Predicted Aflatoxin B1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level
<p>Workflow showing the phases of paper selection.</p> "> Figure 2
<p>Treemap of all source titles for the records (paper and report citations) identified during step <span class="html-italic">I</span> filtering. Treemap elaborated and created using the DrasticData online tool [<a href="#B243-toxins-13-00292" class="html-bibr">243</a>].</p> "> Figure 3
<p>Scientific mapping of all keyword networks based on records (paper and report citations) from step <span class="html-italic">I</span> filtering.</p> "> Figure 4
<p>Scientific mapping of strictly linked networks for climate change as keyword, based on records (paper and report citations) from step <span class="html-italic">I</span> filtering.</p> "> Figure 5
<p>Bar graph showing the top 20 countries affiliated with authors of records from step <span class="html-italic">I</span> filtering. [Others: 3 papers each from Belgium, Germany, Mexico, Romania, Slovenia; 2 papers each from Argentina, Canada, India, Iran, Malawi, Malaysia, Philippines, Poland, South Africa, Switzerland, Thailand, Turkey; 1 paper each from Algeria, Brazil, Cyprus, Egypt, El Salvador, Ghana, Haiti, Indonesia, Ireland, Japan, Lithuania, North Macedonia, Pakistan, Saudi Arabia]. Pie chart (upper corner right) refers to the authors’ countries for the 25 studies selected for quantitative analysis.</p> ">
Abstract
:1. Conceptual Framework
1.1. Dataset Creation: Scientific Paper Search, Filtering, and Selection
1.2. Topic Categorization and Other Classification Criteria
2. Motivations Underpinning Action-Reaction Analysis
3. Overview of Selected Papers
4. Reactions
4.1. CC Impact on Aspergillus flavus and Aflatoxin Contamination
4.2. CC Impact on Other Pathosystems
4.3. CC Impact on Human and Animal Health
5. Steps Forward and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef] [PubMed]
- Logrieco, A.; Bottalico, A.; Mule, G.; Moretti, A.; Perrone, G. Epidemiology of toxigenic fungi and their associated mycotoxins for some mediterranean crops. Eur. J. Plant Pathol. 2003, 109, 645–667. [Google Scholar] [CrossRef]
- Bottalico, A. Fusarium disease of cereals: Species complex and related mycotoxin profile in europe. J. Plant Pathol. 1998, 80, 84–103. [Google Scholar]
- Palumbo, R.; Crisci, A.; Venâncio, A.; Cortiñas Abrahantes, J.; Dorne, J.L.; Battilani, P.; Toscano, P. Occurrence and co-occurrence of mycotoxins in cereal-based feed and food. Microorganisms 2020, 8, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, Á.; González-Jartín, J.M.; Sainz, M.J. Impact of global warming on mycotoxins. Curr. Opin. Food Sci. 2017, 18, 76–81. [Google Scholar] [CrossRef]
- Ojiambo, P.S.; Battilani, P.; Cary, J.W.; Blum, B.H.; Carbone, I. Cultural and genetic approaches to manage aflatoxin contamination: Recent insights provide opportunities for improved control. Phytopathology 2018, 108, 1024–1037. [Google Scholar] [PubMed] [Green Version]
- Bush, B.J.; Carson, M.L.; Cubeta, M.A.; Hagler, W.M.; Payne, G.A. Infection and fumonisin production by Fusarium verticillioides in developing maize kernels. Phytopathology 2004, 94, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D. Factors that affect the occurrence of fumonisin. Environ. Health Perspect. 2001, 109 (Suppl. 2), 321–324. [Google Scholar]
- Wu, F.; Bhatnagar, D.; Bui-Klimke, T.; Carbone, I.; Hellmich, R.; Munkvold, G.; Paul, P.; Payne, G.; Takle, E. Climate change impacts on mycotoxin risks in us maize. World Mycotoxin J. 2011, 4, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Gregory, P.J.; Johnson, S.N.; Newton, A.C.; Ingram, J.S. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 2009, 60, 2827–2838. [Google Scholar]
- Bebber, D.P.; Ramotowski, M.A.T.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Chang. 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Bebber, D.P.; Gurr, S.J. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet. Biol. 2015, 74, 4. [Google Scholar] [CrossRef]
- Piva, G.; Battilani, P.; Pietri, A. Emerging issues in southern europe: Aflatoxins in italy. In The Mycotoxin Factbook. Food & Feed Topics; Barug, D., Bhatnagar, D., Egmond, H.P.V., Kamp, J.W.V.D., Osenbruggen, W.A.V., Visconti, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 139–153. [Google Scholar]
- IARC. Iarc monographs on the evaluation of carcinogenic risks to humans. In Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins; World Health Organization, Ed.; IARC Press: Lyon, France, 1993; Volume 56, pp. 445–466. [Google Scholar]
- Azziz-Baumgartner, E.; Lindblade, K.; Gieseker, K.; Rogers, H.S.; Kieszak, S.; Njapau, H.; Schleicher, R.; McCoy, L.F.; Misore, A.; DeCock, K.; et al. Case-control study of an acute aflatoxicosis outbreak, Kenya, 2004. Environ. Health Perspect. 2005, 113, 1779–1783. [Google Scholar] [CrossRef]
- Battilani, P.; Camardo Leggieri, M.; Rossi, V.; Giorni, P. Afla-maize, a mechanistic model for Aspergillus flavus infection and aflatoxin b1 contamination in maize. Comput. Electron. Agric. 2013, 94, 38–46. [Google Scholar] [CrossRef]
- Battilani, P.; Rossi, V.; Giorni, P.; Pietri, A.; Gualla, A.; Van der Fels-Klerx, H.J.; Booij, C.J.H.; Moretti, A.; Logrieco, A.; Toscano, P. Modelling, predicting and mapping the emergence of aflatoxins in cereals in the eu due to climate change. EFSA Sci. Tech. Rep 2012, 9, 223E. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin b1 contamination in maize in europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [Green Version]
- Vosviewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com/ (accessed on 26 February 2021).
- Adegbeye, M.J.; Reddy, P.R.K.; Chilaka, C.A.; Balogun, O.B.; Elghandour, M.M.M.Y.; Rivas-Caceres, R.R.; Salem, A.Z.M. Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies—a review. Toxicon 2020, 177, 96–108. [Google Scholar] [CrossRef]
- Adhikari, M.; Isaac, E.L.; Paterson, R.R.M.; Maslin, M.A. A review of potential impacts of climate change on coffee cultivation and mycotoxigenic fungi. Microorganisms 2020, 8, 1625. [Google Scholar] [CrossRef]
- Agbetiameh, D.; Ortega-Beltran, A.; Awuah, R.T.; Atehnkeng, J.; Elzein, A.; Cotty, P.J.; Bandyopadhyay, R. Field efficacy of two atoxigenic biocontrol products for mitigation of aflatoxin contamination in maize and groundnut in ghana. Biol. Control 2020, 150. [Google Scholar] [CrossRef]
- Agrimonti, C.; Lauro, M.; Visioli, G. Smart agriculture for food quality: Facing climate change in the 21st century. Crit. Rev. Food Sci. Nutr. 2020, 61, 971–981. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Ejaz, S.; Anjum, M.A.; Nawaz, A.; Ahmad, S. Impact of climate change on postharvest physiology of edible plant products. In Plant Ecophysiology and Adaptation Under Climate Change: Mechanisms and Perspectives i: General Consequences and Plant Responses; Springer: Singapore, 2020; pp. 87–115. [Google Scholar]
- Alshannaq, A.F.; Gibbons, J.G.; Lee, M.-K.; Han, K.-H.; Hong, S.-B.; Yu, J.-H. Controlling aflatoxin contamination and propagation of Aspergillus flavus by a soy-fermenting Aspergillus oryzae strain. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Antiga, L.; La Starza, S.R.; Miccoli, C.; D’Angeli, S.; Scala, V.; Zaccaria, M.; Shu, X.; Obrian, G.; Beccaccioli, M.; Payne, G.A.; et al. Aspergillus flavus Exploits Maize Kernels Using an “Orphan” Secondary Metabolite Cluster. Int. J. Mol. Sci. 2020, 21, 8213. [Google Scholar] [CrossRef] [PubMed]
- Arce-López, B.; Lizarraga, E.; Vettorazzi, A.; González-Peñas, E. Human Biomonitoring of Mycotoxins in Blood, Plasma and Serum in Recent Years: A Review. Toxins 2020, 12, 147. [Google Scholar] [CrossRef] [Green Version]
- Aristil, J.; Venturini, G.; Maddalena, G.; Toffolatti, S.L.; Spada, A. Fungal contamination and aflatoxin content of maize, moringa and peanut foods from rural subsistence farms in South Haiti. J. Stored Prod. Res. 2020, 85, 101550. [Google Scholar] [CrossRef]
- Assunção, R.; Martins, C.; Viegas, S.; Viegas, C.; Jakobsen, L.S.; Pires, S.; Alvito, P. Climate change and the health impact of aflatoxins exposure in portugal—An overview. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 1610–1621. [Google Scholar] [CrossRef] [Green Version]
