Holistic Electric Powertrain Component Design for Battery Electric Vehicles in an Early Development Phase
<p>Simulation framework of the electric powertrain component design process.</p> "> Figure 2
<p>The four most common single-speed transmission topologies [<a href="#B51-wevj-16-00061" class="html-bibr">51</a>]. The numbers reference the shaft number, and the letters represent the differential (D), sun gear (s), planet gears (p), and the ring gear (r).</p> "> Figure 3
<p>Electric machine layout concepts from Motor-CAD. (<b>a</b>) asynchronous motor and (<b>b</b>) permanent magnet synchronous motor layout.</p> "> Figure 4
<p>SOC behavior between the dynamometer test and simulation on vehicle level.</p> "> Figure 5
<p>Efficiency behavior between the dynamometer test and simulation of the battery module.</p> "> Figure 6
<p>Simulation results of single parameter configurations evaluated against the energy consumption on vehicle level. (<b>a</b>) shows the achieved range, in (<b>b</b>) different gear ratios are displayed, (<b>c</b>) evaluates the vehicle mass, and in (<b>d</b>) the achieved top speed is considered.</p> "> Figure 7
<p>Efficiency maps of vehicle concepts designed within the simulation framework with the load points converted of the selected WLTC. (<b>a</b>) Efficiency map of vehicle 1 and (<b>b</b>) of vehicle 4.</p> ">
Abstract
:1. Introduction
1.1. Contributions
1.2. Layout
2. Methodology
2.1. Simulation Framework Concept
2.2. Component Design
2.2.1. Transmission
2.2.2. Electric Machine
2.2.3. Power Electronics
2.2.4. High-Voltage Battery
3. Results and Discussion
3.1. Validation
3.2. Simulation Tool Results
3.2.1. Optimization Framework Results
3.2.2. Vehicle Concept Comparison
3.3. Simulation Computation and Optimization Strategies
4. Summary and Conclusions
- Validated electric powertrain simulation framework.To validate our simulation framework and prove its functionalities and that the results obtained from the component design modules are meaningful, we investigated a defined parameter configuration obtained from a vehicle teardown and dynamometer tests in [63]. The deviations within the results show the implemented modules design state-of-the-art electric powertrain components and thus provide meaningful results.
- Design space exploration and modular framework.The simulation framework allows for multiple applications. First, with specific parameter configurations, the tool allows for the analysis of single objectives, such as exploring the design space of respective design parameters or identifying the sensitivity or impact of these parameters. Besides the design parameters, the modularity of our simulation tool enables users to append the framework with their own component design modules or select modules with less computational effort if certain components do not require detailed results.
- Optimization approach for vehicle concepts.The main functionality of this framework is the optimization approach. This aims to find an optimal starting point for a specific vehicle concept to set the foundation for further development. The framework’s modularity is also applicable within the optimization, allowing for reduced computational effort while investigating a specific component or parameter. The optimization in this study applies an NSGA-II algorithm and is set for a multi-objective optimization approach, whereas we focused on energy consumption or, rather, efficiency.
- Optimization strategies reducing computation time.This framework is used at the beginning of a development process to provide a foundation for a new or updated vehicle concept. To provide users with results earlier, we present strategies that intend to reduce computational time.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Vehicle Concept Parameters
Parameter (Unit) | Recommended Range | VW ID.3 |
---|---|---|
Range goal (km) | 416 | |
Maximum speed () | 160 | |
Zero to corner speed (s) | ||
Corner speed () | 100 | |
Body type (-) | A - F | C |
SUV flag (-) | 0 | |
Driving cycle (-) | - | WLTP_class_3 |
Motor type (-) | [IM; PSM] | PSM |
Inverter type (-) | [IGBT; MOSFET] | IGBT |
Parameter | Description | Unit |
---|---|---|
total_energy | Total vehicle consumption in relation to distance | |
