 100 | 16 | 6.3 | 93.8 | 100 |
LC-MS/MS | 12 | 33.3 | 66.7 | 100 | 17 | 29.4 | 70.6 | 100 | 12 | 0 | 100 | 100 | 12 | 0 | 100 | 100 |
LC-MS/MS | 12 | 33.3 | 66.7 | 100 | 17 | 29.4 | 70.6 | 100 | 12 | 0 | 100 | 100 | 12 | 0 | 100 | 100 |
Principles | Sample | BoNT/A | BoNT/B | BoNT/E | BoNT/F | ||||
---|---|---|---|---|---|---|---|---|---|
n | Mean Success Rate [%] | n | Mean Success Rate [%] | n | Mean Success Rate [%] | n | Mean Success Rate [%] | ||
functional methods | S01 (O) | 20 | 90.0 | 18 | 88.9 | 17 | 88.2 | 15 | 100.0 |
S02 (P_F1_10) | 16 | 100.0 | 14 | 85.7 | 13 | 100.0 | 13 | 84.6 | |
S03 (R) | 19 | 89.5 | 18 | 100.0 | 15 | 100.0 | 15 | 100.0 | |
S04 (M_rB1_10) | 18 | 100.0 | 16 | 100.0 | 15 | 100.0 | 15 | 86.7 | |
S06 (P_E1_10) | 16 | 100.0 | 14 | 100.0 | 15 | 60.0 | 13 | 76.9 | |
S07 (M) | 20 | 100.0 | 18 | 100.0 | 17 | 100.0 | 15 | 100.0 | |
S08 (M_B1_10) | 17 | 100.0 | 15 | 100.0 | 14 | 100.0 | 14 | 85.7 | |
S10 (R_B5a4_40) | 20 | 35.0 | 18 | 88.9 | 14 | 85.7 | 14 | 100.0 | |
S11 (P_rB1_10) | 17 | 100.0 | 15 | 100.0 | 14 | 100.0 | 14 | 100.0 | |
S12 (P_A1_10) | 19 | 100.0 | 16 | 100.0 | 15 | 100.0 | 15 | 100.0 | |
S13 (R_rA1_0.5) | 19 | 89.5 | 16 | 100.0 | 13 | 100.0 | 13 | 100.0 | |
S14 (P_A3_10) | 19 | 100.0 | 16 | 100.0 | 15 | 100.0 | 15 | 100.0 | |
S15 (P_B1_0.5) | 16 | 100.0 | 16 | 100.0 | 13 | 100.0 | 13 | 100.0 | |
S16 (M_rB1_0.5) | 18 | 88.9 | 16 | 100.0 | 13 | 100.0 | 13 | 100.0 | |
S17 (M_B1_0.5) | 16 | 100.0 | 14 | 100.0 | 13 | 100.0 | 13 | 100.0 | |
S18 (P_B2_10) | 16 | 100.0 | 16 | 87.5 | 13 | 100.0 | 13 | 100.0 | |
immunological methods | S01 (O) | 37 | 94.6 | 35 | 100.0 | 26 | 100.0 | 9 | 100.0 |
S02 (P_F1_10) | 35 | 94.3 | 33 | 100.0 | 24 | 100.0 | 11 | 81.8 | |
S03 (R) | 40 | 62.5 | 36 | 77.8 | 24 | 83.3 | 10 | 100.0 | |
S04 (M_rB1_10) | 37 | 100.0 | 39 | 92.3 | 24 | 100.0 | 10 | 100.0 | |
S06 (P_E1_10) | 37 | 100.0 | 34 | 100.0 | 29 | 89.7 | 10 | 100.0 | |
S07 (M) | 35 | 100.0 | 33 | 100.0 | 24 | 100.0 | 9 | 100.0 | |
S08 (M_B1_10) | 38 | 100.0 | 40 | 92.5 | 25 | 100.0 | 10 | 100.0 | |
S10 (R_B5a4_40) | 41 | 61.0 | 38 | 76.3 | 27 | 100.0 | 10 | 100.0 | |
S11 (P_rB1_10) | 35 | 97.1 | 38 | 68.4 | 24 | 95.8 | 9 | 100.0 | |
S12 (P_A1_10) | 43 | 86.0 | 35 | 100.0 | 25 | 100.0 | 10 | 100.0 | |
S13 (R_rA1_0.5) | 38 | 76.3 | 36 | 72.2 | 24 | 75.0 | 10 | 100.0 | |
S14 (P_A3_10) | 42 | 88.1 | 34 | 100.0 | 25 | 96.0 | 9 | 100.0 | |
S15 (P_B1_0.5) | 37 | 97.3 | 36 | 33.3 | 24 | 100.0 | 9 | 100.0 | |