- Bailly, S.; El Mahgubi, A.; Carvajal-Campos, A.; Lorber, S.; Puel, O.; Oswald, I.P.; Bailly, J.D.; Orlando, B. Occurrence and identification of Aspergillus section flavi in the context of the emergence of aflatoxins in french maize. Toxins 2018, 10, 525. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, R.; Ortega-Beltran, A.; Akande, A.; Mutegi, C.; Atehnkeng, J.; Kaptoge, L.; Senghor, A.; Adhikari, B.; Cotty, P. Biological control of aflatoxins in Africa: Current status and potential challenges in the face of climate change. World Mycotoxin J. 2016, 9, 771–789. [Google Scholar] [CrossRef] [Green Version]
- Barukčić, I.; Bilandžić, N.; Markov, K.; Jakopović, K.L.; Božanić, R. Reduction in aflatoxin m1 concentration during production and storage of selected fermented milks. Int. J. Dairy Technol. 2018, 71, 734–740. [Google Scholar] [CrossRef]
- Battilani, P. Recent advances in modeling the risk of mycotoxin contamination in crops. Curr. Opin. Food Sci. 2016, 11, 10–15. [Google Scholar] [CrossRef]
- Battilani, P.; Stroka, J.; Magan, N. Foreword: Mycotoxins in a changing world. World Mycotoxin J. 2016, 9, 647–651. [Google Scholar] [CrossRef] [Green Version]
- Bellingeri, A.; Cabrera, V.; Gallo, A.; Liang, D.; Masoero, F. A survey of dairy cattle management, crop planning, and forages cost of production in Northern Italy. Ital. J. Anim. Sci. 2019, 18, 786–798. [Google Scholar] [CrossRef] [Green Version]
- Bellingeri, A.; Gallo, A.; Liang, D.; Masoero, F.; Cabrera, V. Development of a linear programming model for the optimal allocation of nutritional resources in a dairy herd. J. Dairy Sci. 2020, 103, 10898–10916. [Google Scholar] [CrossRef]
- Benkerroum, N. Retrospective and Prospective Look at Aflatoxin Research and Development from a Practical Standpoint. Int. J. Environ. Res. Public Health 2019, 16, 3633. [Google Scholar] [CrossRef] [Green Version]
- Bessaire, T.; Mujahid, C.; Mottier, P.; Desmarchelier, A. Multiple mycotoxins determination in food by lc-ms/ms: An international collaborative study. Toxins 2019, 11, 658. [Google Scholar] [CrossRef] [Green Version]
- Braun, H.; Woitsch, L.; Hetzer, B.; Geisen, R.; Zange, B.; Schmidt-Heydt, M. Trichoderma harzianum: Inhibition of mycotoxin producing fungi and toxin biosynthesis. Int. J. Food Microbiol. 2018, 280, 10–16. [Google Scholar] [CrossRef]
- Caceres, I.; El Khoury, R.; Bailly, S.; Oswald, I.P.; Puel, O.; Bailly, J.-D. Piperine inhibits aflatoxin B1 production in Aspergillus flavus by modulating fungal oxidative stress response. Fungal Genet. Biol. 2017, 107, 77–85. [Google Scholar] [CrossRef]
- Caceres, I.; Khoury, A.A.; El Khoury, R.; Lorber, S.; Oswald, I.P.; El Khoury, A.; Atoui, A.; Puel, O.; Bailly, J.D. Aflatoxin biosynthesis and genetic regulation: A review. Toxins 2020, 12, 150. [Google Scholar] [CrossRef] [Green Version]
- Caceres, I.; Snini, S.P.; Puel, O.; Mathieu, F. Streptomyces roseolus, A Promising Biocontrol Agent Against Aspergillus flavus, the Main Aflatoxin B1 Producer. Toxins 2018, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Leggieri, M.C.; Giorni, P.; Pietri, A.; Battilani, P. Aspergillus flavus and Fusarium verticillioides Interaction: Modeling the Impact on Mycotoxin Production. Front. Microbiol. 2019, 10, 2653. [Google Scholar] [CrossRef]
- Camardo Leggieri, M.; Lanubile, A.; Dall’Asta, C.; Pietri, A.; Battilani, P. The impact of seasonal weather variation on mycotoxins: Maize crop in 2014 in northern italy as a case study. World Mycotoxin J. 2020, 13, 25–36. [Google Scholar] [CrossRef]
- Çatak, J.; Yaman, M.; Uǧur, H. Investigation of aflatoxin levels in chips by hplc using postcolumn uv derivatization system. Prog. Nutr. 2020, 22, 214–223. [Google Scholar]
- Cervini, C.; Gallo, A.; Piemontese, L.; Magistà, D.; Logrieco, A.F.; Ferrara, M.; Solfrizzo, M.; Perrone, G. Effects of temperature and water activity change on ecophysiology of ochratoxigenic Aspergillus carbonarius in field-simulating conditions. Int. J. Food Microbiol. 2020, 315, 108420. [Google Scholar] [CrossRef] [PubMed]
- Cervini, C.; Verheecke-Vaessen, C.; Ferrara, M.; García-Cela, E.; Magistà, D.; Medina, A.; Gallo, A.; Magan, N.; Perrone, G. Interacting climate change factors (CO2 and temperature cycles) effects on growth, secondary metabolite gene expression and phenotypic ochratoxin A production by Aspergillus carbonarius strains on a grape-based matrix. Fungal Biol. 2021, 125, 115–122. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Das, S.; Deepika; Singh, B.K.; Dubey, N.K. Antimicrobial, aflatoxin b1 inhibitory and lipid oxidation suppressing potential of anethole-based chitosan nanoemulsion as novel preservative for protection of stored maize. Food Bioprocess Technol. 2020, 13, 1462–1477. [Google Scholar] [CrossRef]
- Chulze, S.N.; Palazzini, J.M.; Lullien-Pellerin, V.; Ramirez, M.L.; Cuniberti, M.; Magan, N. Fusarium species infection in wheat: Impact on quality and mycotoxin accumulation. In Wheat Quality for Improving Processing and Human Health; Springer International Publishing: Berlin, Germany, 2020; pp. 421–452. [Google Scholar]
- Cohen, S.P.; Leach, J.E. High temperature-induced plant disease susceptibility: More than the sum of its parts. Curr. Opin. Plant Biol. 2020, 56, 235–241. [Google Scholar] [CrossRef]
- Cowger, C.; Brown, J.K.M. Durability of quantitative resistance in crops: Greater than we know? Annu. Rev. Phytopathol. 2019, 57, 253–277. [Google Scholar] [CrossRef]
- Czéh, Á.; Mézes, M.; Mandy, F.; Szőke, Z.; Nagyéri, G.; Laufer, N.; Kőszegi, B.; Koczka, T.; Kunsági-Máté, S.; Lustyik, G. Flow cytometry based rapid duplexed immunoassay for Fusarium mycotoxins. Cytom. Part A 2017, 91, 190–196. [Google Scholar] [CrossRef]
- Dallabona, C.; Pioli, M.; Spadola, G.; Orsoni, N.; Bisceglie, F.; Lodi, T.; Pelosi, G.; Restivo, F.M.; Degola, F. Sabotage at the Powerhouse? Unraveling the Molecular Target of 2-Isopropylbenzaldehyde Thiosemicarbazone, a Specific Inhibitor of Aflatoxin Biosynthesis and Sclerotia Development in Aspergillus flavus, Using Yeast as a Model System. Molecules 2019, 24, 2971. [Google Scholar] [CrossRef] [Green Version]
- Dall’Asta, C.; Battilani, P. Fumonisins and their modified forms, a matter of concern in future scenario? World Mycotoxin J. 2016, 9, 727–739. [Google Scholar] [CrossRef]
- Damianidis, D.; Ortiz, B.V.; Bowen, K.L.; Windham, G.L.; Hoogenboom, G.; Hagan, A.; Knappenberger, T.; Abbas, H.K.; Scully, B.T.; Mourtzinis, S. Minimum temperature, rainfall, and agronomic management impacts on corn grain aflatoxin contamination. Agron. J. 2018, 110, 1697–1708. [Google Scholar] [CrossRef] [Green Version]
- Damianidis, D.; Ortiz, B.; Windham, G.; Bowen, K.; Hoogenboom, G.; Scully, B.; Hagan, A.; Knappenberger, T.; Woli, P.; Williams, W. Evaluating a generic drought index as a predictive tool for aflatoxin contamination of corn: From plot to regional level. Crop. Prot. 2018, 113, 64–74. [Google Scholar] [CrossRef]
- De Santis, B.; Debegnach, F.; Gregori, E.; Russo, S.; Marchegiani, F.; Moracci, G.; Brera, C. Development of a LC-MS/MS Method for the Multi-Mycotoxin Determination in Composite Cereal-Based Samples. Toxins 2017, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Debegnach, F.; Brera, C.; Mazzilli, G.; Sonego, E.; Buiarelli, F.; Ferri, F.; Rossi, P.G.; Collini, G.; De Santis, B. Optimization and validation of a LC-HRMS method for aflatoxins determination in urine samples. Mycotoxin Res. 2020, 36, 257–266. [Google Scholar] [CrossRef]
- Dellafiora, L.; Dall’Asta, C. Masked mycotoxins: An emerging issue that makes renegotiable what is ordinary. Food Chem. 2016, 213, 534–535. [Google Scholar] [CrossRef]
- Nieto, C.D.; Granero, A.; Garcia, D.; Nesci, A.; Barros, G.; Zon, M.; Fernández, H. Development of a third-generation biosensor to determine sterigmatocystin mycotoxin: An early warning system to detect aflatoxin B1. Talanta 2019, 194, 253–258. [Google Scholar] [CrossRef]
- Dimitrieska-Stojkovikj, E. Increased Health Impact of Aflatoxins Due to Climate Change: Prospective Risk Management Strategies. J. Food Qual. Hazards Control. 2018, 5, 38–39. [Google Scholar] [CrossRef]
- Djaaboub, S.; Moussaoui, A.; Meddah, B.; Gouri, S.; Benyahia, K. Prevalence of Mycoflora and Fusarium graminearum Chemotype DON in Wheat in Bechar Province of South-Western Algeria. Acta Phytopathol. Èntomol. Hung. 2020, 55, 11–26. [Google Scholar] [CrossRef]
