Development and Limitations of Exposure Biomarkers to Dietary Contaminants Mycotoxins
<p>Structures of the four naturally occurring aflatoxins. The 8,9 position is where the reactive epoxide can be readily formed across the double bond.</p> "> Figure 2
<p>Structures of aflatoxin metabolites aflatoxin Q1, aflatoxin M1, and aflatoxin P1, highlighting phase 1 hydroxylation reactions.</p> "> Figure 3
<p>Structures of the aflatoxin B1 exo- and endo-epoxides.</p> "> Figure 4
<p>Structure of aflatoxin-N7-guanine. Formed by the aflatoxin exo-epoxide binding to guanine in DNA.</p> "> Figure 5
<p>Structure of aflatoxin B-lysine (AF-lys). The major Pronase digest product from the aflatoxin–albumin adduct.</p> "> Figure 6
<p>Structures of fumonisin B1 (upper) and fumonisin B2 (lower).</p> "> Figure 7
<p>Generic structure of Type B-trichothecenes including deoxynivalenol (DON).</p> "> Figure 8
<p>Structure of Ochratoxin A (OTA).</p> "> Figure 9
<p>Timeline for identification and biomarker validation. AFM1—aflatoxin M1, AF-N7-GUA—aflatoxin N7-guanine, AF-ALB—aflatoxin–albumin, OTA—Ochratoxin A, T-DON—total deoxynivalenol, FB1—fumonisin B1, SaP/SoP—spinganine 1-phosphate/sphingosine 1-phosphate, IDMS—isotope dilution mass spectrometry, and HR—high resolution.</p> ">
Abstract
:1. Introduction to Mycotoxins
2. Exposure Biomarkers
3. Aflatoxins
4. Fumonisin
5. Deoxynivalenol
6. Ochratoxin A
7. Exposure Assessment in Young Children and Infants
8. Biomarker Interpretation
9. Mycotoxin Biomarkers Summary
10. Key Points
- Mycotoxins are an unavoidable component in many diets, especially in developing-world regions.
- Animal data concerning the toxicity of mycotoxins are clear and consistent, while our understanding of mycotoxin-induced human disease is limited.
- The development and use of validated exposure biomarkers confirmed the role of aflatoxins in the etiology of primary liver cancer and cirrhosis and will support the understanding and mitigation efforts linked to growth faltering.
- Urinary fumonisins and phosphorylated sphingoid bases in blood are good measures of FB1 exposure, though care is needed in epidemiological study design to more clearly demonstrate health effects.
- Urinary T-DON is strongly correlated with DON intake, and this exposure biomarker awaits application in epidemiological studies. Growth faltering and immune effects will likely dominate these studies.
- The further development and use of OTA exposure measures, perhaps with better recognition of their metabolite profiles, is crucial to understanding their role in human disease.
- The use of powerful LC–MS/MS approaches to understand exposure to multiple mycotoxin species has accelerated in the past decade or so, recently reviewed in detail [106]. For most, analytical quantification of their bio-fluid concentration has far outpaced good quantitative data on how to interpret these data. This is an important next step if we are to maximize these tools to perform public health good.
- The establishment of a biomarker database that captures in a uniform way or multiple ways would be invaluable.
- The continued expansion of collaborative studies that compare analytical tools and share analytical standards will greatly benefit a more comprehensive approach for biomarker-driven epidemiology of the mycotoxins of mycotoxin exposure and their health consequences.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pitt, J.I.; Miller, J.D. A Concise History of Mycotoxin Research. J. Agric. Food Chem. 2017, 65, 7021–7033. [Google Scholar] [CrossRef]
- Council for Agricultrual Science and Technology (CAST) Potential economic costs of mycotoxins in the United States. In Mycotoxins: Risks in Plant, Animal and Human Systems; Task Force Report; Council for Agricultural Science and Technology: Ames, IA, USA, 2003; pp. 136–142. ISBN 1-887383-22-0.
