Exposure of Cattle Breeding Herds to Naturally Co-Contaminated Zearalenone and Deoxynivalenol: The Relevance of a Urinary Mycotoxin Monitoring System for Herd Health and Food Safety
<p>Urinary co-contamination levels in the JB and HF breeding herds, measured by an ELISA and LC-MS/MS. Cre: creatinine; ND: not detected; Total ZEN = ZEN/Cre + α-ZEL/Cre + β-ZEL/Cre; Total DON = DON/Cre + Ac-DON/Cre.</p> "> Figure 2
<p>(<b>a</b>) AMH levels (trend lines, mean, and SEM) in both JB and HF breeding herds; (<b>b</b>) SAA levels (trend lines, mean, and SEM) in both JB and HF breeding herds; (<b>c</b>) Changes in both urinary ZEN and SAA levels in the HF breeding herd; (<b>d</b>) Changes in both urinary DON and SAA levels in the HF breeding herd.</p> "> Figure 3
<p>The patterns of blood biochemical analyses (mean ± SEM) of the examined cattle. GOT: glutamate-oxaloacetate transaminase; GGT: gamma-glutamyl transpeptidase; FFA: free fatty acids; T-Cho: total cholesterol; BUN: blood urea nitrogen; GLU: glucose; Ca: calcium; IP: inorganic phosphorus; Mg: magnesium; TG: triglycerides; Vit.A: vitamin A; Vit.E: vitamin E; 3HB: 3-hydroxybutyrate; TP: total protein; Alb: albumin; AG: albumin/globulin ratio.</p> "> Figure 4
<p>(<b>a</b>) The mean value of urinary 8-OHdG/Cre levels in the HF breeding herd (3 times dilution); (<b>b</b>) The mean value of urinary 8-OHdG/Cre levels in a non-contaminated breeding herd (20 times dilution); (<b>c</b>) Progesterone levels in the HF breeding herd at each sampling period; *: significant differences (<span class="html-italic">p</span> < 0.05). Different color dots represent the urinary 8-OHdG/Cre levels in different cows.</p> "> Figure 5
<p>The clinical information of the JB and HF breeding herds. (<b>a</b>) The cow conception rate (CCR), feeding modification, and the date of artificial insemination (AI) in the JB breeding herd; (<b>b</b>) the CCR and abortion rate in the HF breeding herd; (<b>c</b>) the SCC, mastitis cases, and treatment rates in the HF breeding herd; N/A: the data record was not available. MA: mycotoxin adsorbent; ↓↓: the urine indicates a high level of ZEN and DON; ↓: the urine indicates a high level of DON.</p> "> Figure 6
<p>Flow chart of the urinary ZEN-DON monitoring system by ELISA for initial detection and LC-MS/MS for confirmation; DW: distilled water.</p> "> Figure 7
<p>An illustration of the experimental design. The design includes monthly changes of highest and lowest temperatures in degrees Celsius (°C) for the JB and HF breeding herds, as well as comprehensive information on sampling time and the biomarkers analyzed in feed, blood, and urine samples. A harmful mark indicates the first time mycotoxin contamination was detected in feed on both herds (July 2022); TMR: total mixed ratio; WCS: whole crop silage; Italian r.: Italian ryegrass; Mix*: mixture of TMR, WCS, and Italian ryegrass; ZEN: zearalenone; α-ZEL: α-zearalenol; β-ZEL: β-zearalenol; DON: deoxynivalenol; 3-Ac-DON: 3-acetyldeoxynivalenol; AMH: anti-Müllerian hormone; SAA: serum amyloid A; 8-OHdG: 8-hydroxy-2′-deoxyguanosine.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Co-Contamination Status in Cattle Breeding Herds
2.2. Biomarker Analysis
2.3. Clinical Information
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals and Solvents
5.2. Identification of Mycotoxin Co-Contaminated Herds as ZEN-Dominant and DON-Dominant Models