- Djekic, I.; Petrovic, J.; Jovetic, M.; Redzepovic-Djordjevic, A.; Stulic, M.; Lorenzo, J.M.; Iammarino, M.; Tomasevic, I. Aflatoxins in Milk and Dairy Products: Occurrence and Exposure Assessment for the Serbian Population. Appl. Sci. 2020, 10, 7420. [Google Scholar] [CrossRef]
- Dong, Y.; Fan, L.; Liang, J.; Wang, L.; Yuan, X.; Wang, Y.; Zhao, S. Risk assessment of mycotoxins in stored maize: Case study of Shandong, China. World Mycotoxin J. 2020, 13, 313–320. [Google Scholar] [CrossRef]
- Dowd, P.F.; Johnson, E.T. Insect damage influences heat and water stress resistance gene expression in field-grown popcorn: Implications in developing crop varieties adapted to climate change. Mitig. Adapt. Strat. Glob. Chang. 2017, 23, 1063–1081. [Google Scholar] [CrossRef]
- Echarri, E.; Vettorazzi, A.; Lizarraga, E.; Arce-López, B.; González-Peñas, E. Review of the analytical methodologies and occurrence data of aflatoxins in cereals and cereal-based foods in spain. In Aflatoxins: Biochemistry, Toxicology, Public Health, Policies and Modern Methods of Analysis; Nova Science Publisher: Hauppauge, NY, USA, 2019; pp. 207–243. [Google Scholar]
- Elgioushy, M.M.; Elgaml, S.A.; El-Adl, M.M.; Hegazy, A.M.; Hashish, E.A. Aflatoxicosis in cattle: Clinical findings and biochemical alterations. Environ. Sci. Pollut. Res. 2020, 27, 35526–35534. [Google Scholar] [CrossRef]
- Elzupir, A.O.; Abdulkhair, B.Y. Health risk from aflatoxins in processed meat products in Riyadh, KSA. Toxicon 2020, 181, 1–5. [Google Scholar] [CrossRef]
- Eskola, M.; Elliott, C.T.; HajšLová, J.; Steiner, D.; Krska, R. Towards a dietary-exposome assessment of chemicals in food: An update on the chronic health risks for the European consumer. Crit. Rev. Food Sci. Nutr. 2019, 60, 1890–1911. [Google Scholar] [CrossRef] [PubMed]
- Eskola, M.; Kos, G.; Elliott, C.T.; HajšLová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Fanzo, J.; Davis, C.; McLaren, R.; Choufani, J. The effect of climate change across food systems: Implications for nutrition outcomes. Glob. Food Secur. 2018, 18, 12–19. [Google Scholar] [CrossRef]
- Fanzo, J.; Hood, A.; Davis, C. Eating our way through the Anthropocene. Physiol. Behav. 2020, 222, 112929. [Google Scholar] [CrossRef]
- Fapohunda, S.O.; Esan, A.O.; Anjorin, T.S. Biological control of mycotoxins: An update. World’s Vet. J. 2017, 7, 117–127. [Google Scholar]
- Ferri, F.; Brera, C.; De Santis, B.; Collini, G.; Crespi, E.; Debegnach, F.; Gargano, A.; Gattei, D.; Magnani, I.; Mancuso, P.; et al. Association between Urinary Levels of Aflatoxin and Consumption of Food Linked to Maize or Cow Milk or Dairy Products. Int. J. Environ. Res. Public Heal. 2020, 17, 2510. [Google Scholar] [CrossRef] [Green Version]
- Ferri, F.; Brera, C.; De Santis, B.; Fedrizzi, G.; Bacci, T.; Bedogni, L.; Capanni, S.; Collini, G.; Crespi, E.; Debegnach, F.; et al. Survey on Urinary Levels of Aflatoxins in Professionally Exposed Workers. Toxins 2017, 9, 117. [Google Scholar] [CrossRef] [Green Version]
- Ferrigo, D.; Mondin, M.; Scopel, C.; Maso, E.D.; Stefenatti, M.; Raiola, A.; Causin, R. Effects of a prothioconazole- and tebuconazole-based fungicide on Aspergillus flavus development under laboratory and field conditions. Eur. J. Plant Pathol. 2019, 155, 151–161. [Google Scholar] [CrossRef]
- Fouché, T.; Claassens, S.; Maboeta, M. Aflatoxins in the soil ecosystem: An overview of its occurrence, fate, effects and future perspectives. Mycotoxin Res. 2020, 36, 303–309. [Google Scholar] [CrossRef]
- Frumkin, H.; Haines, A. Global environmental change and noncommunicable disease risks. Annu. Public Health 2019, 40, 261–282. [Google Scholar] [CrossRef] [Green Version]
- Fusco, V.; Chieffi, D.; Fanelli, F.; Logrieco, A.F.; Cho, G.; Kabisch, J.; Böhnlein, C.; Franz, C.M.A.P. Microbial quality and safety of milk and milk products in the 21st century. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2013–2049. [Google Scholar] [CrossRef]
- Gagiu, V. Triticale crop and contamination with mycotoxins under the influence of climate change—Global study. J. Hyg. Eng. Des. 2018, 23, 30–45. [Google Scholar]
- Gagiu, V.; Mateescu, E.; Armeanu, I.; Dobre, A.A.; Smeu, I.; Cucu, M.E.; Oprea, O.A.; Iorga, E.; Belc, N. Post-harvest contamination with mycotoxins in the context of the geographic and agroclimatic conditions in romania. Toxins 2018, 10, 533. [Google Scholar] [CrossRef] [Green Version]
- García-Díaz, M.; Gil-Serna, J.; Vázquez, C.; Botia, M.N.; Patiño, B. A comprehensive study on the occurrence of mycotoxins and their producing fungi during the maize production cycle in Spain. Microorganisms 2020, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- García-Díaz, M.; Patiño, B.; Vázquez, C.; Gil-Serna, J. A novel niosome-encapsulated essential oil formulation to prevent Aspergillus flavus growth and aflatoxin contamination of maize grains during storage. Toxins 2019, 11, 646. [Google Scholar] [CrossRef] [Green Version]
- Gasperini, A.M.; Rodriguez-Sixtos, A.; Verheecke-Vaessen, C.; Garcia-Cela, E.; Medina, A.; Magan, N. Resilience of Biocontrol for Aflatoxin Minimization Strategies: Climate Change Abiotic Factors May Affect Control in Non-GM and GM-Maize Cultivars. Front. Microbiol. 2019, 10, 2525. [Google Scholar] [CrossRef]
- Gauthier, T.; Duarte-Hospital, C.; Vignard, J.; Boutet-Robinet, E.; Sulyok, M.; Snini, S.P.; Alassane-Kpembi, I.; Lippi, Y.; Puel, S.; Oswald, I.P.; et al. Versicolorin A, a precursor in aflatoxins biosynthesis, is a food contaminant toxic for human intestinal cells. Environ. Int. 2020, 137, 105568. [Google Scholar] [CrossRef] [PubMed]
- Gering, E.; Incorvaia, D.; Henriksen, R.; Wright, D.; Getty, T. Maladaptation in feral and domesticated animals. Evol. Appl. 2019, 12, 1274–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghadiri, S.; Spalenza, V.; Dellafiora, L.; Badino, P.; Barbarossa, A.; Dall’Asta, C.; Nebbia, C.; Girolami, F. Modulation of aflatoxin b1 cytotoxicity and aflatoxin m1 synthesis by natural antioxidants in a bovine mammary epithelial cell line. Toxicol. In Vitro 2019, 57, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Gilbert Sandoval, I.; Wesseling, S.; Rietjens, I.M.C.M. Aflatoxin b1 in nixtamalized maize in Mexico; occurrence and accompanying risk assessment. Toxicol. Rep. 2019, 6, 1135–1142. [Google Scholar] [CrossRef]
- Girona, A.J.R.; Sillué, S.M.; Gahete, F.M.; Donat, P.V.; Almenar, V.S. Mycotoxins: The silent enemy. Arbor 2020, 196, 1–13. [Google Scholar]
- Gömöri, C.; Nacsa-Farkas, E.; Kerekes, E.; Vidács, A.; Bencsik, O.; Kocsubé, S.; Khaled, J.; Alharbi, N.; Vágvölgyi, C.; Krisch, J. Effect of essential oil vapours on aflatoxin production of Aspergillus parasiticus. World Mycotoxin J. 2018, 11, 579–588. [Google Scholar] [CrossRef]
- Gonçalves, A.; Gkrillas, A.; Dorne, J.L.; Dall’Asta, C.; Palumbo, R.; Lima, N.; Battilani, P.; Venâncio, A.; Giorni, P. Pre- and Postharvest Strategies to Minimize Mycotoxin Contamination in the Rice Food Chain. Compr. Rev. Food Sci. Food Saf. 2019, 18, 441–454. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Novak, B.; Nagl, V.; Berthiller, F. Emerging mycotoxins: Beyond traditionally determined food contaminants. J. Agric. Food Chem. 2017, 65, 7052–7070. [Google Scholar] [CrossRef]
- Hiatt, R.A.; Beyeler, N. Cancer and climate change. Lancet Oncol. 2020, 21, e519–e527. [Google Scholar] [CrossRef]
- Hojnik, N.; Modic, M.; Walsh, J.L.; Žigon, D.; Javornik, U.; Plavec, J.; Žegura, B.; Filipič, M.; Cvelbar, U. Unravelling the pathways of air plasma induced aflatoxin B1 degradation and detoxification. J. Hazard. Mater. 2021, 403, 123593. [Google Scholar] [CrossRef]
- Hojnik, N.; Modic, M.; Žigon, D.; Kovač, J.; Jurov, A.; Dickenson, A.; Walsh, J.L.; Cvelbar, U. Cold atmospheric pressure plasma-assisted removal of aflatoxin B 1 from contaminated corn kernels. Plasma Process. Polym. 2021, 18. [Google Scholar] [CrossRef]
- Hruska, Z.; Yao, H.; Kincaid, R.; Brown, R.L.; Bhatnagar, D.; Cleveland, T.E. Temporal effects on internal fluorescence emissions associated with aflatoxin contamination from corn kernel cross-sections inoculated with toxigenic and atoxigenic Aspergillus flavus. Front. Microbiol. 2017, 8, 1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyde, K.D.; Al-Hatmi, A.M.S.; Andersen, B.; Boekhout, T.; Buzina, W.; Dawson, T.L.; Eastwood, D.C.; Jones, E.B.G.; de Hoog, S.; Kang, Y.; et al. The world’s ten most feared fungi. Fungal Divers. 2018, 93, 161–194. [Google Scholar] [CrossRef]
