Characterization of Benitaka Grape Pomace (Vitis vinifera L.): An Analysis of Its Properties for Future Biorefinery Applications
<p>Benitaka’s grape pomace visual appearance.</p> "> Figure 2
<p>Thermal characterization of Benitaka’s grape pomace: (<b>a</b>) TGA and (<b>b</b>) DSC.</p> "> Figure 3
<p>SEM images of Benitaka’s grape pomace: (<b>a</b>) 1000× magnification and (<b>b</b>) 10,000× magnification.</p> "> Figure 4
<p>Infrared spectrum of Benitaka’s grape pomace.</p> "> Figure 5
<p>Benitaka’s grape pomace surface characterization: (<b>a</b>) N<sub>2</sub> isotherm and (<b>b</b>) pore diameter distribution.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Specimens
2.2. Characterization of Raw Materials
2.2.1. Physical and Chemical Characteristics
2.2.2. Determination of Bioactive Compounds
2.2.3. Identification of Anthocyanins by UPLC-PDA-MS/MS
2.2.4. Thermal Properties
2.2.5. Morphometric Properties, Structural Attributes, and Surface Characteristics
2.3. Statistical Analysis
3. Results and Discussion
3.1. Physical Parameters
3.2. Determination of Chemical Parameters
3.3. Determination of Bioactive Compounds
3.4. Thermal Analysis
3.5. Morphological Analysis
3.6. Structural Analysis
3.7. Superficial Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilyas, T.; Chowdhary, P.; Chaurasia, D.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Chaturvedi, Sustainable green processing of grape pomace for the production of value-added products: An overview. Environ. Technol. Innov. 2021, 23, 101592. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Rani, J.; Indrajeet; Rautela, A.; Kumar, S. Biovalorization of winery industry waste to produce value-added products. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels; Elsevier: Amsterdam, The Netherlands, 2020; pp. 63–85. [Google Scholar] [CrossRef]
- Sganzerla, W.G.; Viganó, J.; Castro, L.E.N.; Maciel-Silva, F.W.; Rostagno, M.A.; Mussatto, S.I.; Forster-Carneiro, T. Recovery of sugars and amino acids from brewers’ spent grains using subcritical water hydrolysis in a single and two sequential semi-continuous flow-through reactors. Food Res. Int. 2022, 157, 111470. [Google Scholar] [CrossRef]
- Barroso, T.L.C.T.; Castro, L.E.N.; Barbero, G.F.; Palma, M.; Carrera, C.; Rostagno, M.A.; Forster-Carneiro, T. Optimization of a Microwave-Assisted Extraction Method for the Recovery of the Anthocyanins from Jabuticaba By-Products. Agronomy 2023, 13, 556. [Google Scholar] [CrossRef]
- Maciel-Silva, F.W.; Viganó, J.; Castro, L.E.; Sganzerla, W.G.; Buller, L.S.; Martínez, J.; Rostagno, M.A.; Forster-Carneiro, T. Pressurized liquid extraction coupled in-line with SPE and on-line with HPLC (PLE-SPExHPLC) for the recovery and purification of anthocyanins from SC-CO2 semi-defatted Açaí (Euterpe oleracea). Food Res. Int. 2022, 160, 111711. [Google Scholar] [CrossRef]
- Ziero, H.D.D.; Ampese, L.C.; Sganzerla, W.G.; Torres-Mayanga, P.C.; Timko, M.T.; Mussatto, S.I.; Forster-Carneiro, T. Subcritical water hydrolysis of poultry feathers for amino acids production. J. Supercrit. Fluids 2022, 181, 105492. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Zhao, S.; Song, P.; Chen, Y.; Liu, P.; Mao, C.; Li, X. Enhanced Biogas Production by Ligninolytic Strain Enterobacter hormaechei KA3 for Anaerobic Digestion of Corn Straw. Energies 2021, 14, 2990. [Google Scholar] [CrossRef]
- Castro, L.E.N.; Sganzerla, W.G.; Barroso, T.L.C.T.; Maciel-Silva, F.W.; Colpini, L.M.S.; Bittencourt, P.R.S.; Rostagno, M.A.; Forster-Carneiro, T. Improving the semi-continuous flow-through subcritical water hydrolysis of grape pomace (Vitis vinifera L.) by pH and temperature control. J. Supercrit. Fluids 2023, 196, 105894. [Google Scholar] [CrossRef]