5.2.1. JB Breeding Herd as ZEN-Dominant Model
5.2.2. HF Breeding Herd as DON-Dominant Model
5.3. Dietary Components, Experimental Design, and Sample Collection
5.4. Analytical Methods of Mycotoxins in Feed Samples
5.5. Analytical Methods of ZEN in Urine Samples
5.6. Analytical Methods of DON in Urine Samples
5.6.1. Preliminary Trial for Urinary DON Measurement by ELISA
5.6.2. Preliminary Trial for Urinary DON Measurement by LC-MS/MS
5.6.3. DON Measurement by LC-MS/MS
5.7. Analytical Method of Biochemical Parameters in Serum Samples and Urinary Levels of 8-OHdG
5.8. Data Management and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alonso, V.A.; Pereyra, C.M.; Keller, L.A.M.; Dalcero, A.M.; Rosa, C.A.R.; Chiacchiera, S.M.; Cavaglieri, L.R. Fungi and mycotox ins in silage: An overview. J. Appl. Microbiol. 2013, 115, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Applegate, T. Zearalenone (ZEN) in livestock and poultry: Dose, toxicokinetics, toxicity and estrogenicity. Toxins 2020, 12, 377. [Google Scholar] [CrossRef] [PubMed]
- Vandicke, J.; De Visschere, K.; Ameye, M.; Croubels, S.; De Saeger, S.; Audenaert, K.; Haesaert, G. Multi-mycotoxin contamination of maize silages in Flanders, Belgium: Monitoring mycotoxin levels from seed to feed. Toxins 2021, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2019, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Thapa, A.; Horgan, K.A.; White, B.; Walls, D. Deoxynivalenol and zearalenone—Synergistic or antagonistic agri-food chain co-contaminants? Toxins 2021, 13, 561. [Google Scholar] [CrossRef]
- Takagi, M.; Uno, S.; Kokushi, E.; Shiga, S.; Mukai, S.; Kuriyagawa, T.; Takagaki, K.; Hasunuma, H.; Matsumoto, D.; Okamoto, K.; et al. Measurement of urinary zearalenone concentrations for monitoring natural feed contamination in cattle herds: On-farm trials. J. Anim. Sci. 2011, 89, 287–296. [Google Scholar] [CrossRef]
- Hasunuma, H.; Takagi, M.; Kawamura, O.; Taniguchi, C.; Nakamura, M.; Chuma, T.; Uno, S.; Kokushi, E.; Matsumoto, D.; Tshering, C.; et al. Natural contamination of dietary rice straw with zearalenone and urinary zearalenone concentrations in a cattle herd. J. Anim. Sci. 2012, 90, 1610–1616. [Google Scholar] [CrossRef]
- Widodo, O.S.; Etoh, M.; Kokushi, E.; Uno, S.; Yamato, O.; Pambudi, D.; Okawa, H.; Taniguchi, M.; Lamid, M.; Takagi, M. Practical application of urinary zearalenone monitoring system for feed hygiene management of a japanese black cattle breeding herd—The relationship between monthly anti-Müllerian hormone and serum amyloid A concentrations. Toxins 2022, 14, 143. [Google Scholar] [CrossRef]
- Widodo, O.S.; Pambudi, D.; Etoh, M.; Kokushi, E.; Uno, S.; Yamato, O.; Taniguchi, M.; Lamid, M.; Takagi, M. Practical application of a urinary zearalenone monitoring system for feed hygiene management of a japanese black cattle breeding herd—Relevance to anti-Müllerian hormone and serum amyloid A clarified from a two-year survey. Toxins 2023, 15, 317. [Google Scholar] [CrossRef]
- Mossa, F.; Jimenez-Krassel, F.; Scheetz, D.; Weber-Nielsen, M.; Evans, A.C.O.; Ireland, J.J. Anti-Müllerian hormone (AMH) and fertility management in agricultural species. Reproduction 2017, 154, R1–R11. [Google Scholar] [CrossRef] [PubMed]
- Mossa, F.; Ireland, J.J. Anti-Müllerian hormone: A biomarker for the ovarian reserve, ovarian function, and fertility in dairy cows. J. Anim. Sci. 2019, 97, 1446–1455. [Google Scholar] [CrossRef] [PubMed]