- Iizumi, T. Emerging adaptation to climate change in agriculture. In Adaptation to Climate Change in Agriculture: Research and Practices; Springer International Publishing: Berlin, Germany, 2019; pp. 3–16. [Google Scholar]
- Janić Hajnal, E.; Kos, J.; Krulj, J.; Krstović, S.; Jajić, I.; Pezo, L.; Šarić, B.; Nedeljković, N. Aflatoxins contamination of maize in serbia: The impact of weather conditions in 2015. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 1999–2010. [Google Scholar] [CrossRef] [PubMed]
- Jesmin, R.; Chanda, A. Restricting mycotoxins without killing the producers: A new paradigm in nano-fungal interactions. Appl. Microbiol. Biotechnol. 2020, 104, 2803–2813. [Google Scholar] [CrossRef]
- Kaminiaris, M.D.; Tsitsigiannis, D.I. Pre-harvest management strategies to control aflatoxin contamination in crops. In Aflatoxins: Biochemistry, Toxicology, Public Health, Policies and Modern Methods of Analysis; Nova Science Publisher: Hauppauge, NY, USA, 2019; pp. 247–285. [Google Scholar]
- Kaynarca, H.D.; Hecer, C.; Ulusoy, B. Mycotoxin hazard in meat and meat products. Ataturk Univ. Vet. Bilimleri Derg. 2019, 14, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Keriene, I.; Mankeviciene, A.; Cesnuleviciene, R. Risk factors for mycotoxin contamination of buckwheat grain and its products. World Mycotoxin J. 2018, 11, 519–529. [Google Scholar] [CrossRef]
- Klvana, M.; Bren, U. Aflatoxin B1–Formamidopyrimidine DNA Adducts: Relationships between Structures, Free Energies, and Melting Temperatures. Molecules 2019, 24, 150. [Google Scholar] [CrossRef] [Green Version]
- Knutsen, H.K.; Alexander, J.; Barregard, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; DiNovi, M.; Edler, L.; Grasl-Kraupp, B. Effect on public health of a possible increase of the maximum level for ‘aflatoxin total’ from 4 to 10 μg/kg in peanuts and processed products thereof, intended for direct human consumption or use as an ingredient in foodstuffs. EFSA J. 2018, 16. [Google Scholar] [CrossRef] [Green Version]
- Kovač, T.; Borišev, I.; Crevar, B.; Čačić Kenjerić, F.; Kovač, M.; Strelec, I.; Ezekiel, C.N.; Sulyok, M.; Krska, R.; Šarkanj, B. Fullerol c60(oh)24 nanoparticles modulate aflatoxin b1 biosynthesis in Aspergillus flavus. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Kovač, T.; Borišev, I.; Kovač, M.; Lončarić, A.; Čačić Kenjerić, F.; Djordjevic, A.; Strelec, I.; Ezekiel, C.N.; Sulyok, M.; Krska, R.; et al. Impact of fullerol c60(oh)24 nanoparticles on the production of emerging toxins by Aspergillus flavus. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Kovač, T.; Kovač, M.; Strelec, I.; Nevistić, A.; Molnar, M. Antifungal and antiaflatoxigenic activities of coumarinyl thiosemicarbazides against Aspergillus flavus nrrl 3251. Arh. za Hig. Rada i Toksikol. 2017, 68, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Kovač, T.; Šarkanj, B.; Borišev, I.; Djordjevic, A.; Jović, D.; Lončarić, A.; Babić, J.; Jozinović, A.; Krska, T.; Gangl, J.; et al. Fullerol c60(oh)24 nanoparticles affect secondary metabolite profile of important foodborne mycotoxigenic fungi in vitro. Toxins 2020, 12, 213. [Google Scholar] [CrossRef] [Green Version]
- Kovač, T.; Šarkanj, B.; Crevar, B.; Kovač, M.; Lončarić, A.; Strelec, I.; Ezekiel, C.N.; Sulyok, M.; Krska, R. Aspergillus flavus nrrl 3251 growth, oxidative status, and aflatoxins production ability in vitro under different illumination regimes. Toxins 2018, 10, 528. [Google Scholar] [CrossRef] [Green Version]
- Kovač, T.; Šarkanj, B.; Klapec, T.; Borišev, I.; Kovač, M.; Nevistić, A.; Strelec, I. Antiaflatoxigenic effect of fullerene c60 nanoparticles at environmentally plausible concentrations. AMB Express 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Kövesi, B.; Cserháti, M.; Erdélyi, M.; Zándoki, E.; Mézes, M.; Balogh, K. Lack of dose- and time-dependent effects of aflatoxin b1 on gene expression and enzymes associated with lipid peroxidation and the glutathione redox system in chicken. Toxins 2020, 12, 84. [Google Scholar] [CrossRef] [Green Version]
- Krska, R.; De Nijs, M.; McNerney, O.; Pichler, M.; Gilbert, J.; Edwards, S.; Suman, M.; Magan, N.; Rossi, V.; Van Der Fels-Klerx, H.; et al. Safe food and feed through an integrated toolbox for mycotoxin management: The MyToolBox approach. World Mycotoxin J. 2016, 9, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Krulj, J.; Đisalov, J.; Bocarov-Stancic, A.; Pezo, L.; Kojic, J.; Vidaković, A.; Solarov, M.B. Occurrence of aflatoxin B1 in Triticum species inoculated with Aspergillus flavus. World Mycotoxin J. 2018, 11, 247–257. [Google Scholar] [CrossRef]
- Ksenija, N. Mycotoxins—Climate impact and steps to prevention based on prediction. Acta Vet. 2018, 68, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kumphanda, J.; Matumba, L.; Whitaker, T.; Kasapila, W.; Sandahl, J. Maize meal slurry mixing: An economical recipe for precise aflatoxin quantitation. World Mycotoxin J. 2019, 12, 203–212. [Google Scholar] [CrossRef]
- Labanca, F.; Raimondi, A.; Fontanelli, M.; Pisuttu, C.; Rallo, G.; Galli, F.; Conte, G.; Pellegrini, E. The effects of climate change on livestock production systems: The cases of mycotoxins in animal feed and animal heat stress. Agrochimica 2019, 2019, 99–106. [Google Scholar]
- Lanubile, A.; Maschietto, V.; Battilani, P.; Marocco, A. Infection with toxigenic and atoxigenic strains of Aspergillus flavus induces different transcriptional signatures in maize kernels. J. Plant Interact. 2017, 12, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Leong, Y.H.; Ahmad, N.I.; Awang, R. Occurrence, human exposure and the current trends of exposure measurements for aflatoxins. In Focus on Aflatoxins Research; Nova Science Publisher: Hauppauge, NY, USA, 2017; pp. 1–44. [Google Scholar]
- Magan, N.; Medina, Á. Integrating gene expression, ecology and mycotoxin production by Fusarium and Aspergillus species in relation to interacting environmental factors. World Mycotoxin J. 2016, 9, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Mahato, D.K.; Lee, K.E.; Kamle, M.; Devi, S.; Dewangan, K.N.; Kumar, P.; Kang, S.G. Aflatoxins in Food and Feed: An Overview on Prevalence, Detection and Control Strategies. Front. Microbiol. 2019, 10, 2266. [Google Scholar] [CrossRef] [PubMed]
- Mangasuli, S.N. Synthesis of novel Isatin-Dithiocarbamate hybrids: An approach to microwave and potent antimicrobial agents. Chem. Data Collect. 2020, 29, 100515. [Google Scholar] [CrossRef]
- Martins, C.; Vidal, A.; De Boevre, M.; De Saeger, S.; Nunes, C.; Torres, D.; Goios, A.; Lopes, C.; Alvito, P.; Assunção, R. Burden of disease associated with dietary exposure to carcinogenic aflatoxins in portugal using human biomonitoring approach. Food Res. Int. 2020, 134, 109210. [Google Scholar] [CrossRef]
- Masiello, M.; Somma, S.; Ghionna, V.; Francesco Logrieco, A.; Moretti, A. In vitro and in field response of different fungicides against Aspergillus flavus and Fusarium species causing ear rot disease of maize. Toxins 2019, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Masiello, M.; Somma, S.; Haidukowski, M.; Logrieco, A.F.; Moretti, A. Genetic polymorphisms associated to sdhi fungicides resistance in selected Aspergillus flavus strains and relation with aflatoxin production. Int. J. Microbiol. 2020, 334, 108799. [Google Scholar] [CrossRef]
- Mauro, A.; Garcia-Cela, E.; Pietri, A.; Cotty, P.J.; Battilani, P. Biological control products for aflatoxin prevention in italy: Commercial field evaluation of atoxigenic Aspergillus flavus active ingredients. Toxins 2018, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Mesterhazy, A.; Toth, E.T.T.; Szel, S.; Varga, M.; Toth, B. Resistance of Maize Hybrids to Fusarium graminearum, F. culmorum, and F. verticillioides Ear Rots with Toothpick and Silk Channel Inoculation, as Well as Their Toxin Production. Agronomy 2020, 10, 1283. [Google Scholar] [CrossRef]
- Michelmore, R.; Coaker, G.; Bart, R.; Beattie, G.; Bent, A.; Bruce, T.; Cameron, D.; Dangl, J.; Dinesh-Kumar, S.; Edwards, R.; et al. Foundational and Translational Research Opportunities to Improve Plant Health. Mol. Plant-Microbe Interact. 2017, 30, 515–516. [Google Scholar] [CrossRef] [Green Version]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Mshelia, L.P.; Selamat, J.; Samsudin, N.I.P.; Rafii, M.Y.; Mutalib, N.-A.A.; Nordin, N.; Berthiller, F. Effect of Temperature, Water Activity and Carbon Dioxide on Fungal Growth and Mycotoxin Production of Acclimatised Isolates of Fusarium verticillioides and F. graminearum. Toxins 2020, 12, 478. [Google Scholar] [CrossRef]