- Balbinoti, T.C.V.; Stafussa, A.P.; Haminiuk, C.W.I.; Maciel, G.M.; Sassaki, G.L.; de Jorge, L.M.M.; Jorge, R.M.M. Addition of grape pomace in the hydration step of parboiling increases the antioxidant properties of rice. Int. J. Food Sci. Technol. 2020, 55, 2370–2380. [Google Scholar] [CrossRef]
- Balli, D.; Cecchi, L.; Innocenti, M.; Bellumori, M.; Mulinacci, N. Food by-products valorisation: Grape pomace and olive pomace (pâté) as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chem. 2021, 355, 129642. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Stamatovska, V.; Dimov, I. Effect of grape pomace powder addition on chemical, nutritional and technological properties of cakes. LWT 2020, 134, 109950. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.; Bajić, S.S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Tešić, L.; Pešić, M.B. Phenolic compounds and biopotential of grape pomace extracts from Prokupac red grape variety. LWT 2021, 138, 110739. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Redovniković, I.R. Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef] [PubMed]
- De Coelho, C.C.S.; Silva, R.B.S.; Carvalho, C.W.P.; Rossi, A.L.; Teixeira, J.A.; Freitas-Silva, O.; Cabral, L.M.C. Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. Int. J. Biol. Macromol. 2020, 159, 1048–1061. [Google Scholar] [CrossRef]
- Gorrasi, G.; Viscusi, G.; Gerardi, C.; Lamberti, E.; Giovinazzo, G. Physicochemical and Antioxidant Properties of White (Fiano cv) and Red (Negroamaro cv) Grape Pomace Skin Based Films. J. Polym. Environ. 2022, 30, 3609–3621. [Google Scholar] [CrossRef]
- Yoon, J.-Y.; Kim, J.E.; Song, H.J.; Bin Oh, K.; Jo, J.W.; Yang, Y.-H.; Lee, S.H.; Kang, G.; Kim, H.J.; Choi, Y.-K. Assessment of adsorptive behaviors and properties of grape pomace-derived biochar as adsorbent for removal of cymoxanil pesticide. Environ. Technol. Innov. 2021, 21, 101242. [Google Scholar] [CrossRef]
- Ibn Ferjani, A.; Jellali, S.; Akrout, H.; Limousy, L.; Hamdi, H.; Thevenin, N.; Jeguirim, M. Nutrient retention and release from raw exhausted grape marc biochars and an amended agricultural soil: Static and dynamic investigation. Environ. Technol. Innov. 2020, 19, 100885. [Google Scholar] [CrossRef]
- Kassongo, J.; Shahsavari, E.; Ball, A.S. Renewable energy from the solid-state anaerobic digestion of grape marc and cheese whey at high treatment capacity. Biomass Bioenergy 2020, 143, 105880. [Google Scholar] [CrossRef]
- Castro, L.E.N.; Colpini, L.M.S. All-around characterization of brewers’ spent grain. Eur. Food Res. Technol. 2021, 247, 3013–3021. [Google Scholar] [CrossRef]
- Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Liu, R.; Bridgwater, A.V. Bridgwater, Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [Google Scholar] [CrossRef]
- Nelson, N. A photometric adaptation of the somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar] [CrossRef]
- Stallcup, O. Composition of Crude Fiber in Certain Roughages. J. Dairy Sci. 1958, 41, 963–968. [Google Scholar] [CrossRef]
- Van Soest, P.J. Use of Detergents in the Analysis of Fibrous Feeds. II. A Rapid Method for the Determination of Fiber and Lignin. J. Assoc. Off. Anal. Chem. 1990, 73, 491–497. [Google Scholar] [CrossRef]
- Van Soest, P.J. Development of a Comprehensive System of Feed Analyses and its Application to Forages. J. Anim. Sci. 1967, 26, 119–128. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Wine, R.H. Determination of Lignin and Cellulose in Acid-Detergent Fiber with Permanganate. J. Assoc. Off. Anal. Chem. 1968, 51, 780–785. [Google Scholar] [CrossRef]