- Umer, S.; Zhao, S.J.; Sammad, A.; Sahlu, B.W.; Pang, Y.; Zhu, H. AMH: Could it be used as a biomarker for fertility and superovulation in domestic animals? Genes 2019, 10, 1009. [Google Scholar] [CrossRef]
- Ramesha, K.P.; Jeyakumar, S.; Mall, S.; Vedamurthy, G.V.; Kumaresan, A.; Devadasn, M.J.; Kataktalware, M.A.; Arul, D.; Das, D.N.; Manimaran, A. Anti-Müllerian hormone as an endocrine biomarker of reproductive longevity and assessment of single nucleotide polymorphisms in AMH gene of Bos indicus breeds of cattle. Reprod. Domest. Anim. 2022, 57, 1450–1464. [Google Scholar] [CrossRef]
- Eckersall, P.; Bell, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010, 185, 23–27. [Google Scholar] [CrossRef]
- Chan, J.P.; Chang, C.; Hsu, W.; Liu, W.; Chen, T. Association of increased serum acute-phase protein concentrations with reproductive performance in dairy cows with postpartum metritis. Vet. Clin. Pathol. 2010, 39, 72–78. [Google Scholar] [CrossRef]
- Bazzano, M.; Marchegiani, A.; Troisi, A.; McLean, A.; Laus, F. Serum amyloid A as a promising biomarker in domestic animals’ reproduction: Current knowledge and future perspective. Animals 2022, 12, 589. [Google Scholar] [CrossRef] [PubMed]
- Shinya, U.; Iwamura, Y.; Yamato, O.; Pambudi, D.; Widodo, O.S.; Taniguchi, M.; Takagi, M. Serum amyloid A concentrations of healthy and clinically diseased japanese black breeding cattle—Preliminary measurements for determining the cut-off concentrations. Vet. Sci. 2022, 9, 198. [Google Scholar] [CrossRef]
- Pestka, J.J. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim. Feed Sci. Technol. 2007, 137, 283–298. [Google Scholar] [CrossRef]
- Muñoz-Solano, B.; González-Peñas, E. Co-Occurrence of mycotoxins in feed for cattle, pigs, poultry, and sheep in Navarra, a Region of Northern Spain. Toxins 2023, 15, 172. [Google Scholar] [CrossRef]
- Guerrero-Netro, H.M.; Chorfi, Y.; Price, C.A. Effects of the mycotoxin deoxynivalenol on steroidogenesis and apoptosis in granulosa cells. Reproduction 2015, 149, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Novak, B.; Vatzia, E.; Springler, A.; Pierron, A.; Gerner, W.; Reisinger, N.; Hessenberger, S.; Schatzmayr, G.; Mayer, E. Bovine peripheral blood mononuclear cells are more sensitive to deoxynivalenol than those derived from poultry and swine. Toxins 2018, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Jin, Y.; Tian, Y.; Yu, H.; Wang, R.; Qi, H.; Feng, B.; Zhang, J. Zearalenone Promotes LPS-induced oxidative stress, endoplasmic reticulum stress, and accelerates bovine mammary epithelial cell apoptosis. Int. J. Mol. Sci. 2022, 23, 10925. [Google Scholar] [CrossRef] [PubMed]
- Giromini, C.; Rebucci, R.; Fusi, E.; Rossi, L.; Saccone, F.; Baldi, A. Cytotoxicity, apoptosis, DNA damage and methylation in mammary and kidney epithelial cell lines exposed to ochratoxin A. Cell Biol. Toxicol. 2016, 32, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Olarotimi, O.J.; Gbore, F.A.; Adu, O.A.; Oloruntola, O.D.; Jimoh, O.A. Ameliorative effects of Sida acuta and vitamin C on serum DNA damage, pro-inflammatory and anti-inflammatory cytokines in roosters fed aflatoxin B1 contaminated diets. Toxicon 2023, 236, 107330. [Google Scholar] [CrossRef]
- Reisinger, N.; Schürer-Waldheim, S.; Mayer, E.; Debevere, S.; Antonissen, G.; Sulyok, M.; Nagl, V. Mycotoxin occurrence in maize silage—A neglected risk for bovine gut health? Toxins 2019, 11, 577. [Google Scholar] [CrossRef]