SOC_diff | Difference between start and end SOC | - |
cost | Total powertrain cost, estimated for production in Germany | € |
mass | Total powertrain mass | kg |
volume | Total powertrain volume | |
battery_height | Battery height including battery management system | mm |
max_speed | Top speed estimated, according to motor initialization | |
max_acceleration | Maximum acceleration according to the motor initialization |
Appendix B. Component Design Parameters
Component | Parameter (Unit) | VW ID.3 |
---|---|---|
Vehicle | Mass driver (kg) | 68 |
Mass body (kg) | 800 | |
Tire radius (m) | 0.335 | |
Rotating mass factor (-) | 1.07 | |
Air density () | 1.225 | |
Air resistance coefficient (-) | 0.267 | |
Frontal area () | 2.3904 | |
Rolling resistance coefficient (-) | 0.009 | |
Auxiliary drain (W) | 280 | |
Gravitational acceleration () | 9.81 | |
Road surface grip level (%) | 100 | |
Ambient temperature (K) | 298.15 | |
Acceleration capability of the tires (-) | 0.8 | |
Longitudinal battery space (mm) | 300 | |
Lateral battery space (mm) | 100 | |
Vehicle length (mm) | 4315 | |
Vehicle width without mirror (mm) | 1805 | |
Vehicle height (mm) | 1558 | |
Package coefficient for the assembly (-) | 1.25 | |
Total mass vehicle (kg) | 1976 | |
Transmission | Efficiency (-) | 0.96 |
Sigma_SH_min (-) | 0.8 | |
Sigma_SF_min (-) | 1 | |
Power oilpump (W) | 120 | |
e1 - Distance between wall and gear (mm) | 10 | |
Thickness housing (mm) | 10 | |
Rib height (mm) | 50 | |
Lenght of differential (mm) | 150 | |
Density steel () | 0.00000785 | |
Density aluminium alloy () | 0.00000285 | |
Mass of bearings (kg) | 3 | |
Mass of differential (kg) | 3 | |
Mass of accessories (kg) | 2 | |
Mass of lubricant (kg) | 1 | |
Width carrier (mm) | 10 | |
ASM | Corner speed (rpm) | 7500 |
Constant power speed range (-) | 3 | |
Maximum to constant Power (-) | 2.5 | |
Reference mass (kg) | 52.65 | |
Maximum speed (rpm) | 21,000 | |
Overload factor 1 (-) | 2 | |
Overload factor 2 (-) | 1 | |
Number of phases (-) | 3 | |
Circuit connection (-) | star | |
Mass density iron () | 7850 | |
Security factor (-) | 2 | |
Stator, rotor lamination material (-) | M250-35A | |
Armature winding, cage material (-) | Copper (Pure) | |
Shaft material (-) | MildSteel | |
Insulation material (-) | LORD CoolTherm EP-2000 | |
Add housing diameter (m) | 0.035 | |
Ambient Temperature for convection (°C) | 40 | |
Maximum stator winding temperature (°C) | 160 | |
Maximum rotor cage temperature (°C) | 180 |
Component | Parameter (Unit) | VW ID.3 |
---|---|---|
PSM | Minimum power desired (kW) | 50 |
Maximum power desired (kW) | 750 | |
Phases (-) | 3 | |
Copper ratio (-) | 0.9 | |
Conductor separation (mm) | 0.15 | |
Insulation thickness (mm) | 0.1 | |
Tooth tip angle (°) | 1 | |
Maximum current threshold (-) | 0.05 | |
Maximum current exponent (-) | 2 | |
Maximum speed (rpm) | 25,000 | |
Stator winding temperature Lab (°C) | 155 | |
Rotor magnet temperature Lab (°C) | 120 | |
Maximum ratio of maximum to constant torque (-) | 4 | |
Power electronics | Switchin frequency (Hz) | 5000 |
R1 IGBT () | 0.005 | |
C1 IGBT (F) | 0.2 | |
R1 Diode () | 0.015 | |
C1 Diode (F) | 0.06666 | |
R MOSFET () | 0.42 | |
Battery | Maximum size in x-direction at pack level (m) | 3 |
Maximum size in y-direction at pack level (m) | 2.3 | |
Maximum size in z-direction at pack level (m) | 0.5 | |
Maximum mass at pack level (kg) | 2000 | |
Nominal maximum voltage at pack level (V) | 400 | |
Desired maximum deliverable current at packing level (A) | 250 | |
Maximum number of parallel connections at module level (-) | 0 | |
Maximum number of parallel connections at pack level (-) | 10 | |
Connection resistance () | 0.001 | |
Nominal Voltage on Module level (V) | 48 |
Component | Parameter (Unit) | Recommended Range | VW ID.3 |
---|---|---|---|
Transmission | Gear ratio | ||
Gear ratio stage 1 | |||
Normal module of stage 1 | |||
Normal module of stage 2 | |||
Number of teeth stage 1 | 20 | ||
Number of teeth stage 2 | 23 | ||
Electric machine | Motor Index (library) | - | 261 |
Stator inner diameter | - | ||
Iron length | - | ||
Rotor tooth width | - | ||
Rotor tooth height | - | ||
Stator back height | - | ||
Stator tooth width | - | ||
Stator tooth height | - | ||
Battery | Size factor (kWh) | 0 | |
