Effects of Disruption of Five FUM Genes on Fumonisin Biosynthesis and Pathogenicity in Fusarium proliferatum
<p>Acquisition of <span class="html-italic">Fusarium proliferatum FUM</span> knockout mutants. (<b>A</b>) Disruption of <span class="html-italic">FUM21</span>; (<b>B</b>) PCR detection of <span class="html-italic">FUM21</span> disruption, <span class="html-italic">HygR</span>-F/<span class="html-italic">HygR</span>-R, <span class="html-italic">FUM21</span>-YZ-F/<span class="html-italic">FUM21</span>-YZ-R are primers used for 1357-bp and 714-bp fragments of hygromycin resistance and <span class="html-italic">FUM21</span> gene sequence, respectively (1–5: positive transformants, 6 and 7: negative transformants); (<b>C</b>) PCR detection of <span class="html-italic">FUM21</span> disruption following subculture (5 generations), <span class="html-italic">FUM21</span>-YZS-F and <span class="html-italic">FUM21</span>-YZS-R are primers used for 1966-bp fragment across part of the hygromycin resistance and the homologous recombination sequence upstream of the gene amplification product (1-5: positive transformants); (<b>D</b>) Southern analysis of wild-type (WT) and knockout transformants (M: DNA molecular weight marker; C: <span class="html-italic">HygR</span> positive control; lanes 1, 2, and 3: <span class="html-italic">FUM21</span> mutants).</p> "> Figure 2
<p>Colony morphology phenotypes of wild-type (WT) and <span class="html-italic">FUM</span> deletion strains grown on PDA medium for 3 days (front: <b>A</b>–<b>F</b>, back: <b>G</b>–<b>L</b>); morphology of mycelium at the colony edge after growth on PDA medium for 16 h (<b>M</b>–<b>R</b>).</p> "> Figure 3
<p>Growth rates of the wild-type (WT) and <span class="html-italic">FUM</span> mutant strains on PDA medium (<b>A</b>) and conidiation in liquid YEPD medium (<b>B</b>). Mean and standard deviation were calculated with data from three independent biological replicates. Different lowercase letters in the same graph indicate significant differences at the 5% level.</p> "> Figure 4
<p>Fumonisin (FB<sub>1</sub>) production in wild-type (WT) and <span class="html-italic">FUM</span> mutant strains. Mean and standard deviation were calculated with data from three independent biological replicates. Different lowercase letters in the same graph indicate significant differences at the 5% level.</p> "> Figure 5
<p>Virulence assays were performed on Xiushui134 spikelets 14 days after inoculation.</p> "> Figure 6
<p>Rice spikelet rot disease indexes for wild-type and <span class="html-italic">FUM</span> mutant strains. Mean and standard deviation were calculated with data from three independent biological replicates. Different lowercase letters in the same graph indicate significant differences at the 5% level.</p> "> Figure 7
<p>Fumonisin (FB<sub>1</sub>) production in mutants co-cultured on solid RG medium. Mean and standard deviation were calculated with data from three independent biological replicates. Different lowercase letters in the same graph indicate significant differences at the 5% level.</p> "> Figure 8
<p>Relative expression of <span class="html-italic">FUM1</span>, <span class="html-italic">FUM6</span>, and <span class="html-italic">FUM8</span> at different culture times. Mean and standard deviation were calculated with data from three independent biological replicates.</p> "> Figure 9
<p>Expression of <span class="html-italic">FUM1</span> (<b>A</b>), <span class="html-italic">FUM6</span> (<b>B</b>), and <span class="html-italic">FUM8</span> (<b>C</b>) in each <span class="html-italic">FUM</span> mutant strain. Mean and standard deviation were calculated with data from three independent biological replicates. Different lowercase letters in the same graph indicate significant differences at the 5% level.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Mutant Acquisition
2.2. Phenotypes of F. proliferatum FUM Mutants
2.3. Effects of FUM Gene Disruption on Fumonisin Synthesis in F. proliferatum
2.4. Effects of FUM Gene Disruption on F. proliferatum Virulence
2.5. Fumonisin Synthesis in Co-cultured F. proliferatum FUM Mutants
2.6. F. proliferatum FUM Gene Expression in Synthetic Media
3. Discussion
4. Materials and Methods
4.1. Fungal Strains, Media, Conidiation, and Growth Conditions
4.2. Gene Deletion Constructs, Transformation, and Southern Blot Analysis