- Kinkade, C.W.; Rivera-Núñez, Z.; Gorcyzca, L.; Aleksunes, L.M.; Barrett, E.S. Impact of Fusarium-derived mycoestrogens on female reproduction: A systematic review. Toxins 2021, 13, 373. [Google Scholar] [CrossRef]
- Vandicke, J.; De Visschere, K.; Croubels, S.; De Saeger, S.; Audenaert, K.; Haesaert, G. Mycotoxins in Flanders’ Fields: Occurrence and correlations with Fusarium species in whole-plant harvested maize. Microorganisms 2019, 7, 571. [Google Scholar] [CrossRef]
- Lee, M.J.; Kim, H.J. Development of an immunoaffinity chromatography and LC-MS/MS method for the determination of 6 zearalenones in animal feed. PLoS ONE. 2018, 13, e0193584. [Google Scholar] [CrossRef]
- Panasiuk, L.; Jedziniak, P.; Pietruszka, K.; Piatkowska, M.; Bocian, L. Frequency and levels of regulated and emerging mycotoxins in silage in Poland. Mycotoxin Res. 2018, 35, 17–25. [Google Scholar] [CrossRef]
- Nualkaw, K.; Poapolathep, S.; Zhang, Z.; Zhang, Q.; Giorgi, M.; Li, P.; Logrieco, A.F.; Poapolathep, A. Simultaneous determination of multiple mycotoxins in swine, poultry and dairy feeds using ultra high performance liquid chromatography-tandem mass spectrometry. Toxins 2020, 12, 253. [Google Scholar] [CrossRef]
- Liew, W.P.P.; Nurul-Adilah, Z.; Than, L.T.L.; Mohd-Redzwan, S. The binding efficiency and interaction of Lactobacillus casei shirota toward aflatoxin B1. Front. Microbiol. 2018, 9, 1503. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, M.; Li, C.; Yang, F.; Wang, G. Understanding the toxin effects of β-zearalenol and HT-2 on bovine granulosa cells using iTRAQ-based proteomics. Animals 2020, 10, 130. [Google Scholar] [CrossRef] [PubMed]
- Fink-Gremmels, J. The role of mycotoxins in the health and performance of dairy cows. Vet. J. 2008, 176, 84–92. [Google Scholar] [CrossRef]
- Usleber, E.; Renz, V.; Märtlbauer, E.; Terplan, G. Studies on the application of enzyme immunoassays for the Fusarium mycotoxins deoxynivalenol, 3-Acetyldeoxynivalenol, and zearalenone. J. Vet. Med. Ser. B 1992, 39, 617–627. [Google Scholar] [CrossRef]
- Polak-Śliwińska, M.; Paszczyk, B. Trichothecenes in food and feed, relevance to human and animal health and methods of detection: A systematic review. Molecules 2021, 26, 454. [Google Scholar] [CrossRef] [PubMed]
- Fushimi, Y.; Takagi, M.; Uno, S.; Kokushi, E.; Nakamura, M.; Hasunuma, H.; Shinya, U.; Deguchi, E.; Fink-Gremmels, J. Measurement of sterigmatocystin concentrations in urine for monitoring the contamination of cattle feed. Toxins 2014, 6, 3117–3128. [Google Scholar] [CrossRef]
- Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed Sci. Technol. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Côté, L.M.; Dahlem, A.; Yoshizawa, T.; Swanson, S.; Buck, W. Excretion of deoxynivalenol and its metabolite in milk, urine, and feces of lactating dairy cows. J. Dairy Sci. 1986, 69, 2416–2423. [Google Scholar] [CrossRef]
- Jia, H.; Liu, N.; Zhang, Y.; Wang, C.; Yang, Y.; Wu, Z. 3-Acetyldeoxynivalenol induces cell death through endoplasmic reticulum stress in mouse liver. Environ. Pollut. 2021, 286, 117238. [Google Scholar] [CrossRef]
- Nguyen, N.; Varga, E.; Maragos, C.; Baumgartner, S.; Adam, G.; Berthiller, F. Cross-reactivity of commercial and non-commercial deoxynivalenol-antibodies to emerging trichothecenes and common deoxynivalenol-derivatives. World Mycotoxin J. 2019, 12, 45–53. [Google Scholar] [CrossRef]