Cell Index | 1 | ||
Voltage factor | 12 | ||
Cell type | 1 |
Appendix C. Vehicle Concept Comparison
Component | Parameter (Unit) | Vehicle 1 | Vehicle 2 | Vehicle 3 | Vehicle 4 |
---|---|---|---|---|---|
Vehicle | Energy consumption () | 14.53 | 13.26 | 14.34 | 12.78 |
Electric range (km) | 469.98 | 472.67 | 476.41 | 535.23 | |
Mass Vehicle (kg) | 1489 | 1433 | 1506 | 1473 | |
Mass powertrain (kg) | 429.92 | 385.34 | 443.33 | 417.25 | |
Volume powertrain () | 118 | 167 | 193 | 174 | |
Max acceleration () | 2.80 | 10.74 | 4.25 | 9.30 | |
Top speed () | 231.12 | 254.52 | 270.36 | 207.72 | |
Transmission | Gear ratio ( - ) | 9.14 | 10.04 | 9.43 | 12.75 |
Longitudinal dimension (mm) | 250 | 290 | 266 | 324 | |
Lateral dimension (mm) | 175 | 255 | 142 | 438 | |
Vertical dimension (mm) | 225 | 223 | 192 | 317 | |
Mass gearbox (kg) | 22.32 | 37.79 | 20.79 | 62.28 | |
Electric machine | Max torque (Nm) | 217.74 | 509.94 | 229.29 | 282.57 |
Max power (kW) | 159.61 | 240.30 | 168.08 | 133.16 | |
Max current (A) | 781 | 1938 | 564 | 1249 | |
Housing diameter (mm) | 233.91 | 203.14 | 224.27 | 159.79 | |
Motor length (mm) | 260 | 363 | 401 | 327 | |
Battery | Longitudinal dimension (mm) | 1144 | 1456 | 1144 | 1588 |
Lateral dimension (mm) | 1207 | 628 | 1202 | 628 | |
Vertical dimension (mm) | 162 | 158 | 162 | 158 | |
Mass battery (kg) | 360.43 | 302.27 | 360.43 | 329.75 |
References
- Chan, C. The state of the art of electric and hybrid vehicles. Proc. IEEE 2002, 90, 247–275. [Google Scholar] [CrossRef]
- Zhang, Z. Multivariate Time Series Analysis in Climate and Environmental Research; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Biresselioglu, M.E.; Demirbag Kaplan, M.; Yilmaz, B.K. Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes. Transp. Res. Part Policy Pract. 2018, 109, 1–13. [Google Scholar] [CrossRef]
- European Parliament. 2021/0197(COD): CO2 Emission Standards for Cars and Vans. Available online: https://oeil.secure.europarl.europa.eu/oeil/en/procedure-file?reference=2021/0197(COD) (accessed on 22 November 2024).
- Hristov, G.; Zahariev, P.; Borisov, S.; Kyuchukova, D. An educational system for real-time monitoring and evaluation of the parameters of electric vehicles. In Proceedings of the 2016 15th International Conference on Information Technology Based Higher Education and Training (ITHET), Istanbul, Turkey, 8–10 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Trzesniowski, M. Powertrain; Springer Vieweg Wiesbaden: Berlin/Heidelberg, Germany, 2023; p. 536. [Google Scholar]
- Neubauer, J.; Brooker, A.; Wood, E. Sensitivity of battery electric vehicle economics to drive patterns, vehicle range, and charge strategies. J. Power Sources 2012, 209, 269–277. [Google Scholar] [CrossRef]
- Dimitropoulos, A.; Rietveld, P.; van Ommeren, J.N. Consumer valuation of changes in driving range: A meta-analysis. Transp. Res. Part Policy Pract. 2013, 55, 27–45. [Google Scholar] [CrossRef]
- Rosenberger, N.; Fundel, M.; Bogdan, S.; Köning, L.; Kragt, P.; Kühberger, M.; Lienkamp, M. Scientific benchmarking: Engineering quality evaluation of electric vehicle concepts. e-Prime-Adv. Electr. Eng. Electron. Energy 2024, 9, 100746. [Google Scholar] [CrossRef]
- Ludwig, C.; Chang, F.; Frost, M.; Schimmel, C.; Prokop, G. Investigation of the Influence of Vehicle Payload on Rollover Behavior. In Proceedings of the 22. Internationational Stuttgarter Symposium, Online, 14 March 2022; Springer Vieweg Wiesbaden: Berlin/Heidelberg, Germany, 2022; pp. 201–219. [Google Scholar]
- Elverum, C.W.; Welo, T. The Role of Early Prototypes in Concept Development: Insights from the Automotive Industry. Procedia CIRP 2014, 21, 491–496. [Google Scholar] [CrossRef]
- Köller, S.; Schmitz, V. Systematic synthesis and multi-criteria evaluation of transmission topologies for electric vehicles. Automot. Engine Technol. 2022, 7, 65–79. [Google Scholar] [CrossRef]
- European Union. Regulation No 100 of the Economic Commission for Europe of the United Nations (UN/ECE)—Uniform Provisions Concerning the Approval of Vehicles with Regard to Specific Requirements for the Electric Power Train. Available online: https://op.europa.eu/en/publication-detail/-/publication/fd8e6b47-d767-11e4-9de8-01aa75ed71a1 (accessed on 14 January 2025).
