Sclerostin as Regulatory Molecule in Vascular Media Calcification and the Bone–Vascular Axis
<p>Unbiased informatic interrogation of warfarin-induced aorta proteomic data. Using the input concept interrogators Wnt/Catenin or peroxisome proliferator-activated receptor (PPAR), we identified the proteins from the list of 275 differentially expressed proteins (DEPs) obtained from our isobaric tag for relative and absolute quantitation (iTRAQ) proteomics that possessed a cosine similarity latent semantic analysis (LSA) score of >0.1. This cut-off value for concept-to-text (all available published biomedical abstracts from PubMed Central at NCBI) association indicates at least an implicit association between the input concept (e.g., Wnt/Catenin or PPAR) and the specific term (i.e., gene symbol) found in any of the available biomedical texts. The greater the cosine similarity score (as indicated by the size of the pie chart sector in <b>A</b> and <b>B</b>) for a given protein indicates the strength of its textual association with the specific input interrogator concept groups (Wnt/Catenin or PPAR). Hence Letmd1 (LETM1 domain-containing protein 1: panel <b>A</b>) demonstrates the strongest LSA-based correlation to the Wnt/Catenin interrogator terms while Acsl1 (Acyl-CoA synthetase long-chain family member 1: panel <b>B</b>) demonstrates the strongest correlation to the PPAR interrogator terms. The specific proteins annotating the pie charts are depicted in either red (upregulated in warfarin-treated vessels compared to control) or green (downregulated in warfarin-treated vessels compared to control). Panel <b>C</b> demonstrates that as a percentage of the total proteins implicitly associated with Wnt/Catenin signaling or PPAR the majority of Wnt/Catenin associated proteins are downregulated compared to control animals by warfarin treatment while the majority of PPAR associated proteins are upregulated compared to control animals.</p> "> Figure 2
<p>Calcium content. Calcium content of (<b>A</b>) the aorta, (<b>B</b>) femoral artery, and (<b>C</b>) carotid artery of control rats and warfarin-treated rats. * <span class="html-italic">p</span> < 0.05 versus control.</p> "> Figure 3
<p>Histological evaluation of vascular calcification. Semiquantitative evaluation of the von Kossa positive area and representative images of von Kossa stained sections of the thoracic aorta, counterstained with hematoxylin and eosin (H&E): control rats and rats treated with warfarin for 4, 6, 8, or 10 weeks. * <span class="html-italic">p</span> < 0.05 versus control.</p> "> Figure 4
<p>Serum sclerostin levels. Time-dependent increase in serum sclerostin levels after 4, 6, 8, and 10 weeks of warfarin treatment. * <span class="html-italic">p</span> < 0.05 versus control.</p> "> Figure 5
<p>Aortic sclerostin mRNA expression. mRNA expression profile of sclerostin in the abdominal aorta of control rats (10 weeks) and rats treated with warfarin for 10 weeks. * <span class="html-italic">p</span> < 0.05 versus control.</p> "> Figure 6
<p>Consecutive tissue sections stained with von Kossa and immunostained for sclerostin and low-density lipoprotein receptor-related protein 4 (LRP4). Tissue sections of a 10-week warfarin-treated rat (<b>left</b>) and a calcified human aorta (<b>right</b>).</p> "> Figure 7
<p>Static and dynamic bone parameters in control rats and rats treated with warfarin. (<b>A</b>) Bone area, (<b>B</b>) mineralized area, (<b>C</b>) osteoblast perimeter, (<b>D</b>) osteoid area, (<b>E</b>) osteoid width, (<b>E</b>) trabecular number, (<b>F</b>) osteoclast perimeter, (<b>G</b>) bone formation rate, and (<b>H</b>) mineral apposition rate. ** <span class="html-italic">p</span> < 0.01 versus control.</p> "> Figure 8
