A Monoclonal Antibody against the C-Terminal Domain of Bacillus cereus Hemolysin II Inhibits HlyII Cytolytic Activity
"> Figure 1
<p>A plot of titration of the antibody HlyIIC-20 for determining its affinity constant by the method of [<a href="#B18-toxins-12-00806" class="html-bibr">18</a>] with 10 (●) and 20 (■) ng/well HlyII ATCC14579<sup>T</sup>.</p> "> Figure 2
<p>Immunoblotting of HlyII B771 in the presence of erythrocytes with and without preliminary incubation with HlyIIC-20 stained with the biotinylated form of HlyIIC-20 and streptavidin conjugated with horseradish peroxidase.</p> "> Figure 3
<p>Alignment of the HlyIICTD amino acid sequence region from HlyII <span class="html-italic">Bacillus cereus</span> ATCC14579<sup>T</sup> and sequenced peptides. Charged amino acids are highlighted in yellow, amino acids containing hydroxyl groups are green and amino acids containing amino groups are cyan. The amount and number of clones containing an individual peptide are shown on the right.</p> "> Figure 4
<p>Sequence alignment of <span class="html-italic">Bacillus cereus</span> sensu lato HlyIICTD (ATCC14579<sup>T</sup>, B771, ATCC4342<sup>T</sup>) and mutant forms of the latter (numbered from 319 aa to 360 aa according to the full length HlyII toxin [<a href="#B7-toxins-12-00806" class="html-bibr">7</a>]). Putative binding sites (linear part of epitops) for the neutralizing HlyIIC-20 are double underlined: aa N320-Q327 and N350-K355. Amino acid residues within these regions are highlighted as in <a href="#toxins-12-00806-f003" class="html-fig">Figure 3</a>. Identical amino acid residues for B771 and ATCC4342<sup>T</sup> are in grey. Amino acid substitutions for HlyIICTD are marked as red.</p> "> Figure 5
<p>A model of HlyII C-domain (PDB: 6D5Z). Figures (<b>A</b>) and (<b>B</b>) differ from Figures (<b>C</b>) and (<b>D</b>) by a rotation of 90 degrees. Amino acids N, Q and K are drawn together, circled; amino acids N, Q and K are highlighted in cyan, blue and yellow, respectively. Amino acid L324 of hemolysin II strain ATCC14579<sup>T</sup> is shown as a grey ball. Figure <b>B</b> shows a three-dimensional (3D) structure containing amino acids that can presumably form an epitope at the beginning of the C-terminal domain; these are amino acids N320–Q327 and, in contact with them, N377 and Y396. Figure <b>D</b> shows a 3D structure containing amino acids that can presumably form an epitope in the middle of the C-domain; these are amino acids N350–K355 and, in contact with them, N401 and L403.</p> "> Figure 6
<p>Suppression of hemolysis by HlyIIC-20 during the attack on rabbit erythrocytes by various hemolysins. (<b>A</b>) ATCC14579<sup>T</sup> HlyII before (dotted line) and after (solid line) addition of HlyIIC-20. (<b>B</b>) B771 HlyII; (<b>C</b>) ATCC14579<sup>T</sup> with mutation L324P; (<b>D</b>) B771 P324L; (<b>E</b>) ATCC4342<sup>T</sup> HlyII. Averaged data from five experiments are presented.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Characteristic Features of the Monoclonal Antibody HlyIIC-20
2.2. Dependence of HlyII Oligomerization on the Presence of HlyIIC-20
2.3. Identification of the Primary Sequence-Dependent Epitope Recognized by HlyIIC-20
2.4. Inhibition of HlyII in Experiments In Vitro
2.5. Inhibition of HlyII in Experiments with Mice
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plasmid Strains and Proteins
5.2. Media and Solutions
5.3. Determination of the Primary Sequence of CDR (Complementarity-Determining Region) Antibodies