4.3. Analysis of Fumonisin Production
4.4. Virulence Assay
4.5. qRT-PCR Expression Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Pub Professional: Ames, IA, USA, 2006. [Google Scholar]
- Anthony, S.; Abeywickrama, K.R.; Wijeratnam, S.W.; Arambewela, L. Fungal pathogens associated with banana fruit in Sri Lanka, and their treatment with essential oils. Mycopathology 2004, 157, 91–97. [Google Scholar] [CrossRef]
- Zhan, R.L.; Yang, S.J.; Ho, H.H.; Liu, F.; Zhao, Y.L.; Chang, J.M.; He, Y.B. Mango Malformation Disease in South China Caused by Fusarium proliferatum. J. Phytopathol. 2010, 158, 721–725. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Łukasz, S.; Wilman, K.; Kachlicki, P. Diversity of pea-associated F. proliferatum and F. verticillioides populations revealed by FUM1 sequence analysis and fumonisin biosynthesis. Toxins 2013, 5, 488–503. [Google Scholar] [CrossRef] [PubMed]
- Scauflaire, J.; Gourgue, M.; Munaut, F. Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans. Mycologia 2011, 103, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Łukasz, S.; Koczyk, G.; Waśkiewicz, A. Genetic and phenotypic variation of Fusarium proliferatum isolates from different host species. J. Appl. Genet. 2011, 52, 487–496. [Google Scholar]
- Huang, S.-W.; Wang, L.; Liu, L.-M.; Tang, S.-Q.; Zhu, D.-F.; Savary, S. Rice spikelet rot disease in China—1. Characterization of fungi associated with the disease. Crop. Protection 2011, 30, 1–9. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.M.; Wang, G.R.; Wang, A.J.; Wang, L.; Sun, L.; Li, Q.Q.; Huang, S.W. Research progress of spikelet rot disease and bacterial panicle blight of rice. Chin. J. Rice Sci. 2015, 29, 215–222. [Google Scholar]
- Jing, L.; Jiang, G.; Bao, Y.; Dong, X.; Feng, L.; Lin, S.; Feng, C.; Ashraf, M.; Jiang, Y. A luminescent bacterium assay of fusaric acid produced by Fusarium proliferatum from banana. Anal. Bioanal. Chem. 2012, 402, 1347–1354. [Google Scholar]
- Stankovic, S.; Levic, J.; Petrovic, T.; Logrieco, A.; Moretti, A. Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia. Eur. J. Plant Pathol. 2007, 118, 165–172. [Google Scholar] [CrossRef]
- Kohut, G.; Oláh, B.; Adám, A.L.; Garcíamartínez, J.; Hornok, L. Adenylyl cyclase regulates heavy metal sensitivity, bikaverin production and plant tissue colonization in Fusarium proliferatum. J. Basic Microbiol. 2010, 50, 59–71. [Google Scholar] [CrossRef]
- Dissanayake, M.L.; Tanaka, S.; Ito, S. Fumonisin B1 production by Fusarium proliferatum strains isolated from Allium fistulosum plants and seeds in Japan. Lett. Appl. Microbiol. 2010, 48, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, L.; Liu, L.; Hou, Y.; Li, Q.; Huang, S. Screening for Strains of Rice Spikelet Rot Disease Pathogenic Fungus with High Fumonisin Production and Strong Pathogenicity. Chin. J. Rice Sci 2018, 32, 610–616. [Google Scholar]
- Marasas, W.F.O.; Riley, R.T.; Hendricks, K.A.; Stevens, V.L.; Sadler, T.W.; Janee, G.V.W.; Missmer, S.A.; Julio, C.; Olga, T.; Gelderblom, W.C.A. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: A potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J. Nutr. 2004, 134, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Missmer, S.A.; Suarez, L.; Felkner, M.; Wang, E.; Merrill, A.H., Jr.; Rothman, K.J.; Hendricks, K.A. Exposure to fumonisins and the occurrence of neural tube defects along the Texas–Mexico border. Environ. Health Perspect. 2006, 114, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Nelson, P.E.; Desjardins, A.E.; Plattner, R.D. Fumonisins, mycotoxins produced by fusarium species: Biology, chemistry, and significance. Annu. Rev. Phytopathol. 1993, 31, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.H.; Brown, D.W.; Plattner, R.D.; Desjardins, A.E. Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet. Biol. 2003, 38, 237–249. [Google Scholar] [CrossRef]
