Enhancing Cybersecurity and Privacy Protection for Cloud Computing-Assisted Vehicular Network of Autonomous Electric Vehicles: Applications of Machine Learning
<p>Vehicular network structure.</p> "> Figure 2
<p>Structure of Context.</p> "> Figure 3
<p>Structure of VCC, VEC, VFC.</p> "> Figure 4
<p>ML training progress.</p> "> Figure 5
<p>Centralized training structure.</p> "> Figure 6
<p>Federated training structure.</p> "> Figure 7
<p>Semi-systematic literature review selection process.</p> "> Figure 8
<p>Publication and ML training strategy trend.</p> "> Figure 9
<p>Relationship between ML method and research theme.</p> "> Figure 10
<p>Comparison of ML accuracy performance.</p> "> Figure 11
<p>Comparison of ML strategy accuracy performance.</p> "> Figure 12
<p>Challenges, solutions, and future scope.</p> ">
Abstract
:1. Introduction
- (1)
- A comprehensive overview of computational paradigms and machine learning algorithms for vehicular networks is presented, describing the similarities and differences and the security and privacy challenges faced between VCC and variant computing paradigms (e.g., VEC and VFC).
- (2)
- Four key themes related to cybersecurity and privacy protection in VCC are summarized: intrusion detection system, anomaly vehicle detection, task offloading security and privacy, and privacy protection-related existing ML algorithms. The strengths and weaknesses of different ML algorithms are also shown.
- (3)
- A meta-analysis of ML algorithms’ performances in intrusion detection systems is conducted.
- (4)
- The limitations of current ML algorithms to realize VCC network security and privacy protection are presented, and future research directions are discussed.
2. Vehicular Networks
2.1. Vehicular Networks Concept
2.2. Vehicular Cloud Computing
2.3. Vehicular Edge Computing
2.4. Vehicular Fog Computing
3. Vehicular Networks Security and Privacy Challenges
3.1. Security Challenges
3.2. Privacy Challenges
4. Machine Learning in Vehicular Cloud Computing
4.1. The Use of Various Types of Machine Learning in Vehicular Cloud Computing
4.1.1. Supervised Learning
4.1.2. Unsupervised Learning
4.1.3. Reinforcement Learning
4.2. Machine Learning Training Strategy in Vehicular Cloud Computing Environment
4.2.1. Centralized Training
4.2.2. Federated Learning
4.2.3. Transfer Learning
5. Methodology
5.1. Search Scope
5.2. Inclusion and Exclusion Criteria
6. Machine Learning Applications in Security and Privacy Challenges for Vehicular Cloud Computing
6.1. Machine Learning Application Summary
6.2. Intrusion Detection System (IDS) for Vehicular Cloud Computing
6.3. Anomaly Vehicle Detection in Vehicular Cloud Computing
6.4. Task Offloading Security and Privacy
6.5. Privacy Protection
7. Challenges and Future Scope
7.1. Computation Cost and Energy Consumption
7.2. Latency and Accuracy
7.3. Model Data Privacy Protection
7.4. Robustness and Scalability
7.5. Emerging Technology with Machine Learning for Cybersecurity
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Zhao, H. Data security and privacy protection issues in cloud computing. In Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; pp. 647–651. [Google Scholar]
- Kalmykov, I.A.; Olenev, A.A.; Kononova, N.V.; Peleshenko, T.A.; Dukhovnyj, D.V.; Chistousov, N.K.; Kalmykova, N.I. Improvement of the Cybersecurity of the Satellite Internet of Vehicles through the Application of an Authentication Protocol Based on a Modular Error-Correction Code. World Electr. Veh. J. 2024, 15, 278. [Google Scholar] [CrossRef]
- Mirzarazi, F.; Danishvar, S.; Mousavi, A. The Safety Risks of AI-Driven Solutions in Autonomous Road Vehicles. World Electr. Veh. J. 2024, 15, 438. [Google Scholar] [CrossRef]
- Javed, M.; Arslan Akram, M.; Noor Mian, A.; Kumari, S. On the security of a novel privacy-preserving authentication scheme for V2G networks. Secur. Priv. 2024, 7, e357. [Google Scholar] [CrossRef]
- Lu, Z.; Qu, G.; Liu, Z. A Survey on Recent Advances in Vehicular Network Security, Trust, and Privacy. IEEE Trans. Intell. Transp. Syst. 2019, 20, 760–776. [Google Scholar] [CrossRef]
- Sarker, I.H.; Kayes, A.; Badsha, S.; Alqahtani, H.; Watters, P.; Ng, A. Cybersecurity data science: An overview from machine learning perspective. J. Big Data 2020, 7, 41. [Google Scholar] [CrossRef]
- Bécsi, T.; Aradi, S.; Gáspár, P. Security issues and vulnerabilities in connected car systems. In Proceedings of the 2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Budapest, Hungary, 3–5 June 2015; pp. 477–482. [Google Scholar]
- Mili, S.; Nguyen, N.; Chelouah, R. Transformation-based approach to security verification for cyber-physical systems. IEEE Syst. J. 2019, 13, 3989–4000. [Google Scholar] [CrossRef]
- Al Zaabi, A.O.; Yeun, C.Y.; Damiani, E. Autonomous vehicle security: Conceptual model. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Jeju, Republic of Korea, 8–10 May 2019; pp. 1–5. [Google Scholar]
- Balkus, S.V.; Wang, H.; Cornet, B.D.; Mahabal, C.; Ngo, H.; Fang, H. A survey of collaborative machine learning using 5G vehicular communications. IEEE Commun. Surv. Tutor. 2022, 24, 1280–1303. [Google Scholar] [CrossRef]
- Ali, E.S.; Hasan, M.K.; Hassan, R.; Saeed, R.A.; Hassan, M.B.; Islam, S.; Nafi, N.S.; Bevinakoppa, S. Machine learning technologies for secure vehicular communication in internet of vehicles: Recent advances and applications. Secur. Commun. Netw. 2021, 2021, 8868355. [Google Scholar] [CrossRef]
- Tan, K.; Bremner, D.; Le Kernec, J.; Zhang, L.; Imran, M. Machine learning in vehicular networking: An overview. Digit. Commun. Netw. 2022, 8, 18–24. [Google Scholar] [CrossRef]
- Sheikh, M.S.; Liang, J.; Wang, W. Security and privacy in vehicular ad hoc network and vehicle cloud computing: A survey. Wirel. Commun. Mob. Comput. 2020, 2020, 5129620. [Google Scholar] [CrossRef]
- Masood, A.; Lakew, D.S.; Cho, S. Security and privacy challenges in connected vehicular cloud computing. IEEE Commun. Surv. Tutor. 2020, 22, 2725–2764. [Google Scholar] [CrossRef]
- Alalwany, E.; Mahgoub, I. Security and trust management in the internet of vehicles (IoV): Challenges and machine learning solutions. Sensors 2024, 24, 368. [Google Scholar] [CrossRef]
- Talpur, A.; Gurusamy, M. Machine learning for security in vehicular networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2021, 24, 346–379. [Google Scholar] [CrossRef]
- Karagiannis, G.; Altintas, O.; Ekici, E.; Heijenk, G.; Jarupan, B.; Lin, K.; Weil, T. Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Commun. Surv. Tutor. 2011, 13, 584–616. [Google Scholar] [CrossRef]