- Seeling, K.; Lebzien, P.; Dänicke, S.; Spilke, J.; Südekum, K.; Flachowsky, G. Effects of level of feed intake and Fusarium toxin-contaminated wheat on rumen fermentation as well as on blood and milk parameters in cows. J. Anim. Physiol. Anim. Nutr. 2005, 90, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Netro, H.M.; Barreta, M.H.; Costa, E.; Goetten, A.; Dupras, R.; Mills, L.; Koch, J.; Portela, V.M.; Price, C.A.; Chorfi, Y. Effects of the mycotoxin metabolite de-epoxy-deoxynivalenol (DOM-1) on embryo development and sperm motility in cattle. J. Appl. Toxicol. 2020, 41, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Pizzo, F.; Caloni, F.; Schreiber, N.B.; Cortinovis, C.; Spicer, L.J. In vitro effects of deoxynivalenol and zearalenone major metabolites alone and combined, on cell proliferation, steroid production and gene expression in bovine small-follicle granulosa cells. Toxicon 2016, 109, 70–83. [Google Scholar] [CrossRef]
- Rico, C.; Fabre, S.; Medigue, C.; Clemente, N.D.; Clement, F.; Bontoux, M.; Touze, J.L.; Dupont, M.; Briant, E.; Remy, B.; et al. Anti-Mullerian hormone is an endocrine marker of ovarian gonadotropin-responsive follicles and can help to predict superovulatory responses in the cow. Biol. Reprod. 2008, 80, 50–59. [Google Scholar] [CrossRef]
- Rico, C.; Médigue, C.; Fabre, S.; Jarrier, P.; Bontoux, M.; Clément, F.; Monniaux, D. Regulation of Anti-Müllerian hormone production in the cow: A multiscale study at endocrine, ovarian, follicular, and granulosa cell levels. Biol. Reprod. 2011, 84, 560–571. [Google Scholar] [CrossRef]
- Minervini, F.; Giannoccaro, A.; Fornelli, F.; Dell’Aquila, M.E.; Minoia, P.; Visconti, A. Influence of mycotoxin zearalenone and its derivatives (alpha and beta zearalenol) on apoptosis and proliferation of cultured granulosa cells from equine ovaries. Reprod. Biol. Endocrinol. 2006, 4, 62. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, F.; Oguejiofor, C.F.; Wang, D.; Dong, S.; Yan, Z. Endometrial expression of the acute phase molecule SAA is more significant than HP in reflecting the severity of endometritis. Res. Vet. Sci. 2018, 121, 130–133. [Google Scholar] [CrossRef]
- Zhu, L.; Yuan, H.; Guo, C.; Lu, Y.; Deng, S.; Yang, Y.; Wei, Q.; Wen, L.; He, Z. Zearalenone induces apoptosis and necrosis in porcine granulosa cells via a caspase-3- and caspase-9-dependent mitochondrial signaling pathway. J. Cell. Physiol. 2012, 227, 1814–1820. [Google Scholar] [CrossRef]
- Pistol, G.C.; Gras, M.A.; Marin, D.E.; Israel-Roming, F.; Stancu, M.; Taranu, I. Natural feed contaminant zearalenone decreases the expressions of important pro- and anti-inflammatory mediators and mitogen-activated protein kinase/NF-κB signalling molecules in pigs. Br. J. Nutr. 2013, 111, 452–464. [Google Scholar] [CrossRef]
- Bulgaru, C.V.; Marin, D.E.; Pistol, G.C.; Taranu, I. Zearalenone and the immune response. Toxins 2021, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.Y.; Liu, C.C.; Wang, S.C.; Chen, K.Y.; Lin, T.C.; Liu, P.L.; Chiu, C.C.; Chen, I.C.; Lai, Y.H.; Cheng, W.C.; et al. Mycotoxin zearalenone attenuates innate immune responses and suppresses NLRP3 inflammasome activation in LPS-activated macrophages. Toxins 2021, 13, 593. [Google Scholar] [CrossRef]