- Munkvold, G.P.; Arias, S.; Taschl, I.; Gruber-Dorninger, C. Mycotoxins in corn: Occurrence, impacts, and management. In Corn: Chemistry and Technology, 3rd ed.; Elsevier: Duxford, UK, 2018; pp. 235–287. [Google Scholar]
- Myndrul, V.; Coy, E.; Bechelany, M.; Iatsunskyi, I. Photoluminescence label-free immunosensor for the detection of Aflatoxin B1 using polyacrylonitrile/zinc oxide nanofibers. Mater. Sci. Eng. C 2021, 118, 111401. [Google Scholar] [CrossRef]
- Nabwire, W.R.; Ombaka, J.; Dick, C.P.; Strickland, C.; Tang, L.; Xue, K.S.; Wang, J.-S. Aflatoxin in household maize for human consumption in Kenya, East Africa. Food Addit. Contam. Part B 2019, 13, 45–51. [Google Scholar] [CrossRef]
- Nazhand, A.; Durazzo, A.; Lucarini, M.; Souto, E.B.; Santini, A. Characteristics, Occurrence, Detection and Detoxification of Aflatoxins in Foods and Feeds. Foods 2020, 9, 644. [Google Scholar] [CrossRef]
- Nogueira, L.M.; Yabroff, K.R.; Bernstein, A. Climate change and cancer. CA Cancer J. Clin. 2020, 70, 239–244. [Google Scholar] [CrossRef]
- Nugent, A.P.; Thielecke, F. Wholegrains and health: Many benefits but do contaminants pose any risk? Nutr. Bull. 2019, 44, 107–115. [Google Scholar] [CrossRef]
- Nugraha, A.; Khotimah, K.; Rietjens, I.M. Risk assessment of aflatoxin B1 exposure from maize and peanut consumption in Indonesia using the margin of exposure and liver cancer risk estimation approaches. Food Chem. Toxicol. 2018, 113, 134–144. [Google Scholar] [CrossRef]
- Nurerk, P.; Bunkoed, W.; Kanatharana, P.; Bunkoed, O. A miniaturized solid-phase extraction adsorbent of calix[4]arene-functionalized graphene oxide/polydopamine-coated cellulose acetate for the analysis of aflatoxins in corn. J. Sep. Sci. 2018, 41, 3892–3901. [Google Scholar] [CrossRef]
- Oliveira, M.; Vasconcelos, V. Occurrence of Mycotoxins in Fish Feed and Its Effects: A Review. Toxins 2020, 12, 160. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Beltran, A.; Cotty, P.J. Frequent shifts in Aspergillus flavus populations associated with maize production in sonora, mexico. Phytopathology 2018, 108, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Rojas, N.; McCulley, L.; Kaeppler, M.; Titcomb, T.J.; Gunaratna, N.S.; Lopez-Ridaura, S.; Tanumihardjo, S.A. Mining maize diversity and improving its nutritional aspects within agro-food systems. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1809–1834. [Google Scholar] [CrossRef]
- Pascale, M.; Logrieco, A.F.; Graeber, M.; Hirschberger, M.; Reichel, M.; Lippolis, V.; De Girolamo, A.; Lattanzio, V.M.T.; Slettengren, K. Aflatoxin reduction in maize by industrial-scale cleaning solutions. Toxins 2020, 12, 331. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.M.; Venâncio, A.; Lima, N.; Guilloux-Bénatier, M.; Rousseaux, S. Predominant mycotoxins, mycotoxigenic fungi and climate change related to wine. Food Res. Int. 2018, 103, 478–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peles, F.; Sipos, P.; Győri, Z.; Pfliegler, W.P.; Giacometti, F.; Serraino, A.; Pagliuca, G.; Gazzotti, T.; Pócsi, I. Adverse effects, transformation and channeling of aflatoxins into food raw materials in livestock. Front. Microbiol. 2019, 10, 2861. [Google Scholar] [CrossRef] [Green Version]
- Peña-Rodas, O.; Martinez-Lopez, R.; Hernandez-Rauda, R. Occurrence of Aflatoxin M1 in cow milk in El Salvador: Results from a two-year survey. Toxicol. Rep. 2018, 5, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Peña-Rodas, O.; Martinez-Lopez, R.; Pineda-Rivas, M.; Hernandez-Rauda, R. Aflatoxin M1 in Nicaraguan and locally made hard white cheeses marketed in El Salvador. Toxicol. Rep. 2020, 7, 1157–1163. [Google Scholar] [CrossRef]
- Perczak, A.; Goliński, P.; Bryła, M.; Waśkiewicz, A. The efficiency of lactic acid bacteria against pathogenic fungi and mycotoxins. Arh. za Hig. Rada i Toksikol. 2018, 69, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Pimpitak, U.; Rengpipat, S.; Phutong, S.; Buakeaw, A.; Komolpis, K. Development and validation of a lateral flow immunoassay for the detection of aflatoxin m1 in raw and commercialised milks. Int. J. Dairy Technol. 2020, 73, 695–705. [Google Scholar] [CrossRef]
- Pleadin, J.; Zadravec, M.; Lešić, T.; Frece, J.; Markov, K.; Vasilj, V. Climate change—A potential threat for increasing occurrences of mycotoxins. Vet. Stanica 2020, 51. [Google Scholar]
- Ponce-García, N.; Serna-Saldivar, S.O.; Garcia-Lara, S. Fumonisins and their analogues in contaminated corn and its processed foods—A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 2183–2203. [Google Scholar] [CrossRef]
- Poór, M.; Bálint, M.; Hetényi, C.; Gődér, B.; Kunsági-Máté, S.; Kőszegi, T.; Lemli, B. Investigation of non-covalent interactions of aflatoxins (b1, b2, g1, g2, and m1) with serum albumin. Toxins 2017, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Porto, Y.D.; Trombete, F.M.; Freitas-Silva, O.; de Castro, I.M.; Direito, G.M.; Ascheri, J.L.R. Gaseous ozonation to reduce aflatoxins levels and microbial contamination in corn grits. Microorganisms 2019, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- Qin, M.; Liang, J.; Yang, D.; Yang, X.; Cao, P.; Wang, X.; Ma, N.; Zhang, L. Spatial analysis of dietary exposure of aflatoxins in peanuts and peanut oil in different areas of China. Food Res. Int. 2021, 140, 109899. [Google Scholar] [CrossRef]
- Ráduly, Z.; Szabó, L.; Madar, A.; Pócsi, I.; Csernoch, L. Toxicological and medical aspects of Aspergillus-derived mycotoxins entering the feed and food chain. Front. Microbiol. 2020, 10, 2908. [Google Scholar] [CrossRef] [Green Version]
- Raiten, D.J.; Aimone, A.M. The intersection of climate/environment, food, nutrition and health: Crisis and opportunity. Curr. Opin. Biotechnol. 2017, 44, 52–62. [Google Scholar] [CrossRef]
- Renaud, J.B.; Miller, J.D.; Sumarah, M.W. Mycotoxin testing paradigm: Challenges and opportunities for the future. J. AOAC Int. 2019, 102, 1681–1688. [Google Scholar] [CrossRef]
- Ricciardi, W.; Marcheggiani, S.; Puccinelli, C.; Carere, M.; Sofia, T.; Giuliano, F.; Dogliotti, E.; Mancini, L.; Agrimi, U.; Alleva, E.; et al. Health and climate change: Science calls for global action. Ann. dell’Istituto Super. di Sanita 2019, 55, 323–329. [Google Scholar]
- Righetti, L.; Paglia, G.; Galaverna, G.; Dall’Asta, C. Recent advances and future challenges in modified mycotoxin analysis: Why hrms has become a key instrument in food contaminant research. Toxins 2016, 8, 361. [Google Scholar] [CrossRef]
- Rushing, B.R.; Selim, M.I. Adduction to arginine detoxifies aflatoxin b1 by eliminating genotoxicity and altering in vitro toxicokinetic profiles. Oncotarget 2018, 9, 4559–4570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rushing, B.R.; Selim, M.I. Aflatoxin b1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Šarkanj, B.; Ezekiel, C.N.; Turner, P.C.; Abia, W.A.; Rychlik, M.; Krska, R.; Sulyok, M.; Warth, B. Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers. Anal. Chim. Acta 2018, 1019, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Sarrocco, S.; Mauro, A.; Battilani, P. Use of competitive filamentous fungi as an alternative approach for mycotoxin risk reduction in staple cereals: State of art and future perspectives. Toxins 2019, 11, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satterlee, T.; Cary, J.W.; Calvo, A.M. Rmta, a putative arginine methyltransferase, regulates secondary metabolism and development in Aspergillus flavus. PLoS ONE 2016, 11, e0155575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savić, Z.; Dudaš, T.; Loc, M.; Grahovac, M.; Budakov, D.; Jajić, I.; Krstović, S.; Barošević, T.; Krska, R.; Sulyok, M.; et al. Biological control of aflatoxin in maize grown in serbia. Toxins 2020, 12, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaarschmidt, S.; Fauhl-Hassek, C. The fate of mycotoxins during secondary food processing of maize for human consumption. Compr. Rev. Food Sci. Food Saf. 2021, 20, 91–148. [Google Scholar] [CrossRef] [PubMed]