- Miller, J.D. Fungi and Mycotoxins in Grain: Implications for Stored Product Research. J. Stored. Prod. Res. 1995, 31, 1–16. [Google Scholar] [CrossRef]
- IARC 2015. Human exposure to aflatoxins and fumonisins. In Mycotoxin Control in Low- and Middle-Income Countries; Wild, C.P., Groopman, J.D., Eds.; International Agency for Research on Cancer: Lyon, France, 2015. [Google Scholar]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Crit. Rev. Food. Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Turner, P.C.; Flannery, B.; Isitt, C.; Ali, M.; Pestka, J. The Role of Biomarkers in Evaluating Human Health Concerns from Fungal contaminants in food. Nutr. Res. Rev. 2012, 25, 162–179. [Google Scholar] [CrossRef] [Green Version]
- IARC 1993. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 1993; Volume 56, ISBN 978-92-832-1256-0. [Google Scholar]
- Kensler, T.W.; Roebuck, B.D.; Wogan, G.N.; Groopman, J.D. Aflatoxin: A 50-Year Odyssey of Mechanistic and Translational Toxicology. Toxicol. Sci. 2011, 120, S28–S48. [Google Scholar] [CrossRef] [Green Version]
- Wild, C.P.; Turner, P.C. The Toxicology of Aflatoxins as a Basis for Public Health Decisions. Mutagenesis 2002, 17, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.C. The Molecular Epidemiology of Chronic Aflatoxin Driven Impaired Child Growth. Scientifica 2013, 2013, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, L.E.; Prendergast, A.J.; Turner, P.C.; Mbuya, M.N.N.; Mutasa, K.; Kembo, G.; Stoltzfus, R.J. The Potential Role of Mycotoxins as a Contributor to Stunting in the SHINE Trial. Clin. Infect. Dis. 2015, 61, S733–S737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.; Nebbia, C.S.; et al. Risk Assess. Ochratoxin A Food. EFSA J. 2020, 18. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Ueng, Y.-F.; Kim, B.-R.; Langouet, S.; Coles, B.; Iyer, R.S.; Thier, R.; Harris, T.M.; Shimada, T.; Yamazaki, H.; et al. Activation of Toxic Chemicals by Cytochrome P450 Enzymes: Regio- and Stereoselective Oxidation of Aflatoxin B1. In Biological Reactive Intermediates V.; Snyder, R., Sipes, I.G., Jollow, D.J., Monks, T.J., Kocsis, J.J., Kalf, G.F., Greim, H., Witmer, C.M., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 1996; Volume 387, pp. 7–15. ISBN 978-1-4757-9482-3. [Google Scholar]
- Essigmann, J.M.; Croy, R.G.; Nadzan, A.M.; Busby, W.F.; Reinhold, V.N.; Büchi, G.; Wogan, G.N. Structural Identification of the Major DNA Adduct Formed by Aflatoxin B1 in Vitro. Proc. Natl. Acad. Sci. USA 1977, 74, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raney, V.M.; Harris, T.M.; Stone, M.P. DNA Conformation Mediates Aflatoxin B1-DNA Binding and the Formation of Guanine N7 Adducts by Aflatoxin B1 8,9-Exo-Epoxide. Chem. Res. Toxicol. 1993, 6, 64–68. [Google Scholar] [CrossRef]
- Groopman, J.D.; Hall, A.J.; Whittle, H.; Hudson, G.J.; Wogan, G.N.; Montesano, R.; Wild, C.P. Molecular Dosimetry of Aflatoxin-N7-Guanine in Human Urine Obtained in The Gambia, West Africa. Cancer Epidemiol. Biomarkers Prev. 1992, 1, 221–227. [Google Scholar]
- Groopman, J.D.; Zhu, J.Q.; Donahue, P.R.; Pikul, A.; Zhang, L.S.; Chen, J.S.; Wogan, G.N. Molecular Dosimetry of Urinary Aflatoxin-DNA Adducts in People Living in Guangxi Autonomous Region, People’s Republic of China. Cancer Res. 1992, 52, 45–52. [Google Scholar] [PubMed]
- Zhu, J.Q.; Zhang, L.S.; Hu, X.; Xiao, Y.; Chen, J.S.; Xu, Y.C.; Fremy, J.; Chu, F.S. Correlation of Dietary Aflatoxin B1 Levels with Excretion of Aflatoxin M1 in Human Urine. Cancer Res. 1987, 47, 1848–1852. [Google Scholar]
- Groopman, J.D.; Wild, C.P.; Hasler, J.; Junshi, C.; Wogan, G.N.; Kensler, T.W. Molecular Epidemiology of Aflatoxin Exposures: Validation of Aflatoxin-N7-Guanine Levels in Urine as a Biomarker in Experimental Rat Models and Humans. Environ. Health Perspect. 1993, 99, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Sabbioni, G. Chemical and Physical Properties of the Major Serum Albumin Adduct of Aflatoxin B1 and Their Implications for the Quantification in Biological Samples. Chem. Biol. Interact. 1990, 75, 1–15. [Google Scholar] [CrossRef]