- Takagi, M.; Mukai, S.; Kuriyagawa, T.; Takagaki, K.; Uno, S.; Kokushi, E.; Otoi, T.; Budiyanto, A.; Shirasuna, K.; Miyamoto, A.; et al. Detection of zearalenone and its metabolites in naturally contaminated follicular fluids by using LC/MS/MS and in vitro effects of zearalenone on oocyte maturation in cattle. Reprod. Toxicol. 2008, 26, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Takagi, M.; Hirai, T.; Shiga, S.; Uno, S.; Kokushi, E.; Otoi, T.; Deguchi, E.; Tshering, C.; Fink-Gremmels, J. Relationship between urinary zearalenone concentration and embryo production in superovulated cattle. Arch. Anim. Breed. 2013, 56, 360–366. [Google Scholar] [CrossRef]
- Weaver, G.A.; Kurtz, H.J.; Behrens, J.C.; Robison, T.S.; Seguin, B.E.; Bates, F.Y.; Mirocha, C.J. Effect of zearalenone on the fertility of virgin dairy heifers. Am. J. Vet. Res. 1986, 47, 1395–1397. [Google Scholar] [PubMed]
- Weaver, G.A.; Kurtz, H.J.; Behrens, J.C.; Robison, T.S.; Seguin, B.E.; Bates, F.Y.; Mirocha, C.J. Effect of zearalenone on dairy cows. Am. J. Vet. Res. 1986, 47, 1826–1828. [Google Scholar]
- Zhao, X.; Sun, P.; Liu, M.; Liu, S.; Huo, L.; Ding, Z.; Liu, M.; Wang, S.; Lv, C.; Wu, H.; et al. Deoxynivalenol exposure inhibits biosynthesis of milk fat and protein by impairing tight junction in bovine mammary epithelial cells. Ecotoxicol. Environ. Saf. 2022, 237, 113504. [Google Scholar] [CrossRef]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin contamination in the EU feed supply chain: A focus on cereal byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef]
- Fushimi, Y.; Monniaux, D.; Takagi, M. Efficacy of a single measurement of plasma anti-Müllerian hormone concentration for ovum pick-up donor selection of Japanese Black heifers in herd breeding programs. J. Reprod. Dev. 2019, 65, 369–374. [Google Scholar] [CrossRef]
- Ono, T.; Takagi, M.; Kawashima, C.; Wijayagunawardane, M.P.B.; Vos, P.L.A.M.; Taniguchi, M.; Tanihara, F.; Otoi, T. Comparative effects of different dosages of hCG on follicular development in postpartum dairy cows with cystic ovarian follicles. Front. Vet. Sci. 2018, 5, 130. [Google Scholar] [CrossRef]
- Kantha, S.S.; Wada, S.I.; Tanaka, H.; Takeuchi, M.; Watabe, S.; Ochi, H. Carnosine sustains the retention of cell morphology in continuous fibroblast culture subjected to nutritional insult. Biochem. Biophys. Res. Commun. 1996, 223, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Ogusu, K.; Kouda, K.; Nakamura, H.; Satoh, T.; Ochi, H.; Takeuchi, H. Reduced oxidative DNA damage by vegetable juice intake: A controlled trial. J. Physiol. Anthropol. Appl. Hum. Sci. 2000, 19, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.S.; Tao, Y.; Xu, F.; Ng, W.W.; Jia, Y.; Yuan, H.; Huang, C.; Lai, L.L.; Xu, Z.; Locatelli, G. A robust correlation analysis framework for imbalanced and dichotomous data with uncertainty. Inf. Sci. 2019, 470, 58–77. [Google Scholar] [CrossRef]
JB Breeding Herd | HF Breeding Herd | ||||||
---|---|---|---|---|---|---|---|
Date | Feed Sample | ZEN (mg/kg) | DON (mg/kg) | Date | Feed Sample | ZEN (mg/kg) | DON (mg/kg) |
22 February | Purcased TMR | 0.121 | ND | 22 July | Dent corn silage 1 | 0.1 | 3 |
22 July | Purcased TMR | 1.791 | 0.58 | 22 July | Dent corn silage 2 (ori.) | 0.062 | 6.6 |
22 July | WCS (rice) | 0.056 | ND | 22 July | Dent corn silage 2 (dry) | 0.145 | 15.3 |
22 July | Italian ryegrass (produced in 2020) | 0.079 | ND | 23 May | Dent corn silage | ND | 0.09 |
22 July | Italian ryegrass (produced in 2021) | 0.081 | ND | ||||
22 July | Mix * | 0.733 | ND |