5.4. Production and Isolation of mAbs against HlyIICTD
5.5. Conjugation of Antibodies with Biotin
5.6. Immunoblotting
5.7. Peptide Phage Display
5.8. DNA Sequencing
5.9. Interaction of Biotinylated HlyIICTD with Erythrocytes in the Presence of HlyIIC-20
5.10. HlyII Neutralization Assay
5.11. Animal Experiments
Author Contributions
Funding
Conflicts of Interest
Ethical approval
References
- Cadot, C.; Tran, S.-L.; Vignaud, M.-L.; De Buyser, M.-L.; Kolstø, A.-B.; Brisabois, A.; Nguyen-Thé, C.; Lereclus, D.; Guinebretière, M.-H.; Ramarao, N. InhA1, NprA, and HlyII as candidates for markers to differentiate pathogenic from nonpathogenic Bacillus cereus strains. J. Clin. Microbiol. 2010, 48, 1358–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinebretière, M.-H.; Thompson, F.L.; Sorokin, A.; Normand, P.; Dawyndt, P.; Ehling-Schulz, M.; Svensson, B.; Sanchis, V.; Nguyen-The, C.; Heyndrickx, M.; et al. Ecological diversification in the Bacillus cereus Group. Environ. Microbiol. 2008, 10, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Glasset, B.; Herbin, S.; Granier, S.A.; Cavalié, L.; Lafeuille, E.; Guérin, C.; Ruimy, R.; Casagrande-Magne, F.; Levast, M.; Chautemps, N.; et al. Bacillus cereus, a serious cause of nosocomial infections: Epidemiologic and genetic survey. PLoS ONE 2018, 13, e0194346. [Google Scholar] [CrossRef] [PubMed]
- Meer, R.R.; Baker, J.; Bodyfelt, F.W.; Griffiths, M.W. Psychrotrophic Bacillus spp. in Fluid Milk Products: A Review. J. Food Prot. 1991, 54, 969–979. [Google Scholar] [CrossRef]
- Sweeney, D.A.; Hicks, C.W.; Cui, X.; Li, Y.; Eichacker, P.Q. Anthrax infection. Am. J. Respir. Crit. Care Med. 2011, 184, 1333–1341. [Google Scholar] [CrossRef]
- Ivanova, N.; Sorokin, A.; Anderson, I.; Galleron, N.; Candelon, B.; Kapatral, V.; Bhattacharyya, A.; Reznik, G.; Mikhailova, N.; Lapidus, A.; et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 2003, 423, 87–91. [Google Scholar] [CrossRef]
- Baida, G.; Budarina, Z.I.; Kuzmin, N.P.; Solonin, A.S. Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiol. Lett. 1999, 180, 7–14. [Google Scholar] [CrossRef]
- Andreeva-Kovalevskaya, Z.I.; Solonin, A.S.; Sineva, E.V.; Ternovsky, V.I. Pore-forming proteins and adaptation of living organisms to environmental conditions. Biochemistry 2008, 73, 1473–1492. [Google Scholar] [CrossRef]
- Ramarao, N.; Sanchis, V. The pore-forming haemolysins of bacillus cereus: A review. Toxins 2013, 5, 1119–1139. [Google Scholar] [CrossRef] [Green Version]
- Patiño-Navarrete, R.; Sanchis, V. Evolutionary processes and environmental factors underlying the genetic diversity and lifestyles of Bacillus cereus group bacteria. Res. Microbiol. 2017, 168, 309–318. [Google Scholar] [CrossRef]
- Budarina, Z.I.; Sinev, M.A.; Mayorov, S.G.; Tomashevski, A.Y.; Shmelev, I.V.; Kuzmin, N.P. Hemolysin II is more characteristic of Bacillus thuringiensis than Bacillus cereus. Arch. Microbiol. 1994, 161, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, A.; Bhatnagar, N.B.; Bhatnagar, R. Bacterial insecticidal toxins. Crit. Rev. Microbiol. 2004, 30, 33–54. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, Z.I.; Nesterenko, V.F.; Fomkina, M.G.; Ternovsky, V.I.; Suzina, N.E.; Bakulina, A.Y.; Solonin, A.S.; Sineva, E.V. The properties of Bacillus cereus hemolysin II pores depend on environmental conditions. Biochim. Biophys. Acta 2007, 1768, 253–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, G.; Bayley, H.; Cheley, S. Properties of Bacillus cereus hemolysin II: A heptameric transmembrane pore. Protein. Sci. 2002, 11, 1813–1824. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, A.R.; Kaus, K.; De, S.; Olson, R.; Alexandrescu, A.T. NMR structure of the Bacillus cereus hemolysin II C-terminal domain reveals a novel fold. Sci. Rep. 2017, 7, 3277. [Google Scholar] [CrossRef] [Green Version]