- Wild, C.P.; Turner, P.C. Exposure Biomarkers in Chemoprevention Studies of Liver Cancer. IARC Sci. Publ. 2001, 154, 215–222. [Google Scholar]
- Sabbioni, G.; Ambs, S.; Wogan, G.N.; Groopman, J.D. The Aflatoxin-Lysine Adduct Quantified by High-Performance Liquid Chromatography from Human Serum Albumin Samples. Carcinogenesis 1990, 11, 2063–2066. [Google Scholar] [CrossRef]
- Gan, L.-S.; Skipper, P.L.; Peng, X.; Groopman, J.D.; Chen, J.; Wogan, G.N.; Tannenbaum, S.R. Serum Albumin Adducts in the Molecular Epidemiology of Aflatoxin Carcinogenesis: Correlation with Aflatoxin B1 Intake and Urinary Excretion of Aflatoxin M1. Carcinogenesis 1988, 9, 1323–1325. [Google Scholar] [CrossRef]
- Wild, C.P.; Hudson, G.J.; Sabbioni, G.; Chapot, B.; Hall, A.J.; Wogan, G.N.; Whittle, H.; Montesano, R.; Groopman, J.D. Dietary Intake of Aflatoxins and the Level of Albumin-Bound Aflatoxin in Peripheral Blood in The Gambia, West Africa. Cancer Epidemiol. Biomarkers Prev. 1992, 1, 229–234. [Google Scholar]
- Wild, C.P.; Jiang, Y.Z.; Sabbioni, G.; Chapot, B.; Montesano, R. Evaluation of Methods for Quantitation of Aflatoxin-Albumin Adducts and Their Application to Human Exposure Assessment. Cancer Res. 1990, 50, 245–251. [Google Scholar]
- Wild, C.P.; Jiang, Y.-Z.; Allen, S.J.; Jansen, L.A.M.; Hall, A.J.; Montesano, R. Aflatoxin—Albumin Adducts in Human Sera from Different Regions of the World. Carcinogenesis 1990, 11, 2271–2274. [Google Scholar] [CrossRef]
- Anwar, W.A.; Khalil, M.M.; Wild, C.P. Micronuclei, Chromosomal Aberrations and Aflatoxin-Albumin Adducts in Experimental Animals after Exposure to Aflatoxin B1. Mutat. Res. 1994, 322, 61–67. [Google Scholar] [CrossRef]
- Wild, C.P.; Hasegawa, R.; Barraud, L.; Chutimataewin, S.; Chapot, B.; Ito, N.; Montesano, R. Aflatoxin-Albumin Adducts: A Basis for Comparative Carcinogenesis between Animals and Humans. Cancer Epidemiol. Biomarkers Prev. 1996, 5, 179–189. [Google Scholar] [PubMed]
- Wild, C.P.; Yin, F.; Turner, P.C.; Chemin, I.; Chapot, B.; Mendy, M.; Whittle, H.; Kirk, G.D.; Hall, A.J. Environmental and Genetic Determinants of Aflatoxin-Albumin Adducts in the Gambia. Int. J. Cancer 2000, 86, 1–7. [Google Scholar] [CrossRef]
- Routledge, M.N.; Kimanya, M.E.; Shirima, C.P.; Wild, C.P.; Gong, Y.Y. Quantitative Correlation of Aflatoxin Biomarker with Dietary Intake of Aflatoxin in Tanzanian Children. Biomarkers 2014, 19, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Phillips, E.L.; Kassim, N.; Smith, L.E.; Ngure, F.M.; Makule, E.; Turner, P.C.; Nelson, R.J.; Kimanya, M.E.; Stoltzfus, R. Randomized Mitigation Trial to Restrict Mycotoxin Exposure in Kongwa, Tanzania: Study Design. BMC Public Health 2020, 20. [Google Scholar] [CrossRef]
- Chen, G.; Gong, Y.Y.; Kimanya, M.E.; Shirima, C.P.; Routledge, M.N. Comparison of Urinary Aflatoxin M1 and Aflatoxin Albumin Adducts as Biomarkers for Assessing Aflatoxin Exposure in Tanzanian Children. Biomarkers 2018, 23, 131–136. [Google Scholar] [CrossRef]
- Johnson, N.M.; Qian, G.; Xu, L.; Tietze, D.; Marroquin-Cardona, A.; Robinson, A.; Rodriguez, M.; Kaufman, L.; Cunningham, K.; Wittmer, J.; et al. Aflatoxin and PAH Exposure Biomarkers in a U.S. Population with a High Incidence of Hepatocellular Carcinoma. Sci. Total Environ. 2010, 408, 6027–6031. [Google Scholar] [CrossRef] [Green Version]
- Shephard, G.S.; Van Der Westhuizen, L.; Sewram, V. Biomarkers of Exposure to Fumonisin Mycotoxins: A Review. Food Addit. Contam. 2007, 24, 1196–1201. [Google Scholar] [CrossRef]
- Turner, P.C.; Nikiema, P.; Wild, C.P. Fumonisin Contamination of Food: Progress in Development of Biomarkers to Better Assess Human Health Risks. Mutat. Res. 1999, 443, 81–93. [Google Scholar] [CrossRef]