- Ribeiro, L.F.; Ribani, R.H.; Francisco, T.M.G.; Soares, A.A.; Pontarolo, R.; Haminiuk, C.W.I. Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. J. Chromatogr. B 2015, 1007, 72–80. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 00, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Meyers, K.J.; Watkins, C.B.; Pritts, M.P.; Liu, R.H. Antioxidant and Antiproliferative Activities of Strawberries. J. Agric. Food Chem. 2003, 51, 6887–6892. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Piccardo, D.; Favre, G.; Pascual, O.; Canals, J.M.; Zamora, F.; González-Neves, G. Influence of the use of unripe grapes to reduce ethanol content and pH on the color, polyphenol and polysaccharide composition of conventional and hot macerated Pinot Noir and Tannat wines. Eur. Food Res. Technol. 2019, 245, 1321–1335. [Google Scholar] [CrossRef]
- ASTM D5865-12; Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2013. [CrossRef]
- Forino, M.; Picariello, L.; Rinaldi, A.; Moio, L.; Gambuti, A. How must pH affects the level of red wine phenols. LWT 2020, 129, 109546. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. The Influence of Extraction Conditions on the Yield and Physico-Chemical Parameters of Pectin from Grape Pomace. Polymers 2022, 14, 1378. [Google Scholar] [CrossRef] [PubMed]
- Canalejo, D.; Guadalupe, Z.; Martínez-Lapuente, L.; Ayestarán, B.; Pérez-Magariño, S. Optimization of a method to extract polysaccharides from white grape pomace by-products. Food Chem. 2021, 365, 130445. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Soares, I.H.B.T.; Soares, C.T.; Fakhouri, F.M.; de Oliveira, R.A. Development and Characterization of Arrowroot Starch Films Incorporated with Grape Pomace Extract. Polysaccharides 2022, 3, 250–263. [Google Scholar] [CrossRef]
- Baldán, Y.; Riveros, M.; Fabani, M.P.; Rodriguez, R. Grape pomace powder valorization: A novel ingredient to improve the nutritional quality of gluten-free muffins. Biomass Convers. Biorefinery 2023, 13, 9997–10009. [Google Scholar] [CrossRef]
- Pasquet, P.; Julien-David, D.; Zhao, M.; Villain-Gambier, M.; Trébouet, D. Stability and preservation of phenolic compounds and related antioxidant capacity from agro-food matrix: Effect of pH and atmosphere. Food Biosci. 2024, 57, 103586. [Google Scholar] [CrossRef]
- Öztürk, H.I.; Ozturkoglu-Budak, S. Role of microbes in sustainable food preservation. In Food Microbial Sustainability: Integration of Food Production and Food Safety; Karnwal, A., Mohammad Said Al-Tawaha, A.R., Eds.; Springer: Singapore, 2023; pp. 35–67. [Google Scholar] [CrossRef]
- Mewa-Ngongang, M.; du Plessis, H.W.; Ntwampe, S.K.O.; Chidi, B.S.; Hutchinson, U.F.; Mekuto, L.; Jolly, N.P. Grape Pomace Extracts as Fermentation Medium for the Production of Potential Biopreservation Compounds. Foods 2019, 8, 51. [Google Scholar] [CrossRef]
- Naveen Kumar, K.J.; Thippeswamy, B.; Krishnappa, M. Acid and enzyme hydrolysis to convert pretreated areca nut (Areca catechu L.) husk into glucose for bioethanol production by yeasts and Zymomonas mobilis NCIM 2915. Res. Biotechnol. 2015, 6, 17–30. [Google Scholar]
- De Silva, C.E.F.; Bertucco, A. Dilute acid hydrolysis of microalgal biomass for bioethanol production: An accurate kinetic model of biomass solubilization, sugars hydrolysis and nitrogen/ash balance. React. Kinet. Mech. Catal. 2017, 122, 1095–1114. [Google Scholar] [CrossRef]
- Spîrchez, C.; Lunguleasa, A.; Ionescu, C.; Avram, A. Calorific properties of the wood biomass from some softwood species. MATEC Web Conf. 2021, 343, 09001. [Google Scholar] [CrossRef]
- Vasileiadou, A. Sustainable energy production from grape marc: From thermo-analytical and chemical analysis to kinetic modeling and environmental impact assessment. Energy Ecol. Environ. 2023, 8, 471–484. [Google Scholar] [CrossRef]
- Malaťák, J.; Velebil, J.; Malaťáková, J.; Passian, L.; Bradna, J.; Tamelová, B.; Gendek, A.; Aniszewska, M. Reducing Emissions from Combustion of Grape Residues in Mixtures with Herbaceous Biomass. Materials 2022, 15, 7288. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.E.N.; Sganzerla, W.G.; Matheus, L.R.; Mançano, R.R.; Ferreira, V.C.; Barroso, T.L.C.T.; da Rosa, R.G.; Colpini, L.M.S. Application of brewers’ spent grains as an alternative biomass for renewable energy generation in a boiler combustion process. Sustain. Chem. Environ. 2023, 4, 100039. [Google Scholar] [CrossRef]