Herd | Date | n | Urinary ZEN (Mean ± SEM) | Urinary DON (Mean ± SEM) | |||||
---|---|---|---|---|---|---|---|---|---|
ZEN/Cre | α-ZEL/Cre | β-ZEL/Cre | Σ ZEN/Cre | 3-Ac-DON/Cre | DON/Cre | Σ DON/Cre | |||
JB | 22 July | 3 | 3.66 ± 1.40 | 1.63 ± 0.68 | 3.32 ± 1.22 | 8.61 ± 3.28 | - | - | - |
22 August | 2 | 0.12 ± 0.01 | 0.63 ± 0.07 | 0.92 ± 0.20 | 1.66 ± 0.26 | - | - | - | |
22 October | 2 | 0.12 ± 0.03 | 0.17 ± 0.02 | 0.32 ± 0.06 | 0.62 ± 0.08 | - | - | - | |
22 November | 2 | 0.13 ± 0.02 | 0.42 ± 0.16 | 0.05 ± 0.02 | 0.59 ± 0.16 | - | - | - | |
22 December | 2 | 0.04 ± 0.01 | 0.18 ± 0.05 | ND | 0.22 ± 0.06 | - | - | - | |
HF | 22 August | 10 | 1.57 ± 0.19 | 0.62 ± 0.06 | 2.01 ± 0.25 | 4.20 ± 0.48 | 0.14 ± 0.03 | 2.21 ± 0.06 | 2.35 ± 0.62 |
22 September | 9 | 1.67 ± 0.31 | 0.65 ± 0.13 | 1.84 ± 0.35 | 4.16 ± 0.76 | 0.25 ± 0.04 | 3.51 ± 0.62 | 3.76 ± 0.63 | |
22 November | 9 | 1.03 ± 0.24 | 1.00 ± 0.19 | 0.24 ± 0.06 | 2.27 ± 0.47 | 0.10 ± 0.01 | 0.49 ± 0.10 | 0.59 ± 0.10 | |
23 March | 9 | 0.13 ± 0.02 | 0.07 ± 0.02 | 0.01 ± 0.00 | 0.22 ± 0.04 | 0.09 ± 0.02 | 0.27 ± 0.04 | 0.36 ± 0.05 | |
23 August | 9 | 2.69 ± 0.79 | 0.48 ± 0.04 | 0.09 ± 0.02 | 3.26 ± 0.85 | 0.10 ± 0.02 | 0.41 ± 0.06 | 0.51 ± 0.07 |
Breeding Herd | Forage Feds | Formula Feeds |
---|---|---|
Japanese Black (JB) | WCS (rice) [1.5 kg] | TMR [4 kg] |
Italian ryegrass-silage [1.5 kg] | Concentrate * [1.5–2 kg] | |
Oats-hay [1 kg] | Calcium-mineral mix [0.04 kg] | |
Holstein Friesian (HF) | Timothy grass [0.2 kg] | Okara (soybean curd) [7.5 kg] |
Alfalfa grass [1 kg] | Compound feed [7.5 kg] | |
Oats-hay [2 kg] | Steam pressed yellow corn [2 kg] | |
WCS [7.5 kg] | Wheat bran [1 kg] | |
Dent corn-silage (24.5% DM) [8 kg] | Rice bran [2.5 kg] | |
Dent corn-silage (27.6% DM) [4.6 kg] | Calcium-mineral mix [0.16 kg] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widodo, O.S.; Uno, S.; Kokushi, E.; Yamato, O.; Mardianto, M.F.F.; Shinya, U.; Kano, Y.; Kawashima, C.; Fushimi, Y.; Ono, T.; et al. Exposure of Cattle Breeding Herds to Naturally Co-Contaminated Zearalenone and Deoxynivalenol: The Relevance of a Urinary Mycotoxin Monitoring System for Herd Health and Food Safety. Toxins 2024, 16, 402. https://doi.org/10.3390/toxins16090402
Widodo OS, Uno S, Kokushi E, Yamato O, Mardianto MFF, Shinya U, Kano Y, Kawashima C, Fushimi Y, Ono T, et al. Exposure of Cattle Breeding Herds to Naturally Co-Contaminated Zearalenone and Deoxynivalenol: The Relevance of a Urinary Mycotoxin Monitoring System for Herd Health and Food Safety. Toxins. 2024; 16(9):402. https://doi.org/10.3390/toxins16090402
Chicago/Turabian StyleWidodo, Oky Setyo, Seiichi Uno, Emiko Kokushi, Osamu Yamato, M. Fariz Fadillah Mardianto, Urara Shinya, Yuto Kano, Chiho Kawashima, Yasuo Fushimi, Tetsushi Ono, and et al. 2024. "Exposure of Cattle Breeding Herds to Naturally Co-Contaminated Zearalenone and Deoxynivalenol: The Relevance of a Urinary Mycotoxin Monitoring System for Herd Health and Food Safety" Toxins 16, no. 9: 402. https://doi.org/10.3390/toxins16090402
APA StyleWidodo, O. S., Uno, S., Kokushi, E., Yamato, O., Mardianto, M. F. F., Shinya, U., Kano, Y., Kawashima, C., Fushimi, Y., Ono, T., Taniguchi, M., & Takagi, M. (2024). Exposure of Cattle Breeding Herds to Naturally Co-Contaminated Zearalenone and Deoxynivalenol: The Relevance of a Urinary Mycotoxin Monitoring System for Herd Health and Food Safety. Toxins, 16(9), 402. https://doi.org/10.3390/toxins16090402