- van der Westhuizen, L.; Shephard, G.S.; van Schalkwyk, D.J. The Effect of Repeated Gavage Doses of Fumonisin B 1 on the Sphinganine and Sphingosine Levels in Vervet Monkeys. Toxicon 2001, 39, 969–972. [Google Scholar] [CrossRef]
- Riley, R.T.; An, N.H.; Showker, J.L.; Yoo, H.S.; Norred, W.P.; Chamberlain, W.J.; Wang, E.; Merrill, A.H.; Motelin, G.; Beasley, V.R.; et al. Alteration of Tissue and Serum Sphinganine to Sphingosine Ratio: An Early Biomarker of Exposure to Fumonisin-Containing Feeds in Pigs. Toxicol. Appl. Pharmacol. 1993, 118, 105–112. [Google Scholar] [CrossRef]
- Merrill, A.H.; Sullards, M.C.; Wang, E.; Voss, K.A.; Riley, R.T. Sphingolipid Metabolism: Roles in Signal Transduction and Disruption by Fumonisins. Environ. Health Perspect. 2001, 109, 283–289. [Google Scholar] [CrossRef]
- Merrill, A.H.; Wang, E.; Gilchrist, D.G.; Riley, R.T. Fumonisins and Other Inhibitors of de Novo Sphingolipid Biosynthesis. Adv. Lipid Res. 1993, 26, 215–234. [Google Scholar]
- Norred, W.P.; Plattner, R.D.; Dombrink-Kurtzman, M.A.; Meredith, F.I.; Riley, R.T. Mycotoxin-Induced Elevation of Free Sphingoid Bases in Precision-Cut Rat Liver Slices: Specificity of the Response and Structure–Activity Relationships. Toxicol. Appl. Pharmacol. 1997, 147, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Merrill, A.H.; Wang, E.; Vales, T.R.; Smith, E.R.; Schroeder, J.J.; Menaldino, D.S.; Alexander, C.; Crane, H.M.; Xia, J.; Liotta, D.C.; et al. Fumonisin Toxicity and Sphingolipid Biosynthesis. Adv. Exp. Med. Biol. 1996, 392, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Nikièma, P.N.; Worrillow, L.; Traoré, A.S.; Wild, C.P.; Turner, P.C. Fumonisin Contamination of Maize in Burkina Faso, West Africa. Food Addit. Contam. 2004, 21, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Nikiema, P.; Worrilow, L.; Traore, A.; Wild, C.; Turner, P.C. Fumonisin Exposure and the Sphinganine/Sphingosine Ratio in Urine, Serum and Buccal Cells in Adults from Burkina Faso, West Africa. World Mycotoxin J. 2008, 1, 483–491. [Google Scholar] [CrossRef]
- Solfrizzo, M.; Chulze, S.N.; Mallmann, C.; Visconti, A.; De Girolamo, A.; Rojo, F.; Torres, A. Comparison of Urinary Sphingolipids in Human Populations with High and Low Maize Consumption as a Possible Biomarker of Fumonisin Dietary Exposure. Food Addit. Contam. 2004, 21, 1090–1095. [Google Scholar] [CrossRef]
- van der Westhuizen, L.; Shephard, G.S.; Rheeder, J.P.; Burger, H.-M. Individual Fumonisin Exposure and Sphingoid Base Levels in Rural Populations Consuming Maize in South Africa. Food Chem. Toxicol. 2010, 48, 1698–1703. [Google Scholar] [CrossRef]
- van der Westhuizen, L.; Shephard, G.S.; Rheeder, J.P.; Somdyala, N.I.M.; Marasas, W.F.O. Sphingoid Base Levels in Humans Consuming Fumonisin-Contaminated Maize in Rural Areas of the Former Transkei, South Africa: A Cross-Sectional Study. Food Addit. Contam. Part A 2008, 25, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- van der Westhuizen, L.; Shephard, G.S.; van Schalkwyk, D.J. The Effect of a Single Gavage Dose of Fumonisin B(1) on the Sphinganine and Sphingosine Levels in Vervet Monkeys. Toxicon 2001, 39, 273–281. [Google Scholar] [CrossRef]
- Shephard, G.S.; Snijman, P.W. Elimination and Excretion of a Single Dose of the Mycotoxin Fumonisin B2 in a Non-Human Primate. Food Chem. Toxicol. 1999, 37, 111–116. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, X. Determination of Sphinganine, Sphingosine and Sa/So Ratio in Urine of Humans Exposed to Dietary Fumonisin B1. Food Addit. Contam. 2001, 18, 263–269. [Google Scholar] [CrossRef]
- Shephard, G.S.; Thiel, P.G.; Sydenham, E.W. Initial Studies on the Toxicokinetics of Fumonisin B1 in Rats. Food Chem. Toxicol. 1992, 30, 277–279. [Google Scholar] [CrossRef]
- Prelusky, D.B.; Miller, J.D.; Trenholm, H.L. Disposition of 14C-Derived Residues in Tissues of Pigs Fed Radiolabelled Fumonisin B1. Food Addit. Contam. 1996, 13, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Shephard, G.S.; Thiel, P.G.; Sydenham, E.W.; Alberts, J.F.; Gelderblom, W.C. Fate of a Single Dose of the 14C-Labelled Mycotoxin, Fumonisin B1, in Rats. Toxicon 1992, 30, 768–770. [Google Scholar] [CrossRef]