- Reiter, C. Thermische Vorauslegung Hochbelasteter Batteriesysteme für Elektrofahrzeuge in der Konzeptphase. Ph.D. Dissertation, Technische Universität München, München, Germany, 2020. [Google Scholar]
- Pham, X.M.; Bui, G.V.; Pham, H.; Pham, L.H.P. Design Process of Electric Vehicle Power System. Appl. Mech. Mater. 2022, 907, 101–114. [Google Scholar] [CrossRef]
- Epp, A.; Sauer, D.U. Multiperspective Optimization of Cell and Module Dimensioning for Different Lithium-Ion Cell Formats on Geometric and Generic Assumptions. Energy Technol. 2022, 10, 2100874. [Google Scholar] [CrossRef]
- Epp, A.; Wendland, R.; Behrendt, J.; Gerlach, R.; Sauer, D.U. Holistic battery system design optimization for electric vehicles using a multiphysically coupled lithium-ion battery design tool. J. Energy Storage 2022, 52, 104854. [Google Scholar] [CrossRef]
- Baumann, M.; Wildfeuer, L.; Rohr, S.; Lienkamp, M. Parameter variations within Li-Ion battery packs – Theoretical investigations and experimental quantification. J. Energy Storage 2018, 18, 295–307. [Google Scholar] [CrossRef]
- Guo, W.; Sun, Z.; Vilsen, S.B.; Meng, J.; Stroe, D.I. Review of “grey box” lifetime modeling for lithium-ion battery: Combining physics and data-driven methods. J. Energy Storage 2022, 56, 105992. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Andre, D.; Meiler, M.; Steiner, K.; Walz, H.; Soczka-Guth, T.; Sauer, D. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling. J. Power Sources 2011, 196, 5349–5356. [Google Scholar] [CrossRef]
- Lee, U.; Kang, N.; Lee, Y.K. Optimization of module structure considering mechanical and thermal safety of pouch cell lithium-ion batteries using a reliability-based design optimization approach. J. Energy Storage 2023, 72, 108650. [Google Scholar] [CrossRef]
- Schmidt, J.P. Verfahren zur Charakterisierung und Modellierung von Lithium-Ionen Zellen. Ph.D. Dissertation, Karlsruher Institut für Technologie, Karslruhe, Germany, 2013. [Google Scholar]
- Luzi, M.; Frattale Mascioli, F.M.; Paschero, M.; Rizzi, A. A White-Box Equivalent Neural Network Circuit Model for SoC Estimation of Electrochemical Cells. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 371–382. [Google Scholar] [CrossRef]
- Lee, J.D.; Park, D.H.; Kim, R.Y. Novel Variable Switching Frequency PWM Strategy for a SiC-MOSFET-Based Electric Vehicle Inverter to Increase Battery Usage Time. IEEE Access 2022, 10, 21929–21940. [Google Scholar] [CrossRef]
- Sivkov, O.G.; Novak, M.; Novak, J. Comparison between Si IGBT and SiC MOSFET Inverters for AC Motor Drive. In Proceedings of the 2018 18th International Conference on Mechatronics—Mechatronika (ME), Brno, Czech Republic, 5–7 December 2018; pp. 1–5. [Google Scholar]
- Rahman, M.F.; Niknejad, P.; Barzegaran, M.R. Comparing the performance of Si IGBT and SiC MOSFET switches in modular multilevel converters for medium voltage PMSM speed control. In Proceedings of the 2018 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 8–9 February 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, C.; Luo, Y. Overview of advanced control strategies for electric machines. Chin. J. Electr. Eng. 2017, 3, 53–61. [Google Scholar] [CrossRef]
- Peddapelli, S.K. Pulse Width Modulation: Analysis and Performance in Multilevel Inverters; De Gruyter Oldenbourg: Berlin, Germany, 2016; p. 210. [Google Scholar]
- Xu, Y.; Ho, C.N.M.; Ghosh, A.; Muthumuni, D. A Datasheet-Based Behavioral Model of SiC MOSFET for Power Loss Prediction in Electromagnetic Transient Simulation. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 521–526. [Google Scholar] [CrossRef]
- Reimers, J.; Dorn-Gomba, L.; Mak, C.; Emadi, A. Automotive Traction Inverters: Current Status and Future Trends. IEEE Trans. Veh. Technol. 2019, 68, 3337–3350. [Google Scholar] [CrossRef]