- Schaarschmidt, S.; Fauhl-Hassek, C. The fate of mycotoxins during the primary food processing of maize. Food Control 2021, 121, 107651. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Risk assessment of aflatoxins in food. EFSA J. 2020, 18, e06040. [Google Scholar]
- Singh, P.; Callicott, K.A.; Orbach, M.J.; Cotty, P.J. Molecular Analysis of S-morphology Aflatoxin Producers from the United States Reveals Previously Unknown Diversity and Two New Taxa. Front. Microbiol. 2020, 11, 1236. [Google Scholar] [CrossRef]
- Smith, J.W.; Groopman, J.D. Aflatoxins. In Encyclopedia of Cancer; Elsevier: Amsterdam, The Netherlands, 2018; pp. 30–43. [Google Scholar]
- Soares, R.R.G.; Ricelli, A.; Fanelli, C.; Caputo, D.; De Cesare, G.; Chu, V.; Aires-Barros, M.R.; Conde, J.P. Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst 2018, 143, 1015–1035. [Google Scholar] [CrossRef] [PubMed]
- Sojinrin, T.; Liu, K.; Wang, K.; Cui, D.; Byrne, H.J.; Curtin, J.F.; Tian, F. Developing Gold Nanoparticles-Conjugated Aflatoxin B1 Antifungal Strips. Int. J. Mol. Sci. 2019, 20, 6260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Söylemez, T.; Yamaç, M.; Yıldız, Z. Statistical optimization of cultural variables for enzymatic degradation of aflatoxin b1 by Panus neostrigosus. Toxicon 2020, 186, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Steiner, D.; Sulyok, M.; Malachová, A.; Mueller, A.; Krska, R. Realizing the simultaneous liquid chromatography-tandem mass spectrometry based quantification of >1200 biotoxins, pesticides and veterinary drugs in complex feed. J. Chromatogr. A 2020, 1629, 461502. [Google Scholar] [CrossRef]
- Stepman, F. Scaling-up the impact of aflatoxin research in africa. The role of social sciences. Toxins 2018, 10, 136. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Liu, Z.; Liu, D.; Chen, J.; Gan, F.; Huang, K. Low-Level Aflatoxin B1 Promotes Influenza Infection and Modulates a Switch in Macrophage Polarization from M1 to M2. Cell. Physiol. Biochem. 2018, 49, 1151–1167. [Google Scholar] [CrossRef]
- Sun, Y.; Su, J.; Liu, Z.; Liu, D.; Gan, F.; Chen, X.; Huang, K. Aflatoxin b1 promotes influenza replication and increases virus related lung damage via activation of tlr4 signaling. Front. Immunol. 2018, 9, 2297. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Su, J.; Yang, S.; Liu, Z.; Liu, D.; Gan, F.; Chen, X.; Huang, K. Mannan oligosaccharide protects against the aflatoxin-b1-promoted influenza replication and tissue damages in a toll-like-receptor-4-dependent manner. J. Agric. Food Chem. 2019, 67, 735–745. [Google Scholar] [CrossRef]
- Szabo, B.; Toth, B.; Toldine, E.T.; Varga, M.; Kovacs, N.; Varga, J.; Kocsube, S.; Palagyi, A.; Bagi, F.; Budakov, D.; et al. A new concept to secure food safety standards against Fusarium species and Aspergillus flavus and their toxins in maize. Toxins 2018, 10, 372. [Google Scholar] [CrossRef] [Green Version]
- Tacconi, C.; Cucina, M.; Pezzolla, D.; Zadra, C.; Gigliotti, G. Effect of the mycotoxin aflatoxin b1 on a semi-continuous anaerobic digestion process. Waste Manag. 2018, 78, 467–473. [Google Scholar] [CrossRef]
- Thielecke, F.; Nugent, A.P. Contaminants in grain—A major risk for whole grain safety? Nutrients 2018, 10, 1213. [Google Scholar] [CrossRef] [Green Version]
- Toreti, A.; Bassu, S.; Ceglar, A.; Zampieri, M. Climate change and crop yields. In Encyclopedia of Food Security and Sustainability; Elsevier: Amsterdam, The Netherlands, 2018; pp. 223–227. [Google Scholar]
- Udovicki, B.; Audenaert, K.; De Saeger, S.; Rajkovic, A. Overview on the mycotoxins incidence in serbia in the period 2004–2016. Toxins 2018, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Udovicki, B.; Djekic, I.; Gajdos Kljusuric, J.; Papageorgiou, M.; Skendi, A.; Djugum, J.; Rajkovic, A. Exposure assessment and risk characterization of aflatoxins intake through consumption of maize products in the adult populations of Serbia, Croatia and Greece. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 940–951. [Google Scholar] [CrossRef]
- Udovicki, B.; Djekic, I.; Stankovic, S.; Obradovic, A.; Rajkovic, A. Impact of climatic conditions on fumonisins in maize grown in Serbia. World Mycotoxin J. 2019, 12, 183–190. [Google Scholar] [CrossRef]
- Uka, V.; Cary, J.W.; Lebar, M.D.; Puel, O.; De Saeger, S.; Diana Di Mavungu, J. Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2797–2842. [Google Scholar] [CrossRef]
- Valencia-Quintana, R.; Milić, M.; Jakšić, D.; Klarić, M.Š.; Tenorio-Arvide, M.G.; Pérez-Flores, G.A.; Bonassi, S.; Sánchez-Alarcón, J. Environment changes, aflatoxins, and health issues, a review. Int. J. Environ. Res. Public Health 2020, 17, 7850. [Google Scholar] [CrossRef]
- van der Fels-Klerx, H.J.; Camenzuli, L. Effects of milk yield, feed composition, and feed contamination with aflatoxin b1 on the aflatoxin m1 concentration in dairy cows’ milk investigated using monte carlo simulation modelling. Toxins 2016, 8, 290. [Google Scholar] [CrossRef] [Green Version]
- Van Der Fels-Klerx, H.J.; Liu, C.; Battilani, P. Modelling climate change impacts on mycotoxin contamination. World Mycotoxin J. 2016, 9, 717–726. [Google Scholar] [CrossRef] [Green Version]
- Van der Fels-Klerx, H.J.; Vermeulen, L.C.; Gavai, A.K.; Liu, C. Climate change impacts on aflatoxin b1 in maize and aflatoxin m1 in milk: A case study of maize grown in eastern europe and imported to the netherlands. PLoS ONE 2019, 14, e0218956. [Google Scholar] [CrossRef] [Green Version]
- Vandicke, J.; De Visschere, K.; Croubels, S.; De Saeger, S.; Audenaert, K.; Haesaert, G. Mycotoxins in flanders’ fields: Occurrence and correlations with Fusarium species in whole-plant harvested maize. Microorganisms 2019, 7, 571. [Google Scholar] [CrossRef] [Green Version]
- Verheecke, C.; Liboz, T.; Mathieu, F. Microbial degradation of aflatoxin b1: Current status and future advances. Int. J. Food Microbiol. 2016, 237, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Viegas, S.; Assunção, R.; Martins, C.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Ribeiro, E.; Viegas, C. Occupational exposure to mycotoxins in swine production: Environmental and biological monitoring approaches. Toxins 2019, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Viegas, S.; Assunção, R.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Martins, C.; Alvito, P.; Almeida, A.; et al. Exposure assessment to mycotoxins in a portuguese fresh bread dough company by using a multi-biomarker approach. Toxins 2018, 10, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, S.; Assunção, R.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Viegas, C. Mycotoxins feed contamination in a dairy farm—Potential implications for milk contamination and workers’ exposure in a one health approach. J. Sci. Food Agric. 2020, 100, 1118–1123. [Google Scholar] [CrossRef]
- Wacoo, A.P.; Wendiro, D.; Nanyonga, S.; Hawumba, J.F.; Sybesma, W.; Kort, R. Feasibility of a novel on-site detection method for aflatoxin in maize flour from markets and selected households in kampala, uganda. Toxins 2018, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Windham, G.L.; Williams, W.P.; Mylroie, J.E.; Reid, C.X.; Womack, E.D. A histological study of Aspergillus flavus colonization of wound inoculated maize kernels of resistant and susceptible maize hybrids in the field. Front. Microbiol. 2018, 9, 799. [Google Scholar] [CrossRef] [Green Version]
- Winter, G.; Pereg, L. A review on the relation between soil and mycotoxins: Effect of aflatoxin on field, food and finance. Eur. J. Soil Sci 2019, 70, 882–897. [Google Scholar] [CrossRef]
- Yu, J.; Hennessy, D.A.; Wu, F. The impact of bt corn on aflatoxin-related insurance claims in the united states. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, J.; Zhou, Y.; Kong, W.; Yang, M. Quality evaluation of alpinia oxyphylla after Aspergillus flavus infection for storage conditions optimization. AMB Express 2017, 7, 151. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Gan, F.; Hou, L.; Liu, Z.; Su, J.; Lin, Z.; Le, G.; Huang, K. Aflatoxin b1 induces immunotoxicity through the DNA methyltransferase-mediated jak2/stat3 pathway in 3d4/21 cells. J. Agric. Food Chem. 2019, 67, 3772–3780. [Google Scholar] [CrossRef]
- Review of the Draft Interagency Report on the Impacts of Climate Change on Human Health in the United States; The National Academies Press: Washington, DC, USA, 2015; pp. 1–78.