- Shephard, G.S.; Thiel, P.G.; Sydenham, E.W.; Alberts, J.F.; Cawood, M.E. Distribution and Excretion of a Single Dose of the Mycotoxin Fumonisin B1 in a Non-Human Primate. Toxicon 1994, 32, 735–741. [Google Scholar] [CrossRef]
- Dilkin, P.; Direito, G.; Simas, M.M.S.; Mallmann, C.A.; Corrêa, B. Toxicokinetics and Toxicological Effects of Single Oral Dose of Fumonisin B1 Containing Fusarium Verticillioides Culture Material in Weaned Piglets. Chem. Biol. Interact. 2010, 185, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Harrer, H.; Laviad, E.L.; Humpf, H.U.; Futerman, A.H. Identification of N-Acyl-Fumonisin B1 as New Cytotoxic Metabolites of Fumonisin Mycotoxins. Mol. Nutr. Food Res. 2013, 57, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.Y.; Torres-Sanchez, L.; Lopez-Carrillo, L.; Peng, J.H.; Sutcliffe, A.E.; White, K.L.; Humpf, H.-U.; Turner, P.C.; Wild, C.P. Association between Tortilla Consumption and Human Urinary Fumonisin B1 Levels in a Mexican Population. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 688–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Cai, Q.; Tang, L.; Wang, S.; Hu, X.; Su, J.; Sun, G.; Wang, J.-S. Evaluation of Fumonisin Biomarkers in a Cross-Sectional Study with Two High-Risk Populations in China. Food Addit. Contam. Part A 2010, 27, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- van der Westhuizen, L.; Shephard, G.S.; Burger, H.M.; Rheeder, J.P.; Gelderblom, W.C.A.; Wild, C.P.; Gong, Y.Y. Fumonisin B1 as a Urinary Biomarker of Exposure in a Maize Intervention Study among South African Subsistence Farmers. Cancer Epidemiol. Biomarkers Prev. 2011, 20, 483–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, R.T.; Torres, O.; Showker, J.L.; Zitomer, N.C.; Matute, J.; Voss, K.A.; Gelineau-van Waes, J.; Maddox, J.R.; Gregory, S.G.; Ashley-Koch, A.E. The Kinetics of Urinary Fumonisin B1 Excretion in Humans Consuming Maize-Based Diets. Mol. Nutr. Food Res. 2012, 56, 1445–1455. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Matute, J.; Gelineau-van Waes, J.; Maddox, J.R.; Gregory, S.G.; Ashley-Koch, A.E.; Showker, J.L.; Zitomer, N.C.; Voss, K.A.; Riley, R.T. Urinary Fumonisin B1 and Estimated Fumonisin Intake in Women from High- and Low-Exposure Communities in Guatemala. Mol. Nutr. Food Res. 2014, 58, 973–983. [Google Scholar] [CrossRef]
- Riley, R.T.; Showker, J.L.; Lee, C.M.; Zipperer, C.E.; Mitchell, T.R.; Voss, K.A.; Zitomer, N.C.; Torres, O.; Matute, J.; Gregory, S.G.; et al. A Blood Spot Method for Detecting Fumonisin-Induced Changes in Putative Sphingolipid Biomarkers in LM/Bc Mice and Humans. Food Addit. Contam. Part A 2015, 32, 934–949. [Google Scholar] [CrossRef]
- Riley, R.T.; Torres, O.; Matute, J.; Gregory, S.G.; Ashley-Koch, A.E.; Showker, J.L.; Mitchell, T.; Voss, K.A.; Maddox, J.R.; Gelineau-van Waes, J.B. Evidence for Fumonisin Inhibition of Ceramide Synthase in Humans Consuming Maize-Based Foods and Living in High Exposure Communities in Guatemala. Mol. Nutr. Food Res. 2015, 59, 2209–2224. [Google Scholar] [CrossRef] [Green Version]
- Meky, F.A.; Turner, P.C.; Ashcroft, A.E.; Miller, J.D.; Qiao, Y.L.; Roth, M.J.; Wild, C.P. Development of a Urinary Biomarker of Human Exposure to Deoxynivalenol. Food Chem. Toxicol. 2003, 41, 265–273. [Google Scholar] [CrossRef]
- Turner, P.C.; Burley, V.J.; Rothwell, J.A.; White, K.L.M.; Cade, J.E.; Wild, C.P. Dietary Wheat Reduction Decreases the Level of Urinary Deoxynivalenol in UK Adults. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Turner, P.C.; Rothwell, J.A.; White, K.L.M.; Gong, Y.; Cade, J.E.; Wild, C.P. Urinary Deoxynivalenol Is Correlated with Cereal Intake in Individuals from the United Kingdom. Environ. Health Perspect. 2008, 116, 21–25. [Google Scholar] [CrossRef]