- Poorfakhraei, A.; Narimani, M.; Emadi, A. A Review of Multilevel Inverter Topologies in Electric Vehicles: Current Status and Future Trends. IEEE Open J. Power Electron. 2021, 2, 155–170. [Google Scholar] [CrossRef]
- Kitazawa, O.; Kikuchi, T.; Nakashima, M.; Tomita, Y.; Kosugi, H.; Kaneko, T. Development of Power Control Unit for Compact-Class Vehicle. SAE Int. J. Altern. Powertrains 2016, 5, 278–285. [Google Scholar] [CrossRef]
- Drobnik, J.; Jain, P. Electric and Hybrid Vehicle Power Electronics Efficiency, Testing and Reliability. World Electr. Veh. J. 2013, 6, 719–730. [Google Scholar] [CrossRef]
- Li, W.; Li, G.; Sun, Z.; Wang, Q. Real-time estimation of junction temperature in IGBT inverter with a simple parameterized power loss model. MIcroelectron. Reliab. 2021, 127, 114409. [Google Scholar] [CrossRef]
- Chang, F.; Ilina, O.; Lienkamp, M.; Voss, L. Improving the Overall Efficiency of Automotive Inverters Using a Multilevel Converter Composed of Low Voltage Si MOSFETs. IEEE Trans. Power Electron. 2019, 34, 3586–3602. [Google Scholar] [CrossRef]
- Zhu, J.; Kim, H.; Chen, H.; Erickson, R.; Maksimović, D. High efficiency SiC traction inverter for electric vehicle applications. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 1428–1433. [Google Scholar] [CrossRef]
- Hecker, Q.; Butrón Ccoa, J.A.; Meyer, W.; Herzog, H.G. Automated design of squirrel-cage induction machines by predefined torque-speed-characteristic. In Proceedings of the 2013 International Electric Machines &Drives Conference, Chicago, IL, USA, 12–15 May 2013; pp. 1160–1165. [Google Scholar] [CrossRef]
- Ionel, D.; Eastham, J.; Miller, T.; Demeter, E. Design considerations for PM synchronous motors for flux weakening applications. In Proceedings of the 1997 Eighth International Conference on Electrical Machines and Drives (Conf. Publ. No. 444), Cambridge, UK, 1–3 September 1997; pp. 371–375. [Google Scholar] [CrossRef]
- Schätzer, C. Ein Verfahren zur Optimierung bei Elektrischen Maschinen mit Hilfe der Numerischen Feldberechnung. Ph.D. Dissertation, Technische Universität Darmstadt, Darmstadt, Germany, 2001. [Google Scholar]
- Robert Bosch GmbH, Green Car Congress. New Bosch 230 Electric Motor and Inverter with Silicon Carbide Technology Offers System Efficiency Up to 97%. 2021. Available online: https://www.greencarcongress.com/2021/09/20210922-bosch.html (accessed on 28 November 2024).
- Filizadeh, S. Electric Machines and Drives: Principles, Control, Modeling, and Simulation; CRC Press: Boca Raton, FL, USA, 2017; p. 237. [Google Scholar]
- Igelspacher, J.; Bertram, C.; Flügel, S.; Meyer, W.; Herzog, H.G. Methode für die Auslegung von Asynchronmaschinen in Elektrofahrzeugen. In Proceedings of the Internationaler ETG-Kongress 2013—Energieversorgung auf dem Weg nach 2050, Berlin, Germany, 6 November 2013; p. 7. [Google Scholar]
- Lu, C.; Ferrari, S.; Pellegrino, G. Two Design Procedures for PM Synchronous Machines for Electric Powertrains. IEEE Trans. Transp. Electrif. 2017, 3, 98–107. [Google Scholar] [CrossRef]
- Schweigert, D.; Gerlach, M.E.; Hoffmann, A.; Morhard, B.; Tripps, A.; Lohner, T.; Otto, M.; Ponick, B.; Stahl, K. On the Impact of Maximum Speed on the Power Density of Electromechanical Powertrains. Vehicles 2020, 2, 365–397. [Google Scholar] [CrossRef]
- Staton, D.; Chong, E.; Pickering, S.; Boglietti, A. Cooling of Rotating Electrical Machines: Fundamentals, Modelling, Testing and Design; IET Energy Engineering Series; Institution of Engineering and Technology: London, UK, 2022; p. 240. [Google Scholar]
- Babl, A.; Filusch, D.; Herzog, H.G.; Gerling, D. Development of an Analytical Method for a Driving Cycle-Optimized Design of a Surface-Mounted Permanent Magnet Synchronous Machine. In Proceedings of the 2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 23–26 August 2020; Volume 1, pp. 124–130. [Google Scholar] [CrossRef]