- Zheng, K.; Zheng, Q.; Chatzimisios, P.; Xiang, W.; Zhou, Y. Heterogeneous vehicular networking: A survey on architecture, challenges, and solutions. IEEE Commun. Surv. Tutor. 2015, 17, 2377–2396. [Google Scholar] [CrossRef]
- Campolo, C.; Molinaro, A.; Scopigno, R. (Eds.) Vehicular ad hoc Networks. Standards, Solutions, and Research; Springer Nature: Berlin, Germany, 2015. [Google Scholar]
- Lu, N.; Cheng, N.; Zhang, N.; Shen, X.; Mark, J.W. Connected vehicles: Solutions and challenges. IEEE Internet Things J. 2014, 1, 289–299. [Google Scholar] [CrossRef]
- Lv, S.; Qin, Y.; Gan, W.; Xu, Z.; Shi, L. A systematic literature review of vehicle-to-everything in communication, computation and service scenarios. Int. J. Gen. Syst. 2024, 53, 1042–1072. [Google Scholar] [CrossRef]
- Ma, Z.; Xiao, M.; Xiao, Y.; Pang, Z.; Poor, H.V.; Vucetic, B. High-reliability and low-latency wireless communication for internet of things: Challenges, fundamentals, and enabling technologies. IEEE Internet Things J. 2019, 6, 7946–7970. [Google Scholar] [CrossRef]
- Ahmed, M.; Mirza, M.A.; Raza, S.; Ahmad, H.; Xu, F.; Khan, W.U.; Lin, Q.; Han, Z. Vehicular communication network enabled CAV data offloading: A review. IEEE Trans. Intell. Transp. Syst. 2023, 24, 7869–7897. [Google Scholar] [CrossRef]
- Gao, B.; Liu, J.; Zou, H.; Chen, J.; He, L.; Li, K. Vehicle-Road-Cloud Collaborative Perception Framework and Key Technologies: A Review. IEEE Trans. Intell. Transp. Syst. 2024, 25, 19295–19318. [Google Scholar] [CrossRef]
- Lim, W.Y.B.; Luong, N.C.; Hoang, D.T.; Jiao, Y.; Liang, Y.-C.; Yang, Q.; Niyato, D.; Miao, C. Federated learning in mobile edge networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2020, 22, 2031–2063. [Google Scholar] [CrossRef]
- Olariu, S. A survey of vehicular cloud research: Trends, applications and challenges. IEEE Trans. Intell. Transp. Syst. 2019, 21, 2648–2663. [Google Scholar] [CrossRef]
- Hussain, R.; Son, J.; Eun, H.; Kim, S.; Oh, H. Rethinking vehicular communications: Merging VANET with cloud computing. In Proceedings of the 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, Taipei, Taiwan, 3–6 December 2012; pp. 606–609. [Google Scholar]
- Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Future Gener. Comput. Syst. 2019, 97, 219–235. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Leung, V.C.; Niyato, D.; Yan, X.; Chen, X. Convergence of edge computing and deep learning: A comprehensive survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [Google Scholar] [CrossRef]
- Silva, L.; Magaia, N.; Sousa, B.; Kobusińska, A.; Casimiro, A.; Mavromoustakis, C.X.; Mastorakis, G.; De Albuquerque, V.H.C. Computing paradigms in emerging vehicular environments: A review. IEEE/CAA J. Autom. Sin. 2021, 8, 491–511. [Google Scholar] [CrossRef]
- Hou, X.; Li, Y.; Chen, M.; Wu, D.; Jin, D.; Chen, S. Vehicular fog computing: A viewpoint of vehicles as the infrastructures. IEEE Trans. Veh. Technol. 2016, 65, 3860–3873. [Google Scholar] [CrossRef]
- Fan, W.; Hua, M.; Zhang, Y.; Su, Y.; Li, X.; Tang, B.; Wu, F.; Liu, Y.a. Game-based task offloading and resource allocation for vehicular edge computing with edge-edge cooperation. IEEE Trans. Veh. Technol. 2023, 72, 7857–7870. [Google Scholar] [CrossRef]
- Yang, J.; Yang, K.; Dai, X.; Xiao, Z.; Jiang, H.; Zeng, F.; Li, B. Service-Aware Computation Offloading for Parallel Tasks in VEC Networks. IEEE Internet Things J. 2024. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Liu, X.; Jolfaei, A. Task offloading strategy based on reinforcement learning computing in edge computing architecture of internet of vehicles. IEEE Access 2020, 8, 173779–173789. [Google Scholar] [CrossRef]
- Xiao, Z.; Xiao, Y. Security and privacy in cloud computing. IEEE Commun. Surv. Tutor. 2012, 15, 843–859. [Google Scholar] [CrossRef]
- Alshathri, S.; Sayed, A.; Hemdan, E.E.-D. An Intelligent Attack Detection Framework for the Internet of Autonomous Vehicles with Imbalanced Car Hacking Data. World Electr. Veh. J. 2024, 15, 356. [Google Scholar] [CrossRef]
- Solaas, J.R.V.; Mariconti, E.; Tuptuk, N. Systematic Literature Review: Anomaly Detection in Connected and Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2024, 1, 1–16. [Google Scholar] [CrossRef]
- Manivannan, D.; Moni, S.S.; Zeadally, S. Secure authentication and privacy-preserving techniques in Vehicular Ad-hoc NETworks (VANETs). Veh. Commun. 2020, 25, 100247. [Google Scholar] [CrossRef]
- Lai, C.; Lu, R.; Zheng, D.; Shen, X. Security and privacy challenges in 5G-enabled vehicular networks. IEEE Netw. 2020, 34, 37–45. [Google Scholar] [CrossRef]
- He, W.; Yan, G.; Da Xu, L. Developing vehicular data cloud services in the IoT environment. IEEE Trans. Ind. Inf. 2014, 10, 1587–1595. [Google Scholar] [CrossRef]
- Fu, Y.; Li, C.; Yu, F.R.; Luan, T.H.; Zhang, Y. A survey of driving safety with sensing, vehicular communications, and artificial intelligence-based collision avoidance. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6142–6163. [Google Scholar] [CrossRef]
- Bendiab, G.; Hameurlaine, A.; Germanos, G.; Kolokotronis, N.; Shiaeles, S. Autonomous vehicles security: Challenges and solutions using blockchain and artificial intelligence. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3614–3637. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2. [Google Scholar]
- Caruana, R.; Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 161–168. [Google Scholar]
- Usama, M.; Qadir, J.; Raza, A.; Arif, H.; Yau, K.-L.A.; Elkhatib, Y.; Hussain, A.; Al-Fuqaha, A. Unsupervised machine learning for networking: Techniques, applications and research challenges. IEEE Access 2019, 7, 65579–65615. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–74. [Google Scholar] [CrossRef]
- Ergen, T.; Kozat, S.S. Unsupervised anomaly detection with LSTM neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3127–3141. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal Process. Mag. 2017, 34, 26–38. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, N.D.; Nahavandi, S. Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications. IEEE Trans. Cybern. 2020, 50, 3826–3839. [Google Scholar] [CrossRef] [PubMed]
- Naik, D.; Naik, N. The changing landscape of machine learning: A comparative analysis of centralized machine learning, distributed machine learning and federated machine learning. In Proceedings of the UK Workshop on Computational Intelligence, Birmingham, UK, 6–8 September 2023; pp. 18–28. [Google Scholar]
- Drainakis, G.; Katsaros, K.V.; Pantazopoulos, P.; Sourlas, V.; Amditis, A. Federated vs. centralized machine learning under privacy-elastic users: A comparative analysis. In Proceedings of the 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 24–27 November 2020; pp. 1–8. [Google Scholar]