- Turner, P.C.; White, K.L.M.; Burley, V.J.; Hopton, R.P.; Rajendram, A.; Fisher, J.; Cade, J.E.; Wild, C.P. A Comparison of Deoxynivalenol Intake and Urinary Deoxynivalenol in UK Adults. Biomarkers 2010, 15, 553–562. [Google Scholar] [CrossRef]
- Turner, P.C. Deoxynivalenol: Rationale for Development and Application of a Urinary Biomarker Part A Chemistry, Analysis, Control, Exposure & Risk Assessment. Food Addit. Contam. 2008, 25, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Turner, P.C. Deoxynivalenol and Nivalenol Occurrence and Exposure Assessment. World Mycotoxin J. 2010, 3, 315–321. [Google Scholar] [CrossRef]
- Warth, B.; Sulyok, M.; Berthiller, F.; Schuhmacher, R.; Fruhmann, P.; Hametner, C.; Adam, G.; Fröhlich, J.; Krska, R. Direct Quantification of Deoxynivalenol Glucuronide in Human Urine as Biomarker of Exposure to the Fusarium Mycotoxin Deoxynivalenol. Anal. Bioanal. Chem. 2011, 401, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Warth, B.; Sulyok, M.; Berthiller, F.; Schuhmacher, R.; Krska, R. New Insights into the Human Metabolism of the Fusarium Mycotoxins Deoxynivalenol and Zearalenone. Toxicol. Lett. 2013, 220, 88–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, A.; Claeys, L.; Mengelers, M.; Vanhoorne, V.; Vervaet, C.; Huybrechts, B.; De Saeger, S.; De Boevre, M. Humans Significantly Metabolize and Excrete the Mycotoxin Deoxynivalenol and Its Modified Form Deoxynivalenol-3-Glucoside within 24 Hours. Sci. Rep. 2018, 8, 5255. [Google Scholar] [CrossRef] [Green Version]
- Bui-Klimke, T.R.; Wu, F. Ochratoxin A and Human Health Risk: A Review of the Evidence. Crit. Rev. Food Sci. Nutr. 2015, 55, 1860–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagelberg, S.; Hult, K.; Fuchs, R. Toxicokinetics of Ochratoxin A in Several Species and Its Plasma-Binding Properties. J. Appl. Toxicol. 1989, 9, 91–96. [Google Scholar] [CrossRef]
- Studer-Rohr, I.; Schlatter, J.; Dietrich, D.R. Kinetic Parameters and Intraindividual Fluctuations of Ochratoxin A Plasma Levels in Humans. Arch. Toxicol. 2000, 74, 499–510. [Google Scholar] [CrossRef]
- Kumagai, S. Ochratoxin A: Plasma Concentration and Excretion into Bile and Urine in Albumin-Deficient Rats. Food Chem. Toxicol. 1985, 23, 941–943. [Google Scholar] [CrossRef]
- Ringot, D.; Chango, A.; Schneider, Y.-J.; Larondelle, Y. Toxicokinetics and Toxicodynamics of Ochratoxin A, an Update. Chem.-Biol. Interact. 2006, 159, 18–46. [Google Scholar] [CrossRef] [PubMed]
- Palli, D.; Miraglia, M.; Saieva, C.; Masala, G.; Cava, E.; Colatosti, M.; Corsi, A.; Russo, A.; Brera, C. Serum Levels of Ochratoxin A in Healthy Adults in Tuscany: Correlation with Individual Characteristics and between Repeat Measurements. Cancer Epidemiol. Biomarkers Prev. 1999, 8, 265–269. [Google Scholar]
- Gilbert, J.; Brereton, P.; MacDonald, S. Assessment of Dietary Exposure to Ochratoxin A in the UK Using a Duplicate Diet Approach and Analysis of Urine and Plasma Samples. Food Addit. Contam. 2001, 18, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Degen, G.H.; Muñoz, K.; Hengstler, J. Occurrence of mycotoxins in breast milk. In Handbook of Dietary and Nutritional Aspects of Human Breast Milk; Zibadi, S., Watson, R.R., Preedy, V.R., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; Volume 5, pp. 813–831. ISBN 978-90-8686-209-2. [Google Scholar]
- Hassan, A.M.; Sheashaa, H.A.; Abdel Fatah, M.F.; Ibrahim, A.Z.; Gaber, O.A. Does Aflatoxin as an Environmental Mycotoxin Adversely Affect the Renal and Hepatic Functions of Egyptian Lactating Mothers and Their Infants? A Preliminary Report. Int. Urol. Nephrol. 2006, 38, 339–342. [Google Scholar] [CrossRef]
- Turner, P.C.; Collinson, A.C.; Cheung, Y.B.; Gong, Y.; Hall, A.J.; Prentice, A.M.; Wild, C.P. Aflatoxin Exposure in Utero Causes Growth Faltering in Gambian Infants. Int. J. Epidemiol. 2007, 36, 1119–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warth, B.; Braun, D.; Ezekiel, C.N.; Turner, P.C.; Degen, G.H.; Marko, D. Biomonitoring of Mycotoxins in Human Breast Milk: Current State and Future Perspectives. Chem. Res. Toxicol. 2016, 29, 1087–1097. [Google Scholar] [CrossRef] [Green Version]