- Murali, N.; Ushakumari, S.; P, M.V. Performance comparison between different rotor configurations of PMSM for EV application. In Proceedings of the 2020 IEEE REGION 10 CONFERENCE (TENCON), Osaka, Japan, 16–19 November 2020; pp. 1334–1339. [Google Scholar] [CrossRef]
- Hofmann, W. Maschinelles Lernen als Entwurfshilfe für elektrische Maschinen. e & i Elektrotechnik und Informationstechnik 2023, 140, 356–365. [Google Scholar] [CrossRef]
- Cassimere, B.N.; Sudhoff, S.D. Population-Based Design of Surface-Mounted Permanent-Magnet Synchronous Machines. IEEE Trans. Energy Convers. 2009, 24, 338–346. [Google Scholar] [CrossRef]
- Nicoletti, L.; Köhler, P.; König, A.; Heinrich, M.; Lienkamp, M. Parametric modelling of weight and volume effects in battery electric vehicles, with focus on the gearbox. Proc. Des. Soc. 2021, 1, 2389–2398. [Google Scholar] [CrossRef]
- Gao, B.; Liang, Q.; Xiang, Y.; Guo, L.; Chen, H. Gear ratio optimization and shift control of 2-speed I-AMT in electric vehicle. Mech. Syst. Signal Process. 2015, 50–51, 615–631. [Google Scholar] [CrossRef]
- Kieninger, D.; Hemsen, J.; Köller, S.; Üerlich, R. Automatisierte Auslegung und Optimierung von Getrieben für Elektrofahrzeuge. MTZ-Mot. Z. 2019, 80, 94–99. [Google Scholar] [CrossRef]
- Jurkschat, T.; Lohner, T.; Stahl, K. Improved calculation of load-dependent gear losses by consideration of so far disregarded influences. Proc. Inst. Mech. Eng. Part J. Eng. Tribol. 2019, 233, 509–519. [Google Scholar] [CrossRef]
- Hofstetter, M.; Lechleitner, D.; Hirz, M.; Gintzel, M.; Schmidhofer, A. Multi-objective gearbox design optimization for xEV-axle drives under consideration of package restrictions. Forsch. Ingenieurwesen 2018, 82, 361–370. [Google Scholar] [CrossRef]
- Patil, M.; Ramkumar, P.; Shankar, K. Multi-objective optimization of the two-stage helical gearbox with tribological constraints. Mech. Mach. Theory 2019, 138, 38–57. [Google Scholar] [CrossRef]
- Lu, F.; Cao, X.; Liu, W. Optimal design of high efficiency double helical gear based on dynamics model. SN Appl. Sci. 2021, 3, 726. [Google Scholar] [CrossRef]
- Karadere, G.; Yilmaz, I. Investigation of the Effects of Profile Shift in Helical Gear Mechanisms with Analytical and Numerical Methods. World J. Mech. 2018, 8. [Google Scholar] [CrossRef]
- Paschold, C.; Sedlmair, M.; Lohner, T.; Stahl, K. Calculating component temperatures in gearboxes for transient operation conditions. Forsch. Ingenieurwesen 2022, 86, 521–534. [Google Scholar] [CrossRef]
- Andersson, M.; Sosa, M.; Olofsson, U. Efficiency and temperature of spur gears using spray lubrication compared to dip lubrication. Proc. Inst. Mech. Eng. Part J. Eng. Tribol. 2017, 231, 1390–1396. [Google Scholar] [CrossRef]
- GKN Automotive; Paul Seredynski; SAE International. GKN Demos eTwinster, world’s-First 2-Speed Torque-Vectoring BEV Transmission. 2019. Available online: https://www.mobilityengineeringtech.com/component/content/article/44047-sae-ma-03362 (accessed on 28 November 2024).
- Han, J.O.; Shin, J.W.; Kim, J.C.; Oh, S.H. Design 2-Speed Transmission for Compact Electric Vehicle Using Dual Brake System. Appl. Sci. 2019, 9, 1793. [Google Scholar] [CrossRef]
- Wassiliadis, N.; Steinsträter, M.; Schreiber, M.; Rosner, P.; Nicoletti, L.; Schmid, F.; Ank, M.; Teichert, O.; Wildfeuer, L.; Schneider, J.; et al. Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID.3. eTransportation 2022, 12, 100167. [Google Scholar] [CrossRef]
- The MathWorks, Inc. Simulink; The MathWorks, Inc.: Natick, MA, USA, 2024. [Google Scholar]
- Tragfähigkeitsberechnung von Stirnrädern. Norm DIN 3990-5; German Institute for Standardization: Berlin, Germany, 1987. [Google Scholar]
- Norm BS EN 10084:1998; Case Hardening Steels Ð Technical Delivery Conditions. British Standard. British Standards Institution: London, UK, 1998.