<p>Sclerostin expression in the bone. (<b>A</b>) Immunohistochemical staining of sclerostin in the tibia; white arrow: sclerostin-positive osteocyte, black arrow: sclerostin-negative osteocyte. (<b>B</b>) Percentage of sclerostin-positive and -negative osteocytes between control rats and rats treated with warfarin.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Mortality, Body Weight, and Serum Markers of Mineral Metabolism and Renal Function in Control Versus Warfarin-Exposed Rats Sacrificed after 10 Weeks
2.2. Osteochondrogenic Versus Adipocytic Transdifferentiation of VSMCs
2.3. Time-Dependent Development of Vascular Calcification
2.4. Serum Sclerostin Levels
2.5. Vascular Expression of Sclerostin mRNA
2.6. Histological Association between Vascular Calcification and Sclerostin/Low-Density Lipoprotein Receptor-Related Protein 4 (LRP4) Expression
2.7. Disturbances in Bone Turnover
2.8. Sclerostin Expression in the Bone
3. Discussion
4. Materials and Methods
4.1. Statement of Ethics
4.2. Animals
4.3. Induction of Vascular Calcification in the Rat Model
4.4. Human Tissue
4.5. Serum Markers of Bone Metabolism and Renal Function
4.6. Evaluation of Molecular Signaling Pathways Involved in VSMC Transdifferentiation
4.7. Bioinformatic Analysis
4.8. Evaluation of Vascular Calcification
4.9. Evaluation of Bone Metabolism
4.10. Identification of Vascular Sclerostin mRNA
4.11. Immunohistochemical Sclerostin/LRP4 Staining on Rat and Human Arterial Sections
4.12. Immunohistochemical Staining on Rat Bone Sections
4.13. Evaluation of Serum Sclerostin Levels
4.14. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
2D-LC | Two-dimensional liquid chromatography |
AEC | 3-Amino-9-ethylcarbazole |
CKD | Chronic kidney disease |
DEP | Differentially expressed protein |
ELISA | Enzyme-linked immunosorbent assay |
ESI | Electrospray ionization |
GFR | Glomerular Filtration Rate |
H&E | Hematoxylin and eosin |
iTRAQ | Isobaric tag for relative and absolute quantitation |
LC-MS | Liquid chromatography–mass spectrometry |
LRP4 | Low-density lipoprotein receptor-related protein 4 |
LSA | Latent semantic analysis |
MGP | Matrix-carboxyglutamic acid protein |
PPAR | Peroxisome proliferator-activated receptor |
RCDC kit | Reducing agent and detergent compatible protein assay |
SEM | Standard error of mean |
SDS | Sodium dodecyl sulfate |
vitK | Vitamin K |
VSMC | Vascular smooth muscle cell |
References
- Steitz, S.A.; Speer, M.Y.; Curinga, G.; Yang, H.Y.; Haynes, P.; Aebersold, R.; Schinke, T.; Karsenty, G.; Giachelli, C.M. Smooth muscle cell phenotypic transition associated with calcification: Upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ. Res. 2001, 89, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.; Gomez, D.; Bell, R.D.; Campbell, J.H.; Clowes, A.W.; Gabbiani, G.; Giachelli, C.M.; Parmacek, M.S.; Raines, E.W.; Rusch, N.J.; et al. Smooth muscle cell plasticity: Fact or fiction? Circ. Res. 2013, 112, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Woldt, E.; Terrand, J.; Mlih, M.; Matz, R.L.; Bruban, V.; Coudane, F.; Foppolo, S.; El Asmar, Z.; Chollet, M.E.; Ninio, E.; et al. The nuclear hormone receptor PPARgamma counteracts vascular calcification by inhibiting Wnt5a signalling in vascular smooth muscle cells. Nat. Commun. 2012, 3, 1077. [Google Scholar] [CrossRef] [PubMed]
- Abedin, M.; Lim, J.; Tang, T.B.; Park, D.; Demer, L.L.; Tintut, Y. N-3 fatty acids inhibit vascular calcification via the p38-mitogen-activated protein kinase and peroxisome proliferator-activated receptor-gamma pathways. Circ. Res. 2006, 98, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Van Bezooijen, R.L.; Roelen, B.A.; Visser, A.; Van der Wee-Pals, L.; De Wilt, E.; Karperien, M.; Hamersma, H.; Papapoulos, S.E.; Ten Dijke, P.; Lowik, C.W. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med. 2004, 199, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Ukita, M.; Yamaguchi, T.; Ohata, N.; Tamura, M. Sclerostin Enhances Adipocyte Differentiation in 3T3-L1 Cells. J. Cell. Biochem. 2016, 117, 1419–1428. [Google Scholar] [CrossRef]