- AbdulRahman, S.; Tout, H.; Ould-Slimane, H.; Mourad, A.; Talhi, C.; Guizani, M. A survey on federated learning: The journey from centralized to distributed on-site learning and beyond. IEEE Internet Things J. 2020, 8, 5476–5497. [Google Scholar] [CrossRef]
- Hu, S.; Chen, X.; Ni, W.; Hossain, E.; Wang, X. Distributed machine learning for wireless communication networks: Techniques, architectures, and applications. IEEE Commun. Surv. Tutor. 2021, 23, 1458–1493. [Google Scholar] [CrossRef]
- Li, L.; Fan, Y.; Tse, M.; Lin, K.-Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, Y.; Xing, C.; Chen, T.; Yang, Q. A secure federated transfer learning framework. IEEE Intell. Syst. 2020, 35, 70–82. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Brereton, P.; Kitchenham, B.A.; Budgen, D.; Turner, M.; Khalil, M. Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 2007, 80, 571–583. [Google Scholar] [CrossRef]
- Hu, P.; Dhelim, S.; Ning, H.; Qiu, T. Survey on fog computing: Architecture, key technologies, applications and open issues. J. Netw. Comput. Appl. 2017, 98, 27–42. [Google Scholar] [CrossRef]
- Whaiduzzaman, M.; Sookhak, M.; Gani, A.; Buyya, R. A survey on vehicular cloud computing. J. Netw. Comput. Appl. 2014, 40, 325–344. [Google Scholar] [CrossRef]
- Tang, F.; Mao, B.; Kato, N.; Gui, G. Comprehensive survey on machine learning in vehicular network: Technology, applications and challenges. IEEE Commun. Surv. Tutor. 2021, 23, 2027–2057. [Google Scholar] [CrossRef]
- Wu, W.; Li, R.; Xie, G.; An, J.; Bai, Y.; Zhou, J.; Li, K. A survey of intrusion detection for in-vehicle networks. IEEE Trans. Intell. Transp. Syst. 2019, 21, 919–933. [Google Scholar] [CrossRef]
- Lampe, B.; Meng, W. Intrusion detection in the automotive domain: A comprehensive review. IEEE Commun. Surv. Tutor. 2023, 5, 869–906. [Google Scholar] [CrossRef]
- Rajapaksha, S.; Kalutarage, H.; Al-Kadri, M.O.; Petrovski, A.; Madzudzo, G.; Cheah, M. Ai-based intrusion detection systems for in-vehicle networks: A survey. ACM Comput. Surv. 2023, 55, 1–40. [Google Scholar] [CrossRef]
- Lai, Q.; Xiong, C.; Chen, J.; Wang, W.; Chen, J.; Gadekallu, T.R.; Cai, M.; Hu, X. Improved Transformer-Based Privacy-Preserving Architecture for Intrusion Detection in Secure V2X Communications. IEEE Trans. Consum. Electron. 2024, 70, 1810–1820. [Google Scholar] [CrossRef]
- Bhavsar, M.H.; Bekele, Y.B.; Roy, K.; Kelly, J.C.; Limbrick, D. FL-IDS: Federated Learning-Based Intrusion Detection System Using Edge Devices for Transportation IoT. IEEE Access 2024, 12, 52215–52226. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Moustafa, N.; Hawash, H.; Razzak, I.; Sallam, K.M.; Elkomy, O.M. Federated Intrusion Detection in Blockchain-Based Smart Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2022, 23, 2523–2537. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, P.; Aljuhani, A.; Jolfaei, A.; Islam, A.N.; Mohammad, N. Secure Data Dissemination Scheme for Digital Twin Empowered Vehicular Networks in Open RAN. IEEE Trans. Veh. Technol. 2023, 73, 9234–9246. [Google Scholar] [CrossRef]
- Sandosh, S.; Doshi, S.; Joshi, A. Enhancing Security in Automobile Edge Computing through Federated Learning and Blockchain. In Proceedings of the iQ-CCHESS 2023–2023 IEEE International Conference on Quantum Technologies, Communications, Computing, Hardware and Embedded Systems Security, Kottayam, India, 15–16 September 2023. [Google Scholar]
- Liu, H.; Zhang, S.; Zhang, P.; Zhou, X.; Shao, X.; Pu, G.; Zhang, Y. Blockchain and Federated Learning for Collaborative Intrusion Detection in Vehicular Edge Computing. IEEE Trans. Veh. Technol. 2021, 70, 6073–6084. [Google Scholar] [CrossRef]
- Alsulami, A.A.; Al-Haija, Q.A.; Alturki, B.; Alqahtani, A.; Alsini, R. Security strategy for autonomous vehicle cyber-physical systems using transfer learning. J. Cloud Comput. 2023, 12, 181. [Google Scholar] [CrossRef]
- Gad, A.R.; Nashat, A.A.; Barkat, T.M. Intrusion detection system using machine learning for vehicular ad hoc networks based on ToN-IoT dataset. IEEE Access 2021, 9, 142206–142217. [Google Scholar] [CrossRef]
- Sousa, B.; Magaia, N.; Silva, S. An Intelligent Intrusion Detection System for 5G-Enabled Internet of Vehicles. Electronics 2023, 12, 1757. [Google Scholar] [CrossRef]
- Aloqaily, M.; Otoum, S.; Ridhawi, I.A.; Jararweh, Y. An intrusion detection system for connected vehicles in smart cities. Ad Hoc Netw. 2019, 90, 101842. [Google Scholar] [CrossRef]
- Mirzaee, P.H.; Shojafar, M.; Bagheri, H.; Chan, T.H.; Cruickshank, H.; Tafazolli, R. A Two-layer Collaborative Vehicle-Edge Intrusion Detection System for Vehicular Communications. In Proceedings of the IEEE Vehicular Technology Conference, Norman, OK, USA, 27–30 September 2021. [Google Scholar]
- Alladi, T.; Kohli, V.; Chamola, V.; Yu, F.R.; Guizani, M. Artificial Intelligence (AI)-Empowered Intrusion Detection Architecture for the Internet of Vehicles. IEEE Wirel. Commun. 2021, 28, 144–149. [Google Scholar] [CrossRef]
- Ogundoyin, S.O.; Kamil, I.A. An efficient authentication scheme with strong privacy preservation for fog-assisted vehicular ad hoc networks based on blockchain and neuro-fuzzy. Veh. Commun. 2021, 31, 100384. [Google Scholar] [CrossRef]
- Yang, J.; Hu, J.; Yu, T. Federated AI-Enabled In-Vehicle Network Intrusion Detection for Internet of Vehicles. Electronics 2022, 11, 3658. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, R.; Gupta, G.P.; Tripathi, R. BDEdge: Blockchain and Deep-Learning for Secure Edge-Envisioned Green CAVs. IEEE Trans. Green Commun. Netw. 2022, 6, 1330–1339. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, P.; Tripathi, R.; Gupta, G.P.; Kumar, N.; Hassan, M.M. A Privacy-Preserving-Based Secure Framework Using Blockchain-Enabled Deep-Learning in Cooperative Intelligent Transport System. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16492–16503. [Google Scholar] [CrossRef]
- Sedjelmaci, H. Attacks detection and decision framework based on generative adversarial network approach: Case of vehicular edge computing network. Trans. Emerg. Telecommun. Technol. 2022, 33, e4073. [Google Scholar] [CrossRef]
- Kasongo, S.M. A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework. Comput Commun 2023, 199, 113–125. [Google Scholar] [CrossRef]
- Yaqoob, S.; Hussain, A.; Subhan, F.; Pappalardo, G.; Awais, M. Deep Learning Based Anomaly Detection for Fog-Assisted IoVs Network. IEEE Access 2023, 11, 19024–19038. [Google Scholar] [CrossRef]
- Mondal, K.K.; Mahendia, D.; Das, D.; Kalra, S. Edge-Centric Security Framework for Electric Vehicle Connectivity: A Deep Learning Approach. In Proceedings of the 2023 28th Asia Pacific Conference on Communications, APCC 2023, Sydney, Australia, 19–22 November 2023; pp. 448–453. [Google Scholar]