- Wild, C.P.; Rasheed, F.N.; Jawla, M.F.; Hall, A.J.; Jansen, L.A.; Montesano, R. In-Utero Exposure to Aflatoxin in West Africa. Lancet 1991, 337, 1602. [Google Scholar] [CrossRef]
- Muñoz, K.; Blaszkewicz, M.; Campos, V.; Vega, M.; Degen, G.H. Exposure of Infants to Ochratoxin A with Breast Milk. Arch. Toxicol. 2014, 88, 837–846. [Google Scholar] [CrossRef]
- Biasucci, G.; Calabrese, G.; Di Giuseppe, R.; Carrara, G.; Colombo, F.; Mandelli, B.; Maj, M.; Bertuzzi, T.; Pietri, A.; Rossi, F. The Presence of Ochratoxin A in Cord Serum and in Human Milk and Its Correspondence with Maternal Dietary Habits. Eur. J. Nutr. 2011, 50, 211–218. [Google Scholar] [CrossRef]
- Magoha, H.; De Meulenaer, B.; Kimanya, M.; Hipolite, D.; Lachat, C.; Kolsteren, P. Fumonisin B1 Contamination in Breast Milk and Its Exposure in Infants under 6 Months of Age in Rombo, Northern Tanzania. Food Chem. Toxicol. 2014, 74, 112–116. [Google Scholar] [CrossRef]
- Baertschi, S.W.; Raney, K.D.; Stone, M.P.; Harris, T.M. Preparation of the 8,9-Epoxide of the Mycotoxin Aflatoxin B1: The Ultimate Carcinogenic Species. J. Am. Chem. Soc. 1988, 110, 7929–7931. [Google Scholar] [CrossRef]
- Egner, P.A.; Groopman, J.D.; Wang, J.-S.; Kensler, T.W.; Friesen, M.D. Quantification of Aflatoxin-B1-N7-Guanine in Human Urine by High-Performance Liquid Chromatography and Isotope Dilution Tandem Mass Spectrometry. Chem. Res. Toxicol. 2006, 19, 1191–1195. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Arneson, K.O.; Williams, K.M.; Deng, Z.; Harris, T.M. Reaction of Aflatoxin B(1) Oxidation Products with Lysine. Chem. Res. Toxicol. 2002, 15, 780–792. [Google Scholar] [CrossRef]
- Scholl, P.F.; Groopman, J.D. Synthesis of 5,5,6,6-D4-L-Lysine-Aflatoxin Bl for Use as a Mass Spectrometric Internal Standard. J. Labelled Cpd. Radiopharm. 2004, 47, 807–815. [Google Scholar] [CrossRef]
- Shephard, G.S.; Burger, H.-M.; Gambacorta, L.; Gong, Y.Y.; Krska, R.; Rheeder, J.P.; Solfrizzo, M.; Srey, C.; Sulyok, M.; Visconti, A.; et al. Multiple Mycotoxin Exposure Determined by Urinary Biomarkers in Rural Subsistence Farmers in the Former Transkei, South Africa. Food Chem. Toxicol. 2013, 62, 217–225. [Google Scholar] [CrossRef]
- Solfrizzo, M.; Gambacorta, L.; Lattanzio, V.M.T.; Powers, S.; Visconti, A. Simultaneous LC-MS/MS Determination of Aflatoxin M1, Ochratoxin A, Deoxynivalenol, de-Epoxydeoxynivalenol, α and β-Zearalenols and Fumonisin B1 in Urine as a Multi-Biomarker Method to Assess Exposure to Mycotoxins. Anal Bioanal. Chem. 2011, 401, 2831–2841. [Google Scholar] [CrossRef]
- Warth, B.; Sulyok, M.; Fruhmann, P.; Mikula, H.; Berthiller, F.; Schuhmacher, R.; Hametner, C.; Abia, W.A.; Adam, G.; Fröhlich, J.; et al. Development and Validation of a Rapid Multi-Biomarker Liquid Chromatography/Tandem Mass Spectrometry Method to Assess Human Exposure to Mycotoxins. Rapid Commun. Mass Spectrom. 2012, 26, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of Multi-Mycotoxin Exposure in Southern Italy by Urinary Multi-Biomarker Determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Chapot, B.; Wild, C.P. ELISA for quantification of aflatoxin-albumin adducts and their application to human exposure assessment. In ELISA Techniques: New Developments and Practical Applicatons in a Broad Field; Herbrink, P., Bullock, G.R., Eds.; Techniques in Diagnostic Pathology; Academic Press Ltd.: London, UK, 1991; Volume 2, pp. 135–155. [Google Scholar]
- Scholl, P.F.; Turner, P.C.; Sutcliffe, A.E.; Sylla, A.; Diallo, M.S.; Friesen, M.D.; Groopman, J.D.; Wild, C.P. Quantitative Comparison of Aflatoxin B1 Serum Albumin Adducts in Humans by Isotope Dilution Mass Spectrometry and ELISA. Cancer Epidemiol. Biomarkers Prev. 2006, 15, 823–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCoy, L.F.; Scholl, P.F.; Schleicher, R.L.; Groopman, J.D.; Powers, C.D.; Pfeiffer, C.M. Analysis of Aflatoxin B1-Lysine Adduct in Serum Using Isotope-Dilution Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 2203–2210. [Google Scholar] [CrossRef]