- Shah, R.; Gashi, B.; González-Poggini, S.; Colet-Lagrille, M.; Rosenkranz, A. Recent trends in batteries and lubricants for electric vehicles. Adv. Mech. Eng. 2021, 13, 16878140211021730. [Google Scholar] [CrossRef]
- Graves, S.M. Electric pump system and method. Patent US20190003477A1, 3 January 2019. [Google Scholar]
- Deb, K. Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction. In Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing; Wang, L., Ng, A.H.C., Deb, K., Eds.; Springer: London, UK, 2011; pp. 3–34. [Google Scholar] [CrossRef]
- Behnke, D.; Goddemeier, N.; Möllmer, J.; Wietfeld, C. Comparison of multiobjective optimization algorithms for mobility behaviors in autonomous robot systems. In Proceedings of the 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA, 8–12 December 2014; pp. 1451–1456. [Google Scholar] [CrossRef]
- Nayak, S. Chapter nine—Multiobjective optimization. In Fundamentals of Optimization Techniques with Algorithms; Nayak, S., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 253–270. [Google Scholar] [CrossRef]
- Verma, S.; Pant, M.; Snasel, V. A Comprehensive Review on NSGA-II for Multi-Objective Combinatorial Optimization Problems. IEEE Access 2021, 9, 57757–57791. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Burghart, J.H. Constant Power Acceleration Profiles for Electric Vehicles. IEEE Trans. Ind. Electron. 1987, IE-34, 188–191. [Google Scholar] [CrossRef]
- Lu, D.; Ouyang, M. Torque-based optimal acceleration control for electric vehicle. Chin. J. Mech. Eng. 2014, 27, 319–330. [Google Scholar] [CrossRef]
- Herrmann, T.; Wischnewski, A.; Hermansdorfer, L.; Betz, J.; Lienkamp, M. Real-Time Adaptive Velocity Optimization for Autonomous Electric Cars at the Limits of Handling. IEEE Trans. Intell. Veh. 2021, 6, 665–677. [Google Scholar] [CrossRef]
- United Nations. Global Technical Regulation on Worldwide Harmonized Light Vehicles Test Procedure. Addendum 15: Global Technical Regulation No. 15 (ECE/TRAN/180/Add.15). 12 March 2014. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://unece.org/fileadmin/DAM/trans/main/wp29/wp29r-1998agr-rules/ECE-TRANS-180a15e.pdf&ved=2ahUKEwiv9MPiw4aLAxUJVPEDHUghHDYQFnoECCYQAQ&usg=AOvVaw3FxT2bpNeLiUZfEWAutqx_ (accessed on 15 January 2025).
- Paschold, C.; Sedlmair, M.; Lohner, T.; Stahl, K. Efficiency and heat balance calculation of worm gears. Forsch. Ingenieurwesen 2020, 84, 115–125. [Google Scholar] [CrossRef]
- Doppelbauer, M. Grundlagen der Elektromobilität; Springer Vieweg Wiesbaden: Berlin/Heidelberg, Germany, 2020; p. 434. [Google Scholar] [CrossRef]
- Arnaudov, K.; Karaivanov, D. Planetary Gear Trains; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Skolaut, W. Maschinenbau; Springer: Berlin/Heidelberg, Germany, 2014; p. 1426. [Google Scholar]
- Kirchner, E. Leistungsübertragung in Fahrzeuggetrieben: Grundlagen der Auslegung, Entwicklung und Validierung von Fahrzeuggetrieben und deren Komponenten; Springer Vieweg Wiesbaden: Berlin/Heidelberg, Germany, 2007; p. 699. [Google Scholar] [CrossRef]
- SKF Group. SKF Rolling Bearings Catalogue. 2023. Available online: https://cdn.skfmediahub.skf.com/api/public/0901d196802809de/pdf_preview_medium/0901d196802809de_pdf_preview_medium.pdf (accessed on 5 December 2024).
- Norm ISO 6336-1; Calculation of Load Capacity of Spur and Helical Gears. International Standard; German Institute for Standardization: Berlin, Germany, 2007.
- Rosenberger, N.; Rosner, P.; Bilfinger, P.; Schöberl, J.; Teichert, O.; Schneider, J.; Abo Gamra, K.; Allgäuer, C.; Dietermann, B.; Schreiber, M.; et al. Quantifying the State of the Art of Electric Powertrains in Battery Electric Vehicles: Comprehensive Analysis of the Tesla Model 3 on the Vehicle Level. World Electr. Veh. J. 2024, 15, 268. [Google Scholar] [CrossRef]
- Ansys Inc. Ansys Motor-CAD; Ansys Inc.: Canonsburg, PA, USA, 2024. [Google Scholar]
- Müller, G.; Vogt, K.; Ponick, B. Berechnung Elektrischer Maschinen, 6th ed.; Wiley-VCH: Berlin, Germany, 2007. [Google Scholar]
- Blaschke, F. The Principle of Field Orientation as Applied to the NEW Transvector Closed-Loop Control System for Rotating-Field Machines. Siemens Rev. 1972, 34, 217–220. [Google Scholar]
- FS820R08A6P2B Datasheet. 2023. Available online: https://www.infineon.com/cms/de/product/power/igbt/automotive-qualified-igbts/automotive-igbt-coolsic-mosfet-modules/fs820r08a6p2b/ (accessed on 3 December 2024).
- STMicroelectronics. SCTW100N65G2AG Datasheet. 2023. Available online: https://www.st.com/en/power-transistors/sctw100n65g2ag.html (accessed on 3 December 2024).