- Sonker, S.K.; Raina, V.K.; Sagar, B.B.; Bansal, R.C. A Cyber Physical Security for Electrical Vehicles using Deep learning. In Proceedings of the 2024 International Conference on Automation and Computation, AUTOCOM 2024, Dehradun, India, 14–16 March 2024; pp. 519–523. [Google Scholar]
- Khalil, A.; Farman, H.; Nasralla, M.M.; Jan, B.; Ahmad, J. Artificial Intelligence-based intrusion detection system for V2V communication in vehicular adhoc networks. Ain Shams Eng. J. 2024, 15, 102616. [Google Scholar] [CrossRef]
- Qin, J.; Xun, Y.; Liu, J. CVMIDS: Cloud-Vehicle Collaborative Intrusion Detection System for Internet of Vehicles. IEEE Internet Things J. 2024, 11, 321–332. [Google Scholar] [CrossRef]
- Houda, Z.A.E.; Moudoud, H.; Brik, B.; Khoukhi, L. Blockchain-Enabled Federated Learning for Enhanced Collaborative Intrusion Detection in Vehicular Edge Computing. IEEE Trans. Intell. Transp. Syst. 2024, 25, 7661–7672. [Google Scholar] [CrossRef]
- Bergies, S.; Aljohani, T.M.; Su, S.-F.; Elsisi, M. An IoT-based deep-learning architecture to secure automated electric vehicles against cyberattacks and data loss. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 5717–5732. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, R.; Jolfaei, A.; Mohammad, N. An Automated Threat Intelligence Framework for Vehicle Road Cooperation Systems. IEEE Internet Things J. 2024, 11, 35964–35974. [Google Scholar] [CrossRef]
- Balaji, P.; Cengiz, K.; Babu, S.; Alqahtani, O.; Akleylek, S. Metaheuristic optimized complex-valued dilated recurrent neural network for attack detection in internet of vehicular communications. PeerJ Comput. Sci. 2024, 10, e2366. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; An, Y.; Zhou, H.; Luo, Q.; Lin, Y.; Zhang, Z. A Hybrid Machine Learning-Based Data-Centric Cybersecurity Detection in the 5G-Enabled IoT. Secur. Priv. 2024, 7, e472. [Google Scholar] [CrossRef]
- Hossain, S.; Senouci, S.-M.; Brik, B.; Boualouache, A. A privacy-preserving Self-Supervised Learning-based intrusion detection system for 5G-V2X networks. Ad Hoc Netw. 2025, 166, 103674. [Google Scholar] [CrossRef]
- Cui, J.; Xiao, J.T.; Zhong, H.; Zhang, J.; Wei, L.; Bolodurina, I.; He, D.B. LH-IDS: Lightweight Hybrid Intrusion Detection System Based on Differential Privacy in VANETs. IEEE Trans. Mob. Comput. 2024, 23, 12195–12210. [Google Scholar] [CrossRef]
- Boualouache, A.; Engel, T. Federated learning-based scheme for detecting passive mobile attackers in 5G vehicular edge computing. Ann. Telecommun. 2022, 77, 201–220. [Google Scholar] [CrossRef]
- Tham, C.K.; Yang, L.; Khanna, A.; Gera, B. Federated Learning for Anomaly Detection in Vehicular Networks. In Proceedings of the IEEE Vehicular Technology Conference, Hong Kong, China, 10–13 October 2023. [Google Scholar]
- Grover, H.; Alladi, T.; Chamola, V.; Singh, D.; Choo, K.K.R. Edge Computing and Deep Learning Enabled Secure Multitier Network for Internet of Vehicles. IEEE Internet Things J. 2021, 8, 14787–14796. [Google Scholar] [CrossRef]
- Gyawali, S.; Qian, Y.; Hu, R. Deep reinforcement learning based dynamic reputation policy in 5g based vehicular communication networks. IEEE Trans. Veh. Technol. 2021, 70, 6136–6146. [Google Scholar] [CrossRef]
- Gawas, M.; Patil, H.; Govekar, S.S. An integrative approach for secure data sharing in vehicular edge computing using Blockchain. Peer-Peer Netw. Appl. 2021, 14, 2840–2857. [Google Scholar] [CrossRef]
- Gupta, D.; Moni, S.S.; Tosun, A.S. Integration of Digital Twin and Federated Learning for Securing Vehicular Internet of Things. In Proceedings of the 2023 Research in Adaptive and Convergent Systems RACS 2023, Gdansk, Poland, 6–10 August 2023. [Google Scholar]
- Zhang, Y.; Lin, L.; Huang, Y.; Wang, X.; Hsieh, S.-Y.; Gadekallu, T.; Piran, M.J. A Cooperative Vehicle-Road System for Anomaly Detection on Vehicle Tracks With Augmented Intelligence of Things. IEEE Internet Things J. 2024, 11, 35975–35988. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Q.; Lee, C.-W.; Zhang, Z. A Vehicle Abnormal Behavior Detection Model in Single Intelligent Vehicle Scenarios. J. Internet Technol. 2024, 25, 771–780. [Google Scholar] [CrossRef]
- Lin, C.; Han, G.; Qi, X.; Guizani, M.; Shu, L. A distributed mobile fog computing scheme for mobile delay-sensitive applications in SDN-enabled vehicular networks. IEEE Trans. Veh. Technol. 2020, 69, 5481–5493. [Google Scholar] [CrossRef]
- Häckel, T.; Meyer, P.; Korf, F.; Schmidt, T.C. Secure time-sensitive software-defined networking in vehicles. IEEE Trans. Veh. Technol. 2022, 72, 35–51. [Google Scholar] [CrossRef]
- Lang, P.; Tian, D.; Duan, X.; Zhou, J. Mobility-Aware Computation Offloading and Blockchain-based Handover in Vehicular Edge Computing Networks. In Proceedings of the IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, Macau, China, 8–12 October 2022; pp. 176–182. [Google Scholar]
- Ju, Y.; Chen, Y.; Cao, Z.; Wang, H.; Liu, L.; Pei, Q.; Kumar, N. Learning Based and Physical-layer Assisted Secure Computation Offloading in Vehicular Spectrum Sharing Networks. In Proceedings of the INFOCOM WKSHPS 2022–IEEE Conference on Computer Communications Workshops, Virtual Conference, 2–5 May 2022. [Google Scholar]
- Huang, Q.; Xu, X.; Chen, J. Learning-aided fine grained offloading for real-time applications in edge-cloud computing. Wirel. Netw. 2021, 30, 3805–3820. [Google Scholar] [CrossRef]
- Xu, S.; Guo, C.; Hu, R.Q.; Qian, Y. Blockchain-Inspired Secure Computation Offloading in a Vehicular Cloud Network. IEEE Internet Things J. 2022, 9, 14723–14740. [Google Scholar] [CrossRef]
- Zhang, G.; Luo, Z.; Yang, T. Distributed Computation Offloading Based on Deep Reinforcement Learning and Blockchain in Internet of Vehicles. In Proceedings of the 2023 IEEE/CIC International Conference on Communications in China, ICCC 2023, Dalian, China, 10–12 August 2023. [Google Scholar]
- Moghaddasi, K.; Rajabi, S.; Gharehchopogh, F.S. Multi-Objective Secure Task Offloading Strategy for Blockchain-Enabled IoV-MEC Systems: A Double Deep Q-Network Approach. IEEE Access 2024, 12, 3437–3463. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, Y.X.; Leng, S.P.; He, Y.J.; Maharjan, S.; Zhang, Y. Deep Learning Empowered Task Offloading for Mobile Edge Computing in Urban Informatics. IEEE Internet Things J. 2019, 6, 7635–7647. [Google Scholar] [CrossRef]
- Ju, Y.; Cao, Z.W.; Chen, Y.C.; Liu, L.; Pei, Q.Q.; Mumtaz, S.; Dong, M.X.; Guizani, M. NOMA-Assisted Secure Offloading for Vehicular Edge Computing Networks With Asynchronous Deep Reinforcement Learning. IEEE Trans. Intell. Transp. Syst. 2023, 25, 2627–2640. [Google Scholar] [CrossRef]