- Lagousi, T.; Basdeki, P.; Routsias, J.; Spoulou, V. Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens. Vaccines 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Rudenko, N.V.; Karatovskaya, A.P.; Zamyatina, A.V.; Siunov, A.V.; Andreeva-Kovalevskaya, Z.I.; Nagel, A.S.; Brovko, F.A.; Solonin, A.S. C-Terminal Domain of Bacillus cereus Hemolysin II Is Able to Interact with Erythrocytes. Russ. J. Bioorg. Chem. 2020, 46, 321–326. [Google Scholar] [CrossRef]
- Beatty, J.D.; Beatty, B.G.; Vlahos, W.G. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J. Immunol. Methods 1987, 100, 173–179. [Google Scholar] [CrossRef]
- Wiemels, R.E.; Cech, S.M.; Meyer, N.M.; Burke, C.A.; Weiss, A.; Parks, A.R.; Shaw, L.N.; Carroll, R.K. An Intracellular Peptidyl-Prolyl cis/trans Isomerase Is Required for Folding and Activity of the Staphylococcus aureus Secreted Virulence Factor Nuclease. J. Bacteriol. 2017, 199. [Google Scholar] [CrossRef] [Green Version]
- Klein, G.; Wojtkiewicz, P.; Biernacka, D.; Stupak, A.; Gorzelak, P.; Raina, S. Identification of Substrates of Cytoplasmic Peptidyl-Prolyl Cis/Trans Isomerases and Their Collective Essentiality in Escherichia coli. Int. J. Mol. Sci. 2020, 21. [Google Scholar] [CrossRef]
- Omersa, N.; Podobnik, M.; Anderluh, G. Inhibition of Pore-Forming Proteins. Toxins 2019, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezrukov, S.M.; Nestorovich, E.M. Inhibiting bacterial toxins by channel blockage. Pathog. Dis. 2016, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escajadillo, T.; Nizet, V. Pharmacological Targeting of Pore-Forming Toxins as Adjunctive Therapy for Invasive Bacterial Infection. Toxins 2018, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucinskaite-Kodze, I.; Simanavicius, M.; Dapkunas, J.; Pleckaityte, M.; Zvirbliene, A. Mapping of Recognition Sites of Monoclonal Antibodies Responsible for the Inhibition of Pneumolysin Functional Activity. Biomolecules 2020, 10. [Google Scholar] [CrossRef]
- Dietrich, G.; Hess, J.; Gentschev, I.; Knapp, B.; Kaufmann, S.H.; Goebel, W. From evil to good: A cytolysin in vaccine development. Trends Microbiol. 2001, 9, 23–28. [Google Scholar] [CrossRef]
- Gubbins, M.J.; Berry, J.D.; Corbett, C.R.; Mogridge, J.; Yuan, X.Y.; Schmidt, L.; Nicolas, B.; Kabani, A.; Tsang, R.S. Production and characterization of neutralizing monoclonal antibodies that recognize an epitope in domain 2 of Bacillus anthracis protective antigen. FEMS Immunol. Med. Microbiol. 2006, 47, 436–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkaczyk, C.; Hamilton, M.M.; Sadowska, A.; Shi, Y.; Chang, C.S.; Chowdhury, P.; Buonapane, R.; Xiao, X.; Warrener, P.; Mediavilla, J.; et al. Targeting Alpha Toxin and ClfA with a Multimechanistic Monoclonal-Antibody-Based Approach for Prophylaxis of Serious Staphylococcus aureus Disease. mBio 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivashchenko, T.A.; Belova, E.V.; Dentovskaia, S.V.; Bel’kova, S.A.; Balakhonov, S.V.; Ignatov, S.G.; Shemiakin, I.G. Development and testing of an enzyme immunoassay-based monoclonal test system for the detection of the Yersinia pestis V antigen. Prikl. Biokhim. Mikrobiol. 2014, 50, 211–218. [Google Scholar]