- Nguyen, Q.K.; Petrich, M.; Roth-Stielow, J. Implementation of the MTPA and MTPV control with online parameter identification for a high speed IPMSM used as traction drive. In Proceedings of the 2014 International Power Electronics Conference (IPEC-Hiroshima 2014—ECCE ASIA), Hiroshima, Japan, 18–21 May 2014; pp. 318–323. [Google Scholar] [CrossRef]
- Donescu, V.; Charette, A.; Yao, Z.; Rajagopalan, V. Modeling and simulation of saturated induction motors in phase quantities. IEEE Trans. Energy Convers. 1999, 14, 386–393. [Google Scholar] [CrossRef]
- Stumberger, B.; Stumberger, G.; Dolinar, D.; Hamler, A.; Trlep, M. Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor. IEEE Trans. Ind. Appl. 2003, 39, 1264–1271. [Google Scholar] [CrossRef]
- Nam, K.H. AC Motor Control and Electrical Vehicle Applications; CRC Press, Taylor & Francis Group: Abingdon, UK, 2019. [Google Scholar]
- Bai, B.; Dezhi, C. Inverter IGBT loss analysis and calculation. In Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, 25–28 February 2013; pp. 563–569. [Google Scholar] [CrossRef]
- Graovac, D.; Pürschel, M. IGBT Power Losses Calculation Using the Datasheet Parameters. 2009. Available online: https://github.com/stocyr/Projektarbeiten_Semester4/blob/master/Leistungselektronik_Vezzini/Datasheets/04%20-%20IGBT%20Power%20Losses%20Calculation%20Using%20the%20Data-Sheet%20Parameters.pdf (accessed on 3 December 2024).
- Burkart, R.M.; Kolar, J.W. Comparative Life Cycle Cost Analysis of Si and SiC PV Converter Systems Based on Advanced η- ρ-σ Multiobjective Optimization Techniques. IEEE Trans. Power Electron. 2017, 32, 4344–4358. [Google Scholar] [CrossRef]
- Graovac, D.; Pürschel, M. MOSFET Power Losses Calculation Using the Datasheet Parameters. 2009. Available online: https://github.com/stocyr/Projektarbeiten_Semester4/blob/master/Leistungselektronik_Vezzini/Datasheets/03MOSFETPowerLossesCalculation.pdf (accessed on 3 December 2024).
- The MathWorks Inc. Simscape Battery; The MathWorks, Inc.: Natick, MA, USA, 2024. [Google Scholar]
- European Parliament. Regulation (EU) 2018/858 of the European Parliament and of the Council of 30 May 2018 on the Approval and Market Surveillance of Motor Vehicles and Their Trailers, and of Systems, Components and Separate Technical Units Intended for Such Vehicles, Amending Regulations (EC) No 715/2007 and (EC) No 595/2009 and Repealing DIRECTIVE 2007/46/EC. 2018. Available online: https://eur-lex.europa.eu/eli/reg/2018/858/oj/eng (accessed on 15 October 2021).
- Humphrey, E.; Elisaus, V.; Rahmani, R.; Mohammadpour, M.; Theodossiades, S.; Morris, N. Diamond like-carbon coatings for electric vehicle transmission efficiency. Tribol. Int. 2023, 189, 108916. [Google Scholar] [CrossRef]
Parameter | Unit | Range |
---|---|---|
SOC equalisation strategy | - | None, dissipative |
Local resolution | - | Integrated, grouped, detailed |
Number of RC circuits | - | R, rc1, rc2, rc3, rc4, rc5 |
Ambient temperature | °C | |
Time step size | s | [] |
Manufacturer | - | |
parameterisation | - | |
Over current factor racemode | - |
Domain | Dynamometer Test | Simulation Framework | Deviation |
---|---|---|---|
Electric range | km | km | % |
Battery efficiency | % | % | % |
Electrical power | kW | kW | % |
Inverter loss | W | W | % |
Transmission power loss [100] | 218 W | W | % |
Transmission loss | - | 396 W | - |
Electric machine loss | - | 545 W | - |
Mechanical power | kW | kW | % |
Mechanical loss | 968 W | 941 W | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenberger, N.; Deininger, S.; Koloch, J.; Lienkamp, M. Holistic Electric Powertrain Component Design for Battery Electric Vehicles in an Early Development Phase. World Electr. Veh. J. 2025, 16, 61. https://doi.org/10.3390/wevj16020061
Rosenberger N, Deininger S, Koloch J, Lienkamp M. Holistic Electric Powertrain Component Design for Battery Electric Vehicles in an Early Development Phase. World Electric Vehicle Journal. 2025; 16(2):61. https://doi.org/10.3390/wevj16020061
Chicago/Turabian StyleRosenberger, Nico, Silvan Deininger, Jan Koloch, and Markus Lienkamp. 2025. "Holistic Electric Powertrain Component Design for Battery Electric Vehicles in an Early Development Phase" World Electric Vehicle Journal 16, no. 2: 61. https://doi.org/10.3390/wevj16020061
APA StyleRosenberger, N., Deininger, S., Koloch, J., & Lienkamp, M. (2025). Holistic Electric Powertrain Component Design for Battery Electric Vehicles in an Early Development Phase. World Electric Vehicle Journal, 16(2), 61. https://doi.org/10.3390/wevj16020061