- Ju, Y.; Cao, Z.; Chen, Y.; Liu, L.; Pei, Q.; Mumtaz, S. Energy Efficient Secure Offloading in NOMA-aided Vehicular Networks Using A3C Learning. In Proceedings of the IEEE International Conference on Communications, Rome, Italy, 28 May–1 June 2023; pp. 6114–6119. [Google Scholar]
- Ju, Y.; Chen, Y.; Cao, Z.; Liu, L.; Pei, Q.; Xiao, M.; Ota, K.; Dong, M.; Leung, V.C.M. Joint Secure Offloading and Resource Allocation for Vehicular Edge Computing Network: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5555–5569. [Google Scholar] [CrossRef]
- Samy, A.; Elgendy, I.A.; Yu, H.; Zhang, W.; Zhang, H. Secure Task Offloading in Blockchain-Enabled Mobile Edge Computing With Deep Reinforcement Learning. IEEE Trans. Netw. Serv. Manage. 2022, 19, 4872–4887. [Google Scholar] [CrossRef]
- Lang, P.; Tian, D.; Duan, X.; Zhou, J.; Sheng, Z.; Leung, V.C.M. Blockchain-Based Cooperative Computation Offloading and Secure Handover in Vehicular Edge Computing Networks. IEEE Trans. Intell. Veh. 2023, 8, 3839–3853. [Google Scholar] [CrossRef]
- Mourad, A.; Tout, H.; Wahab, O.A.; Otrok, H.; Dbouk, T. Ad Hoc Vehicular Fog Enabling Cooperative Low-Latency Intrusion Detection. IEEE Internet Things J. 2021, 8, 829–843. [Google Scholar] [CrossRef]
- Liao, H.; Mu, Y.; Zhou, Z.; Sun, M.; Wang, Z.; Pan, C. Blockchain and Learning-Based Secure and Intelligent Task Offloading for Vehicular Fog Computing. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4051–4063. [Google Scholar] [CrossRef]
- Zheng, X.; Li, M.; Chen, Y.; Guo, J.; Alam, M.; Hu, W. Blockchain-Based Secure Computation Offloading in Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4073–4087. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Liu, X. A High Reliable Computing Offloading Strategy Using Deep Reinforcement Learning for IoVs in Edge Computing. J. Grid Comput. 2021, 19, 15. [Google Scholar] [CrossRef]
- Sun, H.; Ma, D.; She, H.; Guo, Y. EC-DDPG: DDPG-Based Task Offloading Framework of Internet of Vehicle for Mission Critical Applications. In Proceedings of the 2023 IEEE International Conference on Communications Workshops: Sustainable Communications for Renaissance, ICC Workshops 2023, Rome, Italy, 28 May–1 June 2023; pp. 984–989. [Google Scholar]
- Shabir, B.; Rahman, A.U.; Malik, A.W.; Buyya, R.; Khan, M.A. A federated multi-agent deep reinforcement learning for vehicular fog computing. J. Supercomput. 2023, 79, 6141–6167. [Google Scholar] [CrossRef]
- Liang, P.; Chen, W.; Fan, H.; Zhu, H. Leveraging Time-Critical Computation and AI Techniques for Task Offloading in Internet of Vehicles Network Applications. Electronics 2024, 13, 3334. [Google Scholar] [CrossRef]
- Kaci, A.; Rachedi, A. Mc-track: A cloud based data oriented vehicular tracking system with adaptive security. In Proceedings of the IEEE Global Communications Conference, GLOBECOM, Waikoloa, HI, USA, 9–13 December 2019. [Google Scholar]
- Lidkea, V.M.; Muresan, R.; Al-Dweik, A. Convolutional neural network framework for encrypted image classification in cloud-based ITS. IEEE Open J. Intell. Transp. Syst. 2020, 1, 35–50. [Google Scholar] [CrossRef]
- Vinita, L.J.; Vetriselvi, V. SEAFL: Transforming Federated Learning for Enhanced Privacy in 6G-Enabled Vehicles. In Proceedings of the 2023 Annual International Conference on Emerging Research Areas: International Conference on Intelligent Systems, AICERA/ICIS 2023, Kanjirapally, India, 16–18 November 2023. [Google Scholar]
- Teimoori, Z.; Yassine, A.; Hossain, M.S. Smart Vehicles Recommendation System for Artificial Intelligence-Enabled Communication. IEEE Trans Consum Electron 2024, 70, 3914–3925. [Google Scholar] [CrossRef]
- Patel, V.A.; Bhattacharya, P.; Tanwar, S.; Jadav, N.K.; Gupta, R. BFLEdge: Blockchain based federated edge learning scheme in V2X underlying 6G communications. In Proceedings of the Confluence 2022-12th International Conference on Cloud Computing, Data Science and Engineering, Virtual Conference, 27–28 January 2022; pp. 146–152. [Google Scholar]
- Dai, Y.; Xu, D.; Zhang, K.; Maharjan, S.; Zhang, Y. Deep Reinforcement Learning and Permissioned Blockchain for Content Caching in Vehicular Edge Computing and Networks. IEEE Trans. Veh. Technol. 2020, 69, 4312–4324. [Google Scholar] [CrossRef]
- He, Y.; Huang, K.; Zhang, G.; Li, J.; Chen, J.; Leung, V.C.M. A Blockchain-Enabled Federated Learning System with Edge Computing for Vehicular Networks. In Proceedings of the 2021 IEEE Globecom Workshops, GC Wkshps 2021-Proceedings 2021, Madrid, Spain, 7–11 December 2021. [Google Scholar]
- Chen, J.; Li, K.; Yu, P.S. Privacy-Preserving Deep Learning Model for Decentralized VANETs Using Fully Homomorphic Encryption and Blockchain. IEEE Trans. Intell. Transp. Syst. 2022, 23, 11633–11642. [Google Scholar] [CrossRef]
- Olowononi, F.O.; Rawat, D.B.; Liu, C. Federated learning with differential privacy for resilient vehicular cyber physical systems. In Proceedings of the 2021 IEEE 18th Annual Consumer Communications and Networking Conference, CCNC 2021, Las Vegas, NV, USA, 9–12 January 2021. [Google Scholar]
- Devarajan, G.G.; Thirunnavukkarasan, M.; Amanullah, S.I.; Vignesh, T.; Sivaraman, A. An integrated security approach for vehicular networks in smart cities. Trans. Emerg. Telecommun. Technol. 2023, 34, e4757. [Google Scholar] [CrossRef]
- Fan, N.; Liu, J.; Zhao, S.; Dai, Y.; Fan, W. TLPP: Deep Learning Based Two-layer Privacy Preserving Mechanism for Protecting Vehicle Trajectory Data. IEEE Internet Things J. 2024, 11, 36084–36098. [Google Scholar] [CrossRef]
- Xiao, H.; Qiu, C.; Yang, Q.; Huang, H.; Wang, J.; Su, C. Deep reinforcement learning for optimal resource allocation in blockchain-based IoV secure systems. In Proceedings of the 2020 16th International Conference on Mobility, Sensing and Networking, MSN 2020, Tokyo, Japan, 17–19 December 2020; pp. 137–144. [Google Scholar]
- Bai, T.; Fu, S.; Yang, Q. Privacy-Preserving Object Detection with Secure Convolutional Neural Networks for Vehicular Edge Computing. Future Internet 2022, 14, 316. [Google Scholar] [CrossRef]
- Yang, W.; Guan, Z.; Wu, L.; He, Z. A Secure Neural Network Inference Framework for Intelligent Connected Vehicles. IEEE Netw. 2024, 38, 120–127. [Google Scholar] [CrossRef]
- Dai, P.; Huang, Y.; Wu, X.; Li, K.; Xing, H.; Liu, K. Freshness and Security-Aware Cache Update in Blockchain-Based Vehicular Edge Networks. IEEE Trans. Consum. Electron. 2024, 70, 108–121. [Google Scholar] [CrossRef]
- Shang, Y.; Li, Z.; Li, S.; Shao, Z.; Jian, L. An Information Security Solution for Vehicle-to-grid Scheduling by Distributed Edge Computing and Federated Deep Learning. IEEE Trans. Ind. Appl. 2024, 60, 4381–4395. [Google Scholar] [CrossRef]