- Shadrin, A.M.; Shapyrina, E.V.; Siunov, A.V.; Severinov, K.V.; Solonin, A.S. Bacillus cereus pore-forming toxins hemolysin II and cytotoxin K: Polymorphism and distribution of genes among representatives of the cereus group. Mikrobiologiia 2007, 76, 462–470. [Google Scholar] [CrossRef]
- Rio, D.C.; Ares, M.; Hannon, G.J.; Nilsen, T.W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb. Protoc. 2010, 2010, pdb–prot5439. [Google Scholar] [CrossRef]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Meyer, L.; López, T.; Espinosa, R.; Arias, C.F.; Vollmers, C.; DuBois, R.M. A simplified workflow for monoclonal antibody sequencing. PLoS ONE 2019, 14, e0218717. [Google Scholar] [CrossRef] [PubMed]
- Mole, S.E.; Lane, D.P. DNA Cloning, v. III. A Practical Approach; Glover, D.M.P., Ed.; IRL Press: Oxford, UK; Washington, DC, USA, 1989; pp. 197–198. [Google Scholar]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Zamyatina, A.V.; Rudenko, N.V.; Karatovskaya, A.P.; Shepelyakovskaya, A.O.; Siunov, A.V.; Andreeva-Kovalevskaya, Z.I.; Nagel, A.S.; Salyamov, V.I.; Kolesnikov, A.S.; Brovko, F.A.; et al. HlyIIC 15 monoclonal antibody against the C-terminal domain of B. cereus HlyII interacts with the thrombin recognition site. Russ. J. Bioorg. Chem. 2020, 46, 1214–1220. [Google Scholar]
- Ph.D.TM Phage Display Libraries. Instruction Manual; Version 3.0 11/18; New England Biolabs, Inc.: Ipswich, MA, USA, 2012. [Google Scholar]
- Reddy, P.; McKenney, K. Improved method for the production of M13 phage and single-stranded DNA for DNA sequencing. Biotechniques 1996, 20, 854–856, 858, 860. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, Z.I.; Nesterenko, V.F.; Yurkov, I.S.; Budarina, Z.I.; Sineva, E.V.; Solonin, A.S. Purification and cytotoxic properties of Bacillus cereus hemolysin II. Protein Expr. Purif. 2006, 47, 186–193. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudenko, N.; Nagel, A.; Zamyatina, A.; Karatovskaya, A.; Salyamov, V.; Andreeva-Kovalevskaya, Z.; Siunov, A.; Kolesnikov, A.; Shepelyakovskaya, A.; Boziev, K.; et al. A Monoclonal Antibody against the C-Terminal Domain of Bacillus cereus Hemolysin II Inhibits HlyII Cytolytic Activity. Toxins 2020, 12, 806. https://doi.org/10.3390/toxins12120806
Rudenko N, Nagel A, Zamyatina A, Karatovskaya A, Salyamov V, Andreeva-Kovalevskaya Z, Siunov A, Kolesnikov A, Shepelyakovskaya A, Boziev K, et al. A Monoclonal Antibody against the C-Terminal Domain of Bacillus cereus Hemolysin II Inhibits HlyII Cytolytic Activity. Toxins. 2020; 12(12):806. https://doi.org/10.3390/toxins12120806
Chicago/Turabian StyleRudenko, Natalia, Alexey Nagel, Anna Zamyatina, Anna Karatovskaya, Vadim Salyamov, Zhanna Andreeva-Kovalevskaya, Alexander Siunov, Alexander Kolesnikov, Anna Shepelyakovskaya, Khanafiy Boziev, and et al. 2020. "A Monoclonal Antibody against the C-Terminal Domain of Bacillus cereus Hemolysin II Inhibits HlyII Cytolytic Activity" Toxins 12, no. 12: 806. https://doi.org/10.3390/toxins12120806
APA StyleRudenko, N., Nagel, A., Zamyatina, A., Karatovskaya, A., Salyamov, V., Andreeva-Kovalevskaya, Z., Siunov, A., Kolesnikov, A., Shepelyakovskaya, A., Boziev, K., Melnik, B., Brovko, F., & Solonin, A. (2020). A Monoclonal Antibody against the C-Terminal Domain of Bacillus cereus Hemolysin II Inhibits HlyII Cytolytic Activity. Toxins, 12(12), 806. https://doi.org/10.3390/toxins12120806