- Seo, J.A.; Proctor, R.H.; Plattner, R.D. Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet. Biol. 2001, 34, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.H.; Plattner, R.D.; Brown, D.W.; Seo, J.-A.; Lee, Y.-W. Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol. Res. 2004, 108, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.H.; Desjardins, A.E.; Plattner, R.D.; Hohn, T.M. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet. Biol. 1999, 27, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Montis, V.; Pasquali, M.; Visentin, I.; Karlovsky, P.; Cardinale, F. Identification of a cis-acting factor modulating the transcription of FUM1, a key fumonisin-biosynthetic gene in the fungal maize pathogen Fusarium verticillioides. Fungal Genet. Biol. 2013, 51, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.W.; Butchko, R.A.E.; Busman, M.; Proctor, R.H. The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot. Cell 2007, 6, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yu, F.; Bojja, R.S.; Zaleta-Rivera, K.; Du, L. Functional replacement of the ketosynthase domain of FUM1 for the biosynthesis of fumonisins, a group of fungal reduced polyketides. J. Ind. Microbiol. Biotechnol. 2006, 33, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Nakagawa, H.; Hashimoto, R.; Hagiwara, D.; Onji, Y.; Asano, K.; Kawamoto, S.; Takahashi, H.; Yokoyama, K. The α-oxoamine synthase gene fum8 is involved in fumonisin B2 biosynthesis in Aspergillus niger. Mycoscience 2015, 56, 301–308. [Google Scholar] [CrossRef]
- Bojja, R.S.; Cerny, R.L.; Proctor, R.H.; Du, L. Determining the biosynthetic sequence in the early steps of the fumonisin pathway by use of three gene-disruption mutants of Fusarium verticillioides. J. Agric. Food Chem. 2004, 52, 2855–2860. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Errasquin, E.; Vazquez, C.; Jimenez, M.; Gonzalez-Jaen, M.T. Real-time RT-PCR assay to quantify the expression of fum1 and fum19 genes from the Fumonisin-producing Fusarium verticillioides. J. Microbiol. Methods 2007, 68, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, S.; Busman, M.; Shane, D.S.; Rønning, H.; Rise, F.; Proctor, R. Identification of early fumonisin biosynthetic intermediates by Inactivation of the FUM6 Gene in Fusarium verticillioides. J. Agric. Food Chem. 2012, 60, 10293–10301. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.H.; Desjardins, A.E.; Moretti, A. Biological and chemical complexity of Fusarium proliferatum. In The Role of Plant Pathology in Food Safety and Food Security; Springer: Dordrecht, The Netherlands, 2009; pp. 97–111. [Google Scholar]
- Waalwijk, C.; Lee, T.V.D.; Vries, I.D.; Hesselink, T.; Arts, J.; Kema, G.H.J. Synteny in toxigenic Fusarium Species: The fumonisin gene cluster and the mating type region as examples. Eur. J. Plant Pathol. 2004, 110, 533–544. [Google Scholar] [CrossRef]
- Huang, S.-W.; Wang, L.; Liu, L.-M.; Tang, S.-Q.; Zhu, D.-F.; Savary, S. Rice spikelet rot disease in China—2. Pathogenicity tests, assessment of the importance of the disease, and preliminary evaluation of control options. Crop Prot. 2011, 30, 10–17. [Google Scholar] [CrossRef]
- Lei, S.; Wang, L.; Liu, L.; Hou, Y.; Xu, Y.; Liang, M.; Gao, J.; Li, Q.; Huang, S. Infection and colonization of pathogenic fungus Fusarium proliferatum in rice spikelet rot disease. Rice Sci. 2019, 26, 60–68. [Google Scholar] [CrossRef]
- Butchko, R.A.E.; Plattner, R.D.; Proctor, R.H. Deletion analysis of FUM genes involved in tricarballylic ester formation during fumonisin biosynthesis. J. Agric. Food Chem. 2006, 54, 9398–9404. [Google Scholar] [CrossRef]
- Glenn, A.E.; Zitomer, N.C.; Zimeri, A.M.; Williams, L.D.; Riley, R.T.; Proctor, R.H. Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Mol. Plant-Microbe Interact. 2008, 21, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Xiangcheng, Z.; Chad, V.; Liangcheng, D. Functional complementation of fumonisin biosynthesis in FUM1-disrupted Fusarium verticillioides by the AAL-toxin polyketide synthase gene ALT1 from Alternaria alternata f. sp. Lycopersici. J. Nat. Prod. 2008, 71, 957–960. [Google Scholar]
- Li, Z.X.; Chen, X.L.; Cao, Z.Y.; Cao, X.L.; Gong, J.D.; Zhu, Z.W. Determination of fumonisins in cereals using liquid chromatography-tandem mass spectrometry. J. Instrum. Anal. 2014, 339, 167–172. [Google Scholar]
- Ndube, N.; Westhuizen, L.V.D. HPLC determination of fumonisin mycotoxins in maize: A comparative study of naphthalene-2,3-dicarboxaldehyde and o-phthaldialdehyde derivatization reagents for fluorescence and diode array detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 2239–2243. [Google Scholar] [CrossRef] [PubMed]
- Michael, S.; Franz, B.; Rudolf, K.; Rainer, S. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun. Mass Spectrom. 2010, 20, 2649–2659. [Google Scholar]