- Viaene, L.; Behets, G.J.; Claes, K.; Meijers, B.; Blocki, F.; Brandenburg, V.; Evenepoel, P.; D’Haese, P.C. Sclerostin: Another bone-related protein related to all-cause mortality in haemodialysis? Nephrol. Dial. Transpl. 2013, 28, 3024–3030. [Google Scholar] [CrossRef] [PubMed]
- Lips, L.; van Zuijdewijn, C.L.M.D.; Ter Wee, P.M.; Bots, M.L.; Blankestijn, P.J.; van den Dorpel, M.A.; Fouque, D.; de Jongh, R.; Pelletier, S.; Vervloet, M.G.; et al. Serum sclerostin: Relation with mortality and impact of hemodiafiltration. Nephrol. Dial. Transpl. 2017, 32, 1217–1223. [Google Scholar] [CrossRef]
- Koos, R.; Brandenburg, V.; Mahnken, A.H.; Schneider, R.; Dohmen, G.; Autschbach, R.; Marx, N.; Kramann, R. Sclerostin as a Potential Novel Biomarker for Aortic Valve. J. Heart Valve Dis. 2013, 22, 317–325. [Google Scholar] [CrossRef]
- Brandenburg, V.M.; Kramann, R.; Koos, R.; Kruger, T.; Schurgers, L.; Muhlenbruch, G.; Hubner, S.; Gladziwa, U.; Drechsler, C.; Ketteler, M. Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: A cross-sectional study. BMC Nephrol. 2013, 14, 219. [Google Scholar] [CrossRef]
- Zhu, D.X.; Mackenzie, N.C.W.; Millan, J.L.; Farquharson, C.; MacRae, V.E. The Appearance and Modulation of Osteocyte Marker Expression during Calcification of Vascular Smooth Muscle Cells. PLoS ONE 2011, 6, e19595. [Google Scholar] [CrossRef] [PubMed]
- Claes, K.J.; Viaene, L.; Heye, S.; Meijers, B.; d’Haese, P.; Evenepoel, P. Sclerostin: Another vascular calcification inhibitor? J. Clin. Endocrinol. Metab. 2013, 98, 3221–3228. [Google Scholar] [CrossRef] [PubMed]
- Cejka, D.; Marculescu, R.; Kozakowski, N.; Plischke, M.; Reiter, T.; Gessl, A.; Haas, M. Renal Elimination of Sclerostin Increases with Declining Kidney Function. J. Clin. Endocr. Metab. 2014, 99, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Silaghi, C.N.; Ilyes, T.; Filip, V.P.; Farcas, M.; van Ballegooijen, A.J.; Craciun, A.M. Vitamin K Dependent Proteins in Kidney Disease. Int. J. Mol. Sci. 2019, 20, 1571. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, S.; Confavreux, C.B.; Haesebaert, J.; Guebre-Egziabher, F.; Bacchetta, J.; Carlier, M.C.; Chardon, L.; Laville, M.; Chapurlat, R.; London, G.M.; et al. Serum sclerostin: The missing link in the bone-vessel cross-talk in hemodialysis patients? Osteoporos. Int. 2015, 26, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Li, X.D.; Ominsky, M.S.; Warmington, K.S.; Morony, S.; Gong, J.H.; Cao, J.; Gao, Y.M.; Shalhoub, V.; Tipton, B.; Haldankar, R.J.; et al. Sclerostin Antibody Treatment Increases Bone Formation, Bone Mass, and Bone Strength in a Rat Model of Postmenopausal Osteoporosis. J. Bone Miner. Res. 2009, 24, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, V.M.; Verhulst, A.; Babler, A.; D’Haese, P.C.; Evenepoel, P.; Kaesler, N. Sclerostin in chronic kidney disease-mineral bone disorder think first before you block it! Nephrol. Dial. Transplant. 2018, 3, 408–414. [Google Scholar] [CrossRef]
- Saag, K.G.; Petersen, J.; Brandi, M.L.; Karaplis, A.C.; Lorentzon, M.; Thomas, T.; Maddox, J.; Fan, M.; Meisner, P.D.; Grauer, A. Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N. Engl. J. Med. 2017, 377, 1417–1427. [Google Scholar] [CrossRef]
- Price, P.A.; Faus, S.A.; Williamson, M.K. Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. Arterioscl. Throm. Vas. Biol. 1998, 18, 1400–1407. [Google Scholar] [CrossRef]