S16 (M_rB1_0.5) | 37 | 100.0 | 36 | 50.0 | 24 | 100.0 | 9 | 88.9 | |
S17 (M_B1_0.5) | 35 | 97.1 | 36 | 33.3 | 26 | 100.0 | 9 | 100.0 | |
S18 (P_B2_10) | 36 | 97.2 | 37 | 48.6 | 24 | 100.0 | 10 | 100.0 | |
mass spectrometric methods (not functional) | S01 (O) | 2 | 100.0 | 2 | 100.0 | 2 | 100.0 | 2 | 100.0 |
S02 (P_F1_10) | - | - | - | - | - | - | - | - | |
S03 (R) | 2 | 100.0 | 2 | 100.0 | 2 | 100.0 | 2 | 100.0 | |
S04 (M_rB1_10) | - | - | 1 | 100.0 | - | - | - | - | |
S06 (P_E1_10) | - | - | - | - | - | - | - | - | |
S07 (M) | 2 | 100.0 | 3 | 100.0 | 2 | 100.0 | 2 | 100.0 | |
S08 (M_B1_10) | - | - | - | - | - | - | - | - | |
S10 (R_B5a4_40) | - | - | 1 | 100.0 | - | - | - | - | |
S11 (P_rB1_10) | - | - | - | - | - | - | - | - | |
S12 (P_A1_10) | 2 | 100.0 | 2 | 100.0 | 2 | 100.0 | 2 | 100.0 | |
S13 (R_rA1_0.5) | - | - | - | - | - | - | - | - | |
S14 (P_A3_10) | 2 | 100.0 | 3 | 100.0 | 2 | 100.0 | 2 | 100.0 | |
S15 (P_B1_0.5) | - | - | - | - | - | - | - | - | |
S16 (M_rB1_0.5) | - | - | - | - | - | - | - | - | |
S17 (M_B1_0.5) | - | - | - | - | - | - | - | - | |
S18 (P_B2_10) | 2 | 100.0 | 3 | 100.0 | 2 | 100.0 | 2 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasetti-Escargueil, C.; Popoff, M.R.; Kampa, B.; Worbs, S.; Marechal, M.; Guerin, D.; Paillares, E.; Luginbühl, W.; Lemichez, E. International Proficiency Test Targeting a Large Panel of Botulinum Neurotoxin Sero- and Subtypes in Different Matrices. Toxins 2024, 16, 485. https://doi.org/10.3390/toxins16110485
Rasetti-Escargueil C, Popoff MR, Kampa B, Worbs S, Marechal M, Guerin D, Paillares E, Luginbühl W, Lemichez E. International Proficiency Test Targeting a Large Panel of Botulinum Neurotoxin Sero- and Subtypes in Different Matrices. Toxins. 2024; 16(11):485. https://doi.org/10.3390/toxins16110485
Chicago/Turabian StyleRasetti-Escargueil, Christine, Michel Robert Popoff, Bettina Kampa, Sylvia Worbs, Maud Marechal, Daniel Guerin, Eléa Paillares, Werner Luginbühl, and Emmanuel Lemichez. 2024. "International Proficiency Test Targeting a Large Panel of Botulinum Neurotoxin Sero- and Subtypes in Different Matrices" Toxins 16, no. 11: 485. https://doi.org/10.3390/toxins16110485
APA StyleRasetti-Escargueil, C., Popoff, M. R., Kampa, B., Worbs, S., Marechal, M., Guerin, D., Paillares, E., Luginbühl, W., & Lemichez, E. (2024). International Proficiency Test Targeting a Large Panel of Botulinum Neurotoxin Sero- and Subtypes in Different Matrices. Toxins, 16(11), 485. https://doi.org/10.3390/toxins16110485