- Battilani, P.; Camardo Leggieri, M. Predictive modelling of aflatoxin contamination to support maize chain management. World Mycotoxin J. 2015, 8, 161–170. [Google Scholar] [CrossRef]
- Clark, G.C.; Casewell, N.R.; Elliott, C.T.; Harvey, A.L.; Jamieson, A.G.; Strong, P.N.; Turner, A.D. Friends or foes? Emerging impacts of biological toxins. Trends Biochem. Sci. 2019, 44, 365–379. [Google Scholar] [CrossRef] [Green Version]
- Csáki, K.F.; Szabó, M.S.; Túri, M.S. Possibilities for the decrease of aflatoxin contamination in food chain. Elelmvizsg. Kozl. 2014, 60, 68–79. [Google Scholar]
- De Nijs, M.; Mengelers, M.J.B.; Boon, P.E.; Heyndrickx, E.; Hoogenboom, L.A.P.; Lopez, P.; Mol, H.G.J. Strategies for estimating human exposure to mycotoxins via food. World Mycotoxin J. 2016, 9, 831–845. [Google Scholar] [CrossRef] [Green Version]
- Donohoe, T.; Garnett, K.; Lansink, A.O.; Afonso, A.; Noteborn, H. Emerging risks identification on food and feed—Efsa. EFSA J. 2018, 16, e05359. [Google Scholar]
- Eskola, M.; Altieri, A.; Galobart, J. Overview of the activities of the european food safety authority on mycotoxins in food and feed. World Mycotoxin J. 2018, 11, 277–289. [Google Scholar] [CrossRef]
- Gilbert, M.K.; Mack, B.M.; Payne, G.A.; Bhatnagar, D. Use of functional genomics to assess the climate change impact on Aspergillus flavus and aflatoxin production. World Mycotoxin J. 2016, 9, 665–672. [Google Scholar] [CrossRef]
- Giorni, P.; Camardo Leggieri, M.; Magan, N.; Battilani, P. Comparison of temperature and moisture requirements for sporulation of Aspergillus flavus sclerotia on natural and artificial substrates. Fungal Biol. 2012, 116, 637–642. [Google Scholar] [CrossRef]
- Gómez, J.V.; Tarazona, A.; Mateo, F.; Jiménez, M.; Mateo, E.M. Potential impact of engineered silver nanoparticles in the control of aflatoxins, ochratoxin a and the main aflatoxigenic and ochratoxigenic species affecting foods. Food Control 2019, 101, 58–68. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Martínez, R.; Navarro-Blasco, I. Surveillance of aflatoxin content in dairy cow feedstuff from navarra (Spain). Anim. Feed Sci. Technol. 2015, 200, 35–46. [Google Scholar] [CrossRef]
- Kanapitsas, A.; Batrinou, A.; Aravantinos, A.; Sflomos, C.; Markaki, P. Gamma radiation inhibits the production of ochratoxin a by Aspergillus carbonarius. Development of a method for ota determination in raisins. Food Biosci. 2016, 15, 42–48. [Google Scholar] [CrossRef]
- Kovač, T.; Šarkanj, B.; Klapec, T.; Borišev, I.; Kovač, M.; Nevistić, A.; Strelec, I. Fullerol c60(oh)24 nanoparticles and mycotoxigenic fungi: A preliminary investigation into modulation of mycotoxin production. Environ. Sci. Pollut. Res. 2017, 24, 16673–16681. [Google Scholar] [CrossRef] [PubMed]
- Lagogianni, C.S.; Tsitsigiannis, D.I. Effective chemical management for prevention of aflatoxins in maize. Phytopathol. Mediterr. 2018, 57, 186–197. [Google Scholar]
- Lagogianni, C.S.; Tsitsigiannis, D.I. Effective biopesticides and biostimulants to reduce aflatoxins in maize fields. Front. Microbiol. 2019, 10, 2645. [Google Scholar] [CrossRef] [Green Version]
- Lulamba, T.E.; Stafford, R.A.; Njobeh, P.B. A sub-saharan african perspective on mycotoxins in beer—A review. J. Inst. Brew. 2019, 125, 184–199. [Google Scholar] [CrossRef]
- Magan, N.; Medina, A. Mycotoxins, food security and climate change: Do we know enough? Microbiol. Today 2016, 43, 10–13. [Google Scholar]
- Malissiova, E.; Manouras, A. Monitoring aflatoxin m1 levels in donkey milk produced in greece, intended for human consumption. World Mycotoxin J. 2017, 10, 203–206. [Google Scholar] [CrossRef]
- Malissiova, E.; Tsakalof, A.; Arvanitoyannis, I.S.; Katsafliaka, A.; Katsioulis, A.; Tserkezou, P.; Koureas, M.; Govaris, A.; Hadjichristodoulou, C. Monitoring aflatoxin m1 levels in ewe’s and goat’s milk in thessaly, greece; potential risk factors under organic and conventional production schemes. Food Control 2013, 34, 241–248. [Google Scholar] [CrossRef]
- Manouras, A.; Malissiova, E. Occurrence of aflatoxins in compound feeds and feed materials for dairy livestock in central greece. Hell. Veter- Med Soc. 2015, 66, 169–176. [Google Scholar] [CrossRef]
- Mateo, E.M.; Gómez, J.V.; Gimeno-Adelantado, J.V.; Romera, D.; Mateo-Castro, R.; Jiménez, M. Assessment of azole fungicides as a tool to control growth of Aspergillus flavus and aflatoxin b1 and b2 production in maize. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 1039–1051. [Google Scholar] [CrossRef]
- Matumba, L.; Sulyok, M.; Monjerezi, M.; Biswick, T.; Krska, R. Fungal metabolites diversity in maize and associated human dietary exposures relate to micro-climatic patterns in malawi. World Mycotoxin J. 2015, 8, 269–282. [Google Scholar] [CrossRef]
- Medina, A.; Rodriguez, A.; Magan, N. Changes in environmental factors driven by climate change: Effects on the ecophysiology of mycotoxigenic fungi. In Climate Change and Mycotoxins; Botana, M.J., Sainz, L.M., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2015; pp. 71–90. [Google Scholar]
- Medina, Á.; Rodríguez, A.; Magan, N. Climate change and mycotoxigenic fungi: Impacts on mycotoxin production. Curr. Opin. Food Sci. 2015, 5, 99–104. [Google Scholar] [CrossRef]
- Moretti, A.; Logrieco, A.F. Climate change effects on the biodiversity of mycotoxigenic fungi and their mycotoxins in preharvest conditions in europe. In Climate Change and Mycotoxins; Botana, M.J., Sainz, L.M., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2015; pp. 91–108. [Google Scholar]
- Nazari, L.; Manstretta, V.; Rossi, V. A non-linear model for temperature-dependent sporulation and t-2 and ht-2 production of Fusarium langsethiae and Fusarium sporotrichioides. Fungal Biol. 2016, 120, 562–571. [Google Scholar] [CrossRef]
- Pangga, I.B.; Hanan, J.; Chakraborty, S. Climate change impacts on plant canopy architecture: Implications for pest and pathogen management. European J. Plant Pathol. 2013, 135, 595–610. [Google Scholar] [CrossRef]
- Pangga, I.B.; Salvacion, A.R.; Cumagun, C.J.R. Climate change and plant diseases caused by mycotoxigenic fungi: Implications for food security. In Climate Change and Mycotoxins; Botana, M.J., Sainz, L.M., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2015; pp. 1–28. [Google Scholar]
- Paris, M.P.K.; Liu, Y.J.; Nahrer, K.; Binder, E.M. Climate change impacts on mycotoxin production. In Climate Change and Mycotoxins; Botana, M.J., Sainz, L.M., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2015; pp. 133–151. [Google Scholar]
- Pautasso, M.; Petter, F.; Rortais, A.; Roy, A.S. Emerging risks to plant health: A european perspective. CAB Reviews: Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2015, 10, 1–16. [Google Scholar] [CrossRef]
- Pecorelli, I.; Guarducci, N.; Von Holst, C.; Bibi, R.; Pascale, M.; Ciasca, B.; Logrieco, A.F.; Lattanzio, V.M.T. Critical comparison of analytical performances of two immunoassay methods for rapid detection of aflatoxin m1 in milk. Toxins 2020, 12, 270. [Google Scholar] [CrossRef]
- Robinson, T.; Altieri, A.; Chiusolo, A.; Dorne, J.L.; Goumperis, T.; Rortais, A.; Deluyker, H.; Silano, V.; Liem, D. Efsa’s approach to identifying emerging risks in food and feed: Taking stock and looking forward. EFSA J. 2012, 10, s1015. [Google Scholar] [CrossRef]
- Rodríguez-Blanco, M.; Ramos, A.J.; Prim, M.; Sanchis, V.; Marín, S. Usefulness of the analytical control of aflatoxins in feedstuffs for dairy cows for the prevention of aflatoxin m1 in milk. Mycotoxin Res. 2020, 36, 11–22. [Google Scholar] [CrossRef]
- Sainz, M.J.; Alfonso, A.; Botana, L.M. Considerations about international mycotoxin legislation, food security, and climate change. In Climate Change and Mycotoxins; De Gruyter: Berlin, Germany, 2015; pp. 153–179. [Google Scholar]
- Sckokai, P.; Veneziani, M.; Moro, D.; Castellari, E. Consumer willingness to pay for food safety: The case of mycotoxins in milk. Bio-Based Appl. Econ. 2014, 3, 63–81. [Google Scholar]
- Torović, L. Aflatoxin m1 in processed milk and infant formulae and corresponding exposure of adult population in serbia in 2013–2014. Food Addit. Contam. Part B Surveill. 2015, 8, 235–244. [Google Scholar] [PubMed]
- Trevisani, M.; Farkas, Z.; Serraino, A.; Zambrini, A.V.; Pizzamiglio, V.; Giacometti, F.; Ambrus, Á. Analysis of industry-generated data. Part 1: A baseline for the development of a tool to assist the milk industry in designing sampling plans for controlling aflatoxin M1 in milk. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 1246–1256. [Google Scholar] [CrossRef] [PubMed]
- Van de Perre, E.; Jacxsens, L.; Liu, C.; Devlieghere, F.; De Meulenaer, B. Climate impact on alternaria moulds and their mycotoxins in fresh produce: The case of the tomato chain. Food Res. Int. 2015, 68, 41–46. [Google Scholar] [CrossRef]
- Van der Fels-Klerx, H.J.; Olesen, J.E.; Madsen, M.S.; Goedhart, P.W. Climate change increases deoxynivalenol contamination of wheat in north-western europe. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 1593–1604. [Google Scholar] [CrossRef] [PubMed]
- Drasticdata Tool. Available online: https://www.drasticdata.nl/index.htm (accessed on 26 February 2021).