- Li, C.L.; Zhang, Y.; Wu, J.Y.; Luo, Y.L.; Yu, S. Smart Contract-Based Decentralized Data Sharing and Content Delivery for Intelligent Connected Vehicles in Edge Computing. IEEE Trans. Intell. Transp. Syst. 2024, 25, 14535–14545. [Google Scholar] [CrossRef]
- Fardad, M.; Muntean, G.; Tal, I. A Blockchain-Enabled Vehicular Edge Computing Framework for Secure Performance-oriented V2X Service Delivery. IEEE Trans. Veh. Technol. 2024, 73, 13853–13867. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, D.; Ren, P.; Yu, K.; Guizani, M. DFLNet: Deep Federated Learning Network With Privacy Preserving for Vehicular LoRa Nodes Fingerprinting. IEEE Trans. Veh. Technol. 2024, 73, 2901–2905. [Google Scholar] [CrossRef]
- Tang, M.; Huang, Z.; Deng, G. FEDL: Confidential Deep Learning for Autonomous Driving in VANETs Based on Functional Encryption. Trans. Intell. Transport. Sys. 2024, 25, 21074–21085. [Google Scholar] [CrossRef]
- Kalidoss, L.; Thouti, S.; Arunachalam, R.; Ramamurthy, P. An efficient model of enhanced optimization and dilated-GRU based secured multi-access edge computing with blockchain for VANET sector. Expert Syst. Appl. 2025, 260, 125275. [Google Scholar] [CrossRef]
- Chen, T.; Bai, X.; Zhao, J.; Wang, H.; Du, B.; Li, L.; Zhang, S. ShieldTSE: A Privacy-Enhanced Split Federated Learning Framework for Traffic State Estimation in IoV. IEEE Internet Things J. 2024, 11, 37324–37339. [Google Scholar] [CrossRef]
- Ji, H.; Wang, L.; Qin, H.; Wang, Y.; Zhang, J.; Chen, B. In-Vehicle Network Injection Attacks Detection Based on Feature Selection and Classification. Automot. Innov. 2024, 7, 138–149. [Google Scholar] [CrossRef]
- Su, Y.; LiWang, M.; Huang, L.; Du, X.; Guizani, N. Green communications for future vehicular networks: Data compression approaches, opportunities, and challenges. IEEE Netw. 2020, 34, 184–190. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Lin, Q.; Li, J. Meta-hierarchical reinforcement learning (MHRL)-based dynamic resource allocation for dynamic vehicular networks. IEEE Trans. Veh. Technol. 2022, 71, 3495–3506. [Google Scholar] [CrossRef]
- Marwah, G.P.K.; Jain, A. A hybrid optimization with ensemble learning to ensure VANET network stability based on performance analysis. Sci. Rep. 2022, 12, 10287. [Google Scholar] [CrossRef]
- Ahmad, J.; Zia, M.U.; Naqvi, I.H.; Chattha, J.N.; Butt, F.A.; Huang, T.; Xiang, W. Machine learning and blockchain technologies for cybersecurity in connected vehicles. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2024, 14, e1515. [Google Scholar] [CrossRef]
- Sutradhar, K. A quantum cryptographic protocol for secure vehicular communication. IEEE Trans. Intell. Transp. Syst. 2023, 25, 3513–3522. [Google Scholar] [CrossRef]
- Salek, M.S.; Khan, S.M.; Rahman, M.; Deng, H.-W.; Islam, M.; Khan, Z.; Chowdhury, M.; Shue, M. A review on cybersecurity of cloud computing for supporting connected vehicle applications. IEEE Internet Things J. 2022, 9, 8250–8268. [Google Scholar] [CrossRef]
- Yigit, Y.; Maglaras, L.; Buchanan, W.J.; Canberk, B.; Shin, H.; Duong, T.Q. AI-Enhanced Digital Twin Framework for Cyber-Resilient 6G Internet-of-Vehicles Networks. IEEE Internet Things J. 2024, 11, 36168–36181. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, Y.; Xu, J.; Zhou, J.; Chen, X.; Xiao, F. Cybersecurity protection on in-vehicle networks for distributed automotive cyber-physical systems: State-of-the-art and future challenges. Softw. Pract. Exp. 2021, 51, 2108–2127. [Google Scholar] [CrossRef]
- Xie, Y.; Gardi, A.; Sabatini, R. Cybersecurity trends in low-altitude air traffic management. In Proceedings of the 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), Portsmouth, VA, USA, 18–22 September 2022; pp. 1–9. [Google Scholar]
VCC | VEC | VFC | |
---|---|---|---|
Computer capabilities | Strong | Weak | Moderate |
Storage capabilities | Strong | Weak | Moderate |
Energy consumption | High | Low | Low |
Mobility support | Weak | Strong | Strong |
Geographical distribution | Centralized | Decentralized | Decentralized |
Cloud serve distance | Far | Near | Near |
Edge node | None | RSU | Mobility |
Bandwidth cost | High | Low | Low |
Latency | High | Low | Low |
Theme | Challenges |
---|---|
Task offloading security | High latency |
Limited computational resource | |
High energy consumption | |
Resistance to cyber-attack | |
Intrusion detection system | Cyber-attack detection performance |
Ability to detect unknown risks | |
Limited system resource | |
Anomaly vehicle detection | Vehicle credit assessment |
Anomaly vehicle detection performance |
Theme | Challenges |
---|---|
Data privacy | Data encryption |
Data authorization | |
User authentication | |
Data transmission | |
Model privacy | Model parameter encryption |
Model performance based on transformed data |
Sources | Computing Paradigms | ML Training Strategy | ML Method | Blockchain Enabled | Performance Metric | Database | Accuracy Rate |
---|---|---|---|---|---|---|---|
[78] | VCC | Centralized training | DT | No | Accuracy rate; detection rate; false positive rate; false negative rate; service retrieval delay | NSL-KDD | 99.43% |
[74] | VEC | Federated training | CNN | Yes | Accuracy rate; time cost; precision rate; recall rate | KDDCup99 | 95.00% |
[79] | VEC | Centralized training | RF | No | Accuracy rate; precision; recall; F1-score; false negative rate | CICIDS-2017 | 99.94% |
[80] | VFC | Centralized training | CNN | No | Accuracy rate; precision; recall; F1-score | VeReMi Extension | 99.65% |
[81] | VFC | Centralized training | Neuro-fuzzy algorithm (FNN) | Yes | Accuracy rate; precision; recall; F1-score | NS-3 | 91.50% |
[82] | VCC | Federated training | ConvLSTM | No | Accuracy rate; precision; recall; F1-score | CAN messages | 94.58% |
[83] | VEC | Centralized training | SAE-ABIGRU | Yes | Accuracy rate; precision; recall; F1-score; false alarm rate | ToN-IoT | 99.09% |
CICIDS2017 | 98.49% | ||||||
[71] | VEC | Federated training | Transformer | Yes | Accuracy rate; F1-score | ToN-IoT | 94.85% |
Car-Hacking | 97.82% | ||||||
[84] | VCC | Centralized training | A-RNN | Yes | Accuracy rate; Precision; detection rate; F1-score; false alarm rate | ToN-IoT | 99.77% |
CICIDS-2017 | 99.35% | ||||||
[85] | VEC | Centralized training | GAN | No | Accuracy rate; network latency | Independent | 90.00% |
[86] | VCC | Centralized training | LSTM | No | Accuracy rate; precision; recall; F1-score | NSL-KDD | 99.47% |
UNSW-NB15 | 78.88% | ||||||
[77] | VCC | Centralized training | DT | No | Accuracy rate; precision; recall; F1-score | NS-3 | 97.00% |
[87] | VFC | Centralized training | CAaDet | No | precision; recall; F1-score | NSL-KDD | Not available |