- Kruger, T.; Oelenberg, S.; Kaesler, N.; Schurgers, L.J.; van de Sandt, A.M.; Boor, P.; Schlieper, G.; Brandenburg, V.M.; Fekete, B.C.; Veulemans, V.; et al. Warfarin induces cardiovascular damage in mice. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2618–2624. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Cranenburg, E.C.; Vermeer, C. Matrix Gla-protein: The calcification inhibitor in need of vitamin K. Thromb. Haemost. 2008, 100, 593–603. [Google Scholar] [Green Version]
- Beazley, K.E.; Deasey, S.; Lima, F.; Nurminskaya, M.V. Transglutaminase 2-Mediated Activation of beta-Catenin Signaling Has a Critical Role in Warfarin-Induced Vascular Calcification. Arterioscl. Throm. Vas. Biol. 2012, 32, 123–130. [Google Scholar] [CrossRef]
- Lencel, P.; Delplace, S.; Pilet, P.; Leterme, D.; Miellot, F.; Sourice, S.; Caudrillier, A.; Hardouin, P.; Guicheux, J.; Magne, D. Cell-specific effects of TNF-alpha and IL-1beta on alkaline phosphatase: Implication for syndesmophyte formation and vascular calcification. Lab. Investig. 2011, 91, 1434–1442. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, M.; Li, M.; Cui, L. Radial artery sclerostin expression in chronic kidney disease stage 5 predialysis patients: A cross-sectional observational study. Int. Urol. Nephrol. 2017, 49, 1433–1437. [Google Scholar] [CrossRef]
- Boudin, E.; Yorgan, T.; Fijalkowski, I.; Sonntag, S.; Steenackers, E.; Hendrickx, G.; Peeters, S.; De Mare, A.; Vervaet, B.; Verhulst, A.; et al. The Lrp4R1170Q Homozygous Knock-In Mouse Recapitulates the Bone Phenotype of Sclerosteosis in Humans. J. Bone Miner. Res. 2017, 32, 1739–1749. [Google Scholar] [CrossRef]
- Fijalkowski, I.; Geets, E.; Steenackers, E.; Van Hoof, V.; Ramos, F.J.; Mortier, G.; Fortuna, A.M.; Van Hul, W.; Boudin, E. A Novel Domain-Specific Mutation in a Sclerosteosis Patient Suggests a Role of LRP4 as an Anchor for Sclerostin in Human Bone. J. Bone Miner. Res. 2016, 31, 874–881. [Google Scholar] [CrossRef] [Green Version]
- Balemans, W.; Van Hul, W. Identification of the disease-causing gene in sclerosteosis--discovery of a novel bone anabolic target? J. Musculoskelet. Neuronal Interact. 2004, 4, 139–142. [Google Scholar]
- Chadwick, W.; Zhou, Y.; Park, S.S.; Wang, L.Y.; Mitchell, N.; Stone, M.D.; Becker, K.G.; Martin, B.; Maudsley, S. Minimal Peroxide Exposure of Neuronal Cells Induces Multifaceted Adaptive Responses. PLoS ONE 2010, 5, e14352. [Google Scholar] [CrossRef]
Parameter | Control (10 Weeks) | Warfarin Treatment (10 Weeks) |
---|---|---|
Body Weight (g) | 460.5 ± 11.5 | 440.3 ± 7.9 |
Food Intake (g/day) | 21.5 ± 0.3 | 20.9 ± 0.3 |
Creatinine (mg/dL) | 0.61 ± 0.02 | 0.78 ± 0.02 * |
Calcium (mg/dL) | 11.01 ± 0.19 | 10.98 ± 0.41 |
Phosphorous (mg/dL) | 3.17 ± 0.16 | 3.45 ± 0.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Maré, A.; Maudsley, S.; Azmi, A.; Hendrickx, J.O.; Opdebeeck, B.; Neven, E.; D’Haese, P.C.; Verhulst, A. Sclerostin as Regulatory Molecule in Vascular Media Calcification and the Bone–Vascular Axis. Toxins 2019, 11, 428. https://doi.org/10.3390/toxins11070428
De Maré A, Maudsley S, Azmi A, Hendrickx JO, Opdebeeck B, Neven E, D’Haese PC, Verhulst A. Sclerostin as Regulatory Molecule in Vascular Media Calcification and the Bone–Vascular Axis. Toxins. 2019; 11(7):428. https://doi.org/10.3390/toxins11070428
Chicago/Turabian StyleDe Maré, Annelies, Stuart Maudsley, Abdelkrim Azmi, Jhana O. Hendrickx, Britt Opdebeeck, Ellen Neven, Patrick C D’Haese, and Anja Verhulst. 2019. "Sclerostin as Regulatory Molecule in Vascular Media Calcification and the Bone–Vascular Axis" Toxins 11, no. 7: 428. https://doi.org/10.3390/toxins11070428
APA StyleDe Maré, A., Maudsley, S., Azmi, A., Hendrickx, J. O., Opdebeeck, B., Neven, E., D’Haese, P. C., & Verhulst, A. (2019). Sclerostin as Regulatory Molecule in Vascular Media Calcification and the Bone–Vascular Axis. Toxins, 11(7), 428. https://doi.org/10.3390/toxins11070428