- Dobolyi, C.; Sebok, F.; Varga, J.; Kocsube, S.; Szigeti, G.; Baranyi, N.; Szecsi, A.; Toth, B.; Varga, M.; Kriszt, B.; et al. Occurrence of aflatoxin producing Aspergillus flavus isolates in maize kernel in hungary. Acta Aliment. (Budapest) 2013, 42, 451–459. [Google Scholar] [CrossRef]
- Levic, J.; Gosic-Dondo, S.; Ivanovic, D.; Stankovic, S.; Krnjaja, V.; Bocarov-Stancic, A.; Stepanic, A. An outbreak of Aspergillus species in response to environmental conditions in Serbia. Pestic. i Fitomedicina 2013, 28, 167–179. [Google Scholar] [CrossRef]
- Giorni, P.; Magan, N.; Pietri, A.; Bertuzzi, T.; Battilani, P. Studies on Aspergillus section flavi isolated in northern Italy from maize. Int. J. Food Microbiol. 2007, 113, 330–338. [Google Scholar] [CrossRef]
- Mauro, A.; Battilani, P.; Cotty, P.J. Atoxigenic Aspergillus flavus endemic to italy for biocontrol of aflatoxins in maize. BioControl 2015, 60, 125–134. [Google Scholar] [CrossRef]
- Warnatzsch, E.A.; Reay, D.S.; Camardo Leggieri, M.; Battilani, P. Climate change impact on aflatoxin contamination risk in malawi’s maize crops. Front. Sustain. Food Syst. 2020, 4, 238. [Google Scholar] [CrossRef]
- Giorni, P.; Bertuzzi, T.; Battilani, P. Impact of fungi co-occurrence on mycotoxin contamination in maize during the growing season. Front. Microbiol. 2019, 10, 1265. [Google Scholar] [CrossRef]
- Palumbo, R.; Goncalves, A.; Gkrillas, A.; Logrieco, A.; Dorne, J.L.; Dall’Asta, C.; Venancio, A.; Battilani, P. Mycotoxins in maize: Mitigation actions, with a chain management approach. Phytopathol. Mediterr. 2020, 59, 5–28. [Google Scholar]
- Marín, S.; Freire, L.; Femenias, A.; Sant’Ana, A.S. Use of predictive modelling as tool for prevention of fungal spoilage at different points of the food chain. Curr. Opin. Food Sci. 2021, 41, 1–7. [Google Scholar] [CrossRef]
- Miedaner, T.; Juroszek, P. Global warming and increasing maize cultivation demand comprehensive efforts in disease and insect resistance breeding in north-western europe. Plant Pathol. 2021. [Google Scholar] [CrossRef]
- Fanzo, J.; Bellows, A.L.; Spiker, M.L.; Thorne-Lyman, A.L.; Bloem, M.W. The importance of food systems and the environment for nutrition. Am. J. Clin. Nutr. 2021, 113, 7–16. [Google Scholar] [CrossRef]
Reference | Study Area | Matrix | Model Approach | Weather Data | Climate Scenario | Current Impact | Future Impact | Mycotoxin Occurrence | Co-Occurrence |
---|---|---|---|---|---|---|---|---|---|
Djekic, et al. [64] | RS | Milk and dairy products | NO | Speculative | Speculative | 2015–2018 | NO | AFM1 (AFB1 in feed) | NO |
Hiatt and Beyeler [94] | Global | Speculative | Speculative | Speculative | Speculative | Speculative | Speculative | General | NO |
Adhikari, et al. [21] | Global | Coffee | Speculative | Speculative | Speculative | Speculative | Speculative | OTA-AFs-FBs | NO |
Fouché, et al. [78] | Global | Soil/Food/Feed | Speculative | Speculative | Speculative | Speculative | Speculative | AFs | NO |
Cervini, et al. [47] | IT * | Grape | Water/light/temperature in lab conditions | LAB conditions | Speculative | Speculative | Speculative | OTA | NO |
Camardo Leggieri, et al. [45] | IT | Maize | aridity index-correlation index | Air temperature, rainfall, relative humidity | Speculative | 2014 | Speculative | NIV-DON-T2-HT2-ZEN-FBs-AFB1 | YES |
Pleadin, et al. [151] | Europe | Food/Feed | Speculative | Speculative | Speculative | Speculative | Speculative | AFB1-OTA-FBs-PATULINE-DON | NO |
Gasperini, et al. [85] | BR/MX ** | Maize | Pre/post harvest + interactions of Air temperature × CO2 × aw | LAB conditions | Speculative | Speculative | Speculative | AFB1 | NO |
Van der Fels-Klerx, et al. [191] | NL/UA | Maize feed in UA/Milk in NL | 3 climate models + AFB1 model + WOFOST+ 5 carryover models | JRC MARS | ECHAM5, HadCM3Q0 | 2005–2017 | 2030 | AFB1-AFM1 | NO |
Moretti, et al. [131] | Europe | Food | Speculative | Speculative | Speculative | Speculative | Speculative | AFs-DON | NO |
Labanca, et al. [118] | IT | Maize for feed | Speculative | Speculative | Speculative | Speculative | Speculative | AFs | NO |
Ricciardi, et al. [159] | Global | Food | Speculative | Speculative | Speculative | Speculative | Speculative | General | NO |
Cervini, et al. [48] | IT | Grape | NO | LAB conditions | NO | Speculative | Speculative | OTA | NO |
Iizumi [99] | Global | Speculative | Speculative | Speculative | Speculative | Speculative | Speculative | General | NO |
Bailly, et al. [31] | FR | Maize | Speculative | Speculative | Speculative | Speculative | Speculative | AFB1 | NO |
Damianidis, et al. [57] | US | Maize | Logistic regression | Weather stations, DAYMET, CRONOS | NO | Speculative | Speculative | AFs | NO |
Fanzo, et al. [72] | US | Food/ Feed | Speculative | Speculative | Speculative | Speculative | Speculative | General | NO |
Assunção, et al. [30] | PT | Dietary exposure | NO | Speculative | Speculative | Speculative | Speculative | AFs | NO |
Medina, et al. [128] | GB | Food | Speculative | Speculative | Speculative | Speculative | Speculative | General | YES |
Raiten and Aimone [157] | CA/US | Speculative | Speculative | Speculative | Speculative | Speculative | Speculative | General | NO |
Magan and Medina [121] | GB | Maize and Coffee | Linear regression | Lab conditions | Speculative | Speculative | Speculative | All mycotoxins | NO |
Van de Perre, et al. [241] | ES/PL | Tomato | Climate + Alternaria model | Weather stations | HadGEM2-ES | 1981–2000 | 2031–2050 2081–2100 | Alternaria | NO |
Giorni, et al. [211] | GB/IT | Maize | NO | NO | NO | NO | NO | AFs | NO |
Van der Fels-Klerx, et al. [242] | Europe *** | Wheat | Wheat phenology + Climate + DON model | JRC MARS | RACMO2, HADRM3Q0 | 1975–1994 | 2031–2050 | DON | NO |
Medina, et al. [226] | Global | Feed/Food | Data from review + in vitro data | Speculative | Speculative | Speculative | Speculative | All mycotoxins | NO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leggieri, M.C.; Toscano, P.; Battilani, P. Predicted Aflatoxin B1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins 2021, 13, 292. https://doi.org/10.3390/toxins13040292
Leggieri MC, Toscano P, Battilani P. Predicted Aflatoxin B1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins. 2021; 13(4):292. https://doi.org/10.3390/toxins13040292
Chicago/Turabian StyleLeggieri, Marco Camardo, Piero Toscano, and Paola Battilani. 2021. "Predicted Aflatoxin B1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level" Toxins 13, no. 4: 292. https://doi.org/10.3390/toxins13040292
APA StyleLeggieri, M. C., Toscano, P., & Battilani, P. (2021). Predicted Aflatoxin B1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins, 13(4), 292. https://doi.org/10.3390/toxins13040292