[72] | VCC | Centralized training | ABiLSTM | Yes | Accuracy rate; Precision; detection rate; F1-score; false alarm rate | ToN-IoT | 98.97% |
CICIDS-2017 | 98.80% | ||||||
[73] | VEC | Federated training | Extra Trees Classification | Yes | Accuracy rate; precision; recall; F1-score; time to train; time to predict; total time | UNSW-NB15 | 93.07% |
[75] | VCC | Transfer learning | CNN | No | Accuracy rate; precision; recall; F1-score | AV-CPS | 99.47% |
[88] | VEC | Centralized training | CNN | No | Accuracy rate; precision; recall; F1-score | Car-Hacking | 100.00% |
[89] | VFC | Centralized training | CNN-LSTM | No | Accuracy rate; precision; recall | CICIDS-2017 | 99.86% |
[90] | VEC | Centralized training | BiGAN | No | Accuracy rate; precision; recall; F1-score | NSL-KDD | 92.15% |
[70] | VEC | Federated training | PCC-CNN | No | Accuracy rate; loss; time | NSL-KDD | 97.08% |
Car-Hacking | 99.92% | ||||||
[91] | VCC | Centralized training | XGBoost multiclassification | No | Accuracy rate; precision; recall; false positive rate; false negative rate | Independent | 96.30% |
[69] | VEC | Federated training | Feature Select Transformer | No | Accuracy rate; precision; recall; F1-score | UNSW-NB15 | 99.79% |
CICIDS2018 | 97.10% | ||||||
[92] | VFC | Federated training | CNN | Yes | Accuracy rate; precision; recall; F1-score | UNSW-NB15 | 99.00% |
[93] | VCC | Centralized training | CNN | No | Accuracy rate; precision; recall; F1-score | Independent | 98.88% |
[94] | VEC | Centralized training | ESA-DBGRU | No | Accuracy rate; precision; recall; F1-score | Car-Hacking | 99.97% |
ToN-IoT | 99.2% | ||||||
CICIDS-2017 | 99.02% | ||||||
[95] | VEC | Centralized training | CV-DRNN | No | Accuracy; specificity; positive likelihood ratio; bookmaker informedness; Fowlkes–Mallows index | CICIDS-2017 | Not available |
Car-Hacking | Not available | ||||||
KDDCup99 | Not available | ||||||
UNSW-NB15 | Not available | ||||||
[96] | VCC | Centralized training | GA-EBT | No | Accuracy rate; precision; recall; F1-score | Car-Hacking | 99.99% |
[97] | VEC | Federeted training | CNN | No | Accuracy | CICIDS-2017 | 97.07% |
[98] | VEC | Centrialized training | One-Class Support Vector Machine (OCSVM) | No | Accuracy rate; precision; recall; F1-score | VeReMi | 98% |
UNSW-NB15 | 98% |
Sources | Computing Paradigms | ML Training Strategy | ML Method | Strength | Weakness |
---|---|---|---|---|---|
[101] | VEC | Centralized training | LSTM | High efficiency in learning spatio-temporal parameters | More parameters need to be input |
[102] | VCC | Centralized training | Q-Learning | High average number of true feedback; low communication costs; low computational costs | Need to add more research cases of cyber-attacks |
[103] | VEC | Centralized training | PSO | High detection rate; Low classification error | Probability of misclassification needs to be improved |
[99] | VEC | Federated training | Random Forest | Able to detect passive mobile attackers with high speed and accuracy | A large number of features and FL clients are required to maintain the accuracy of the model. |
[99] | VFC | Centralized training | Sparse auto-encoders | High throughput; low jitter | High computation cost |
[104] | VCC | Federated training | FedTimeDis LSTM | Improves the accuracy and robustness of the models, both within the same region and across different regions | Model performance needs further enhancement |
[100] | VEC | Federated training | CNN-LSTM | Effective for different data distributions and under different deep learning models | Need to improve robustness and accuracy |
[105] | VEC | Centralized training | Graph Neural Networks (GNN) | Comprehensive detection; scalability and resource optimization | Dependency on high-quality sensor data; challenges with real-time applications |
[106] | VCC | Centralized training | GAN | Lightweight model for deployment; balanced accuracy and efficiency | Performance degradation with high pruning ratios |
Sources | Computing Paradigms | ML Training Strategy | ML Method Used | Optimization Target | Strength | Weakness | Blockchain Enabled |
---|---|---|---|---|---|---|---|
[115] | VEC | Centralized training | Q-Learning | Utility of system | High learning efficiency; avoid local optimum; reliable transmission | Unable to sustainably improve offloading utility; no reinforcement learning methods benchmark | No |
[34] | VEC | Centralized training | DDQN | Customer cost | Fast convergence; high offloading rate; multiple sub-models | Inadequate experimental scenarios; reliability not considered | No |
[121] | VFC | Centralized training | GA | Offloading survivability; computation execution time; energy consumption | Extensive experimental scenarios | Unstable vehicular fog federation formation | No |
[122] | VFC | Centralized training | MAB | Average task offloading delay | Enable smart contract; good convergence performance; high robust | Insufficient experimental scenarios | Yes |
[123] | VEC | Centralized training | Q-Learning | Long-term system of delays; energy consumption; flow costs | Low energy consumption; low latency | Need to design lightweight blockchain; sensitive to bandwidth allocation | Yes |
[124] | VEC | Federated training | Q-Learning | Time delay; computing cost | Fast convergence; reduce system cost; low latency | Need to be tested in real road environment | No |
[111] | VEC | Centralized training | Q-Learning | Application response time; energy consumption | Highly applicability; based on real data | Unstable training performance | No |
[109] | VEC | Centralized training | AC | Task latency | Low latency; consider multi-vehicle coordination | Only suitable for vehicle to rsu | Yes |
[112] | VEC | Centralized training | AC | Reputation; resource requirements; resource availability | Enable smart contract; consider reputation; high scalability | Need to be tested in real road environment; not consider malicious resource requestor | Yes |
[119] | VEC | Distributed training | Distributed Deep Q-Learning (DDQL) | Time consumption; energy consumption; pricing cost | Consider scenarios of malicious user attacks | Need to consider more general situation | Yes |
[110] | VEC | Centralized training | DDQN | System processing delay | Enable pls; improved resource utilization | Insufficient benchmark; insufficient scenario | No |
[125] | VEC | Centralized training | DDPG | Delay; energy consumption | Improve training speed; reduce time latency; reduce energy consumption | Low adaptability | No |
[113] | VEC | Centralized training | SAC | Processing time | Avoid local optimum; low total computing time | Not suitable for large number of tasks | Yes |