- McCoy, L.F.; Scholl, P.F.; Sutcliffe, A.E.; Kieszak, S.M.; Powers, C.D.; Rogers, H.S.; Gong, Y.Y.; Groopman, J.D.; Wild, C.P.; Schleicher, R.L. Human Aflatoxin Albumin Adducts Quantitatively Compared by ELISA, HPLC with Fluorescence Detection, and HPLC with Isotope Dilution Mass Spectrometry. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 1653–1657. [Google Scholar] [CrossRef] [Green Version]
- Sabbioni, G.; Wild, C.P. Identification of an Aflatoxin G1-Serum Albumin Adduct and Its Relevance to the Measurement of Human Exposure to Aflatoxins. Carcinogenesis 1991, 12, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Renaud, J.B.; Sabourin, L.; Topp, E.; Sumarah, M.W. Spectral Counting Approach to Measure Selectivity of High-Resolution LC–MS Methods for Environmental Analysis. Anal. Chem. 2017, 89, 2747–2754. [Google Scholar] [CrossRef] [PubMed]
- McMillan, A.; Renaud, J.B.; Burgess, K.M.N.; Orimadegun, A.E.; Akinyinka, O.O.; Allen, S.J.; Miller, J.D.; Reid, G.; Sumarah, M.W. Aflatoxin Exposure in Nigerian Children with Severe Acute Malnutrition. Food Chem. Toxicol. 2018, 111, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.L.; Walsh, J.P.; Renaud, J.B.; McMillan, A.; Rulisa, S.; Miller, J.D.; Reid, G.; Sumarah, M.W. Improved Methods for Biomarker Analysis of the Big Five Mycotoxins Enables Reliable Exposure Characterization in a Population of Childbearing Age Women in Rwanda. Food Chem. Toxicol. 2021, 147, 111854. [Google Scholar] [CrossRef]
- Sabbioni, G.; Turesky, R.J. Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future. Chem. Res. Toxicol. 2017, 30, 332–366. [Google Scholar] [CrossRef] [PubMed]
- Osteresch, B.; Viegas, S.; Cramer, B.; Humpf, H.-U. Multi-Mycotoxin Analysis Using Dried Blood Spots and Dried Serum Spots. Anal Bioanal. Chem. 2017, 409, 3369–3382. [Google Scholar] [CrossRef] [Green Version]
- Gange, S.J.; Muñoz, A.; Wang, J.S.; Groopman, J.D. Variability of Molecular Biomarker Measurements from Nonlinear Calibration Curves. Cancer Epidemiol. Biomarkers Prev. 1996, 5, 57–61. [Google Scholar]
- Habschied, K.; Šarić, G.K.; Krstanović, V.; Mastanjević, K. Mycotoxins: Biomonitoring and Human Exposure. Toxins 2021, 13, 113. [Google Scholar] [CrossRef]
Matrix | Dose Transferred | Relevant Time Frame | Validated | Standards Commercial | |
---|---|---|---|---|---|
Aflatoxin | |||||
AFM1 | Urine | 1–3% | 24–48 h | Yes | Yes |
AF-N7-Gua | Urine | 1% | 24–72 h | Yes | No |
AFB-alb | Serum/plasma | 1–3% | 2–3 months | Yes | No |
AFG-alb | Serum/plasma | n/e | n/e | No | No |
Deoxynivalenol | |||||
T-DON | Urine | 65–75% | 24–48 h | Yes | Partial * |
DOM-1 | Urine | <5% | 24–48 h # | No | Yes |
Fumonisin | |||||
Sa/So | Urine | Not relevant | n/e | No | Yes |
Sa/So | Serum | Not relevant | n/e | No | Yes |
FB1 | Urine | <1% | 24–72 h # | Yes | Yes |
Sa-Pi/So-Pi | Blood | Not relevant | n/e | Yes | Yes |
Ochratoxin A | |||||
OTA | Serum | n/e | Several weeks | No | Yes |
OTA | Urine | n/e | ? | Partial | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turner, P.C.; Snyder, J.A. Development and Limitations of Exposure Biomarkers to Dietary Contaminants Mycotoxins. Toxins 2021, 13, 314. https://doi.org/10.3390/toxins13050314
Turner PC, Snyder JA. Development and Limitations of Exposure Biomarkers to Dietary Contaminants Mycotoxins. Toxins. 2021; 13(5):314. https://doi.org/10.3390/toxins13050314
Chicago/Turabian StyleTurner, Paul C., and Jessica A. Snyder. 2021. "Development and Limitations of Exposure Biomarkers to Dietary Contaminants Mycotoxins" Toxins 13, no. 5: 314. https://doi.org/10.3390/toxins13050314
APA StyleTurner, P. C., & Snyder, J. A. (2021). Development and Limitations of Exposure Biomarkers to Dietary Contaminants Mycotoxins. Toxins, 13(5), 314. https://doi.org/10.3390/toxins13050314