- Myung, K.; Li, S.; Butchko, R.A.; Busman, M.; Proctor, R.H.; Abbas, H.K.; Calvo, A.M. FvVE1 regulates biosynthesis of the mycotoxins fumonisins and fusarins in Fusarium verticillioides. J. Agric. Food Chem. 2009, 57, 5089–5094. [Google Scholar] [CrossRef] [PubMed]
- Woloshuk, C.P.; Shim, W.B. Aflatoxins, fumonisins, and trichothecenes: A convergence of knowledge. FEMS Microbiol. Rev. 2013, 37, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Kohut, G.; Adam, A.L.; Fazekas, B.; Hornok, L. N-starvation stress induced FUM gene expression and fumonisin production is mediated via the HOG-type MAPK pathway in Fusarium proliferatum. Int. J. Food Microbiol. 2009, 130, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, J.E.; Pirttila, A.M.; Bluhm, B.H.; Woloshuk, C.P. PAC1, a pH-regulatory gene from Fusarium verticillioides. Appl. Environ. Microbiol. 2003, 69, 5222–5227. [Google Scholar] [CrossRef] [PubMed]
- Seong, K.Y.; Pasquali, M.; Zhou, X.; Song, J.; Hilburn, K.; McCormick, S.; Dong, Y.; Xu, J.R.; Kistler, H.C. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Mol. Microbiol. 2009, 72, 354–367. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.H.; Desjardins, A.E.; Plattner, R.D. Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 2002, 153, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Boenisch, M.J.; Schafer, W. Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol. 2011, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Covarelli, L.; Stifano, S.; Beccari, G.; Raggi, L.; Lattanzio, V.M.; Albertini, E. Characterization of Fusarium verticillioides strains isolated from maize in Italy: Fumonisin production, pathogenicity and genetic variability. Food Microbiol. 2012, 31, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Stepien, L.; Waskiewicz, A.; Wilman, K. Host extract modulates metabolism and fumonisin biosynthesis by the plant-pathogenic fungus Fusarium proliferatum. Int. J. Food Microbiol. 2015, 193, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, A.E.; Busman, M.; Muhitch, M.; Proctor, R.H. Complementary host-pathogen genetic analyses of the role of fumonisins in the Zea mays-Gibberella moniliformis interaction. Physiol Mol Plant Pathol 2007, 70, 149–160. [Google Scholar] [CrossRef]
- Shi, L.H.; Bielawski, J.; Mu, J.Y.; Dong, H.L.; Teng, C.; Zhang, J.; Yang, X.H.; Tomishige, N.; Hanada, K.; Hannun, Y.A.; et al. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res. 2009, 17, 1030–1040. [Google Scholar]
- Teng, C.; Dong, H.L.; Shi, L.H.; Deng, Y.; Mu, J.Y.; Zhang, J.; Yang, X.H.; Zuo, J.R. Serine palmitoyltransferase, a key enzyme for de novo synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis. Plant Physiol. 2008, 146, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
- Tsegaye, Y.; Richardson, C.G.; Bravo, J.E.; Mulcahy, B.J.; Lynch, D.V.; Markham, J.E.; Jaworski, J.G.; Chen, M.; Cahoon, E.B.; Dunn, T.M. Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long chain base phosphate. J. Biol. Chem. 2007, 282, 28195–28206. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Shi, L.M.; Fan, S.H.; Tan, J.; Xie, T.; Shang, J.J.; Chen, B.S. Construction of colocalization vectors of the green fluorescence protein and red fluorescence protein in Cryphonectria parasitica. Genom. Appl. Biol. 2011, 30, 308–315. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Chen, X.; Gao, J.; Zhao, Y.; Liu, L.; Hou, Y.; Wang, L.; Huang, S. Effects of Disruption of Five FUM Genes on Fumonisin Biosynthesis and Pathogenicity in Fusarium proliferatum. Toxins 2019, 11, 327. https://doi.org/10.3390/toxins11060327
Sun L, Chen X, Gao J, Zhao Y, Liu L, Hou Y, Wang L, Huang S. Effects of Disruption of Five FUM Genes on Fumonisin Biosynthesis and Pathogenicity in Fusarium proliferatum. Toxins. 2019; 11(6):327. https://doi.org/10.3390/toxins11060327
Chicago/Turabian StyleSun, Lei, Xu Chen, Jian Gao, Yuan Zhao, Lianmeng Liu, Yuxuan Hou, Ling Wang, and Shiwen Huang. 2019. "Effects of Disruption of Five FUM Genes on Fumonisin Biosynthesis and Pathogenicity in Fusarium proliferatum" Toxins 11, no. 6: 327. https://doi.org/10.3390/toxins11060327
APA StyleSun, L., Chen, X., Gao, J., Zhao, Y., Liu, L., Hou, Y., Wang, L., & Huang, S. (2019). Effects of Disruption of Five FUM Genes on Fumonisin Biosynthesis and Pathogenicity in Fusarium proliferatum. Toxins, 11(6), 327. https://doi.org/10.3390/toxins11060327