[117] | VEC | Centralized training | AC | Energy consumption | Enable PLS; moderate computation latency | Small resource block increases energy consumption | No |
[116] | VEC | Centralized training | AC | Energy consumption | Enable PLS; moderate computation latency | Only consider a single-cell base station scenario | No |
[118] | VEC | Centralized training | DDQN | System processing delay | Enable PLS; use spectrum sharing architecture; improve resource utility | Some V2V link quality is sacrificed to improve system latency performance | No |
[120] | VEC | Distributed training | AC | Latency | Consider multiple calculation methods | Low task complete rate | Yes |
[126] | VFC | Federated training | AC | Expected discounted future utility | Fast convergence | Low network utilization; vulnerable to gradient spoofing attacks | No |
[114] | VEC | Centralized training | DDQN | Energy efficiency; data offloading ratio; block generation time; transaction validation time | Consider the dynamic and heterogeneous character of vehicular networks | Not suited to handle larger, more complex networks | Yes |
[127] | VFC | Federated training | Deep Q-learning Network | Energy consumption; time consumption; survivability | Optimized resource utilization; scalability | Communication latency becomes high with a high speed | No |
Sources | Computing Paradigms | ML Method | Application | Strength | Weakness | Blockchain Enabled |
---|---|---|---|---|---|---|
[133] | VEC | DDPG | Design blockchain content caching scheme | High permanence and security | Communication distance and block size affect utility | Yes |
[128] | VCC | KNN | Selective encryption and adaptive security | High efficiency of the encryption process; low computational resources | The accuracy of the model needs to be improved | No |
[129] | VCC | CNN | Classify encrypted images | Less training data; low computation time | The accuracy of the model needs to be improved | No |
[133] | VEC | DDPG | Design blockchain content caching scheme | High permanence and security | Communication distance and block size affect utility | Yes |
[139] | VEC | PPO-A3C | Resource optimization for blockchain | Improve blockchain throughput and resource efficiency; against multiple types of attacks | Higher demand for computing resources | Yes |
[136] | VEC | CNN | Improve model privacy | High resilience to adversarial attacks | Not consider computational complexity and delays | Yes |
[134] | VEC | CNN | Improve model privacy | High scalability; high robust; resistant to malicious attacks | Network communication needs to be further enhanced; faster filtering of malicious upload models is needed | Yes |
[140] | VEC | CNN | Improve model privacy | Enable PLS; high accuracy | Execution speed and computational resources need to be further enhanced | No |
[135] | VEC | Q-Learning | Improve model privacy | Low channel loss; high block mining rate; high edge latency; High FL-learning rate | Need to further improve algorithm performance and communication efficiency | Yes |
[132] | VEC | CNN | Improve model privacy | Combining federated learning with LDP to enhance model privacy and accuracy | Need to enhance effectiveness, multifunctionality and adaptability | No |
[137] | VFC | GRU | Improve model privacy | Combining federated learning with LDP to enhance model privacy and accuracy; considered simulation scenarios for cyber attacks | The computational and communication costs of the model need to be further increased | Yes |
[141] | VEC | CNN | Improve model privacy | Encrypts data using multi-key homomorphic encryption (MKHE) and optimizes computational and communication costs | Enhancements are needed for inference in ICVs through zero-knowledge proofs; encrypted data increases the program runtime. | No |
[142] | VEC | DQN-BPO | Blockchain parameter optimization | Balancing transaction throughput and energy consumption | Need to improve model robustness and introduce a reputation system to prevent potential attacks | Yes |
[143] | VEC | ANN | Improve model privacy | High training accuracy; low communication burden; high computing performance | Need to balance training performance with training time | Yes |
[144] | VCC | QPSO | Blockchain parameter optimization | Low average access delay; low backhaul load | Vehicle movement will impact on data acquisition efficiency | Yes |
[145] | VEC | Double-dueling DQN | Improve model privacy | Reliable service delivery; low energy consumption | High latency; security needs to be enhanced | Yes |
[146] | VEC | CNN | Capturing RFF Features | Fast convergence; high recognition accuracy; smaller training samples required | Huge computational resources and stable communication are needed | No |
[147] | VEC | DNN | Improve model privacy | Decentralized framework; efficient communication; security against attacks | Scalability challenges; limited real-world testing | No |
[148] | VEC | AD-GRU | Improve model privacy | Resilience to attacks; improved scalability | High initial costs; computational complexity | Yes |
[138] | VCC | GAN-LSTM | Improve model privacy | Improved model convergence; personalized privacy | Loss of fine-grained data; potential overhead in privacy budget allocation | No |
[149] | VEC | VED-PPFE | Improve model privacy | Effective against MI attacks; good privacy-preserving ability | Dependency on stable infrastructure; slight utility degradation | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Sun, R.; Rathore, R.S.; Baig, I. Enhancing Cybersecurity and Privacy Protection for Cloud Computing-Assisted Vehicular Network of Autonomous Electric Vehicles: Applications of Machine Learning. World Electr. Veh. J. 2025, 16, 14. https://doi.org/10.3390/wevj16010014
Yang T, Sun R, Rathore RS, Baig I. Enhancing Cybersecurity and Privacy Protection for Cloud Computing-Assisted Vehicular Network of Autonomous Electric Vehicles: Applications of Machine Learning. World Electric Vehicle Journal. 2025; 16(1):14. https://doi.org/10.3390/wevj16010014
Chicago/Turabian StyleYang, Tiansheng, Ruikai Sun, Rajkumar Singh Rathore, and Imran Baig. 2025. "Enhancing Cybersecurity and Privacy Protection for Cloud Computing-Assisted Vehicular Network of Autonomous Electric Vehicles: Applications of Machine Learning" World Electric Vehicle Journal 16, no. 1: 14. https://doi.org/10.3390/wevj16010014
APA StyleYang, T., Sun, R., Rathore, R. S., & Baig, I. (2025). Enhancing Cybersecurity and Privacy Protection for Cloud Computing-Assisted Vehicular Network of Autonomous Electric Vehicles: Applications of Machine Learning. World Electric Vehicle Journal, 16(1), 14. https://doi.org/10.3390/wevj16010014