- Fagnani, K.C.; Alves, H.J.; de Castro, L.E.N.; Kunh, S.S.; Colpini, L.M.S. An alternative for the energetic exploitation of sludge generated in the physico-chemical effluent treatment from poultry slaughter and processing in Brazilian industries. J. Environ. Chem. Eng. 2019, 7, 102996. [Google Scholar] [CrossRef]
- Pereira, P.; Palma, C.; Ferreira-Pêgo, C.; Amaral, O.; Amaral, A.; Rijo, P.; Gregório, J.; Palma, L.; Nicolai, M. Grape Pomace: A Potential Ingredient for the Human Diet. Foods 2020, 9, 1772. [Google Scholar] [CrossRef]
- Jin, Q.; O’hair, J.; Stewart, A.C.; O’keefe, S.F.; Neilson, A.P.; Kim, Y.-T.; McGuire, M.; Lee, A.; Wilder, G.; Huang, H. Compositional Characterization of Different Industrial White and Red Grape Pomaces in Virginia and the Potential Valorization of the Major Components. Foods 2019, 8, 667. [Google Scholar] [CrossRef]
- Castro, L.E.N.; Colpini, L.M.S. Effect of temperature on the moisture adsorption process in brewers’ spent grains/Efeito da temperatura sobre o processo de adsorção de água em bagaço de malte. Braz. J. Dev. 2022, 8, 30389–30399. [Google Scholar] [CrossRef]
- Amin, M.; Zeyad, A.M.; Tayeh, B.A.; Agwa, I.S. Effects of nano cotton stalk and palm leaf ashes on ultrahigh-performance concrete properties incorporating recycled concrete aggregates. Constr. Build. Mater. 2021, 302, 124196. [Google Scholar] [CrossRef]
- Vamvuka, D.; Trikouvertis, M.; Pentari, D.; Alevizos, G.; Stratakis, A. Characterization and evaluation of fly and bottom ashes from combustion of residues from vineyards and processing industry. J. Energy Inst. 2017, 90, 574–587. [Google Scholar] [CrossRef]
- Garrido, R.A.; Lagos, C.; Luna, C.; Sánchez, J.; Díaz, G. Study of the Potential Uses of Hydrochar from Grape Pomace and Walnut Shells Generated from Hydrothermal Carbonization as an Alternative for the Revalorization of Agri-Waste in Chile. Sustainability 2021, 13, 12600. [Google Scholar] [CrossRef]
- Cáceres, C.; Cáceres, R.; Hein, D.; Molina, M.; Pia, J. Biogas production from grape pomace: Thermodynamic model of the process and dynamic model of the power generation system. Int. J. Hydrogen Energy 2012, 37, 10111–10117. [Google Scholar] [CrossRef]
- Lade, V.G.; Mahajan, K.P.; Rukhane, P.V. Technologies for the production of value-added products from agro-wastes and their possible applications, 360-Degree Waste Management. In Fundamentals, Agricultural and Domestic Waste, and Remediation; Raut, N.A., Bhanvase, B.A., Dhoble, S.J., Kokare, D.M., Randive, K.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 39–66. [Google Scholar] [CrossRef]
- Oliveira, M.; Teixeira, B.M.M.; Toste, R.; Borges, A.D.S. Transforming Wine By-Products into Energy: Evaluating Grape Pomace and Distillation Stillage for Biomass Pellet Production. Appl. Sci. 2024, 14, 7313. [Google Scholar] [CrossRef]
- Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G.; Simonato, B. Breadstick fortification with red grape pomace: Effect on nutritional, technological and sensory properties. J. Sci. Food Agric. 2022, 102, 2545–2552. [Google Scholar] [CrossRef]
- Bravo, L.; Saura-Calixto, F. Characterization of Dietary Fiber and the In Vitro Indigestible Fraction of Grape Pomace. Am. J. Enol. Vitic. 1998, 49, 135–141. [Google Scholar] [CrossRef]
- Sousa, E.C.; Uchôa-Thomaz, A.M.A.; Carioca, J.O.B.; de Morais, S.M.; de Lima, A.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P.; et al. Rodrigues, Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 2014, 34, 135–142. [Google Scholar] [CrossRef]
- Winkler, A.; Weber, F.; Ringseis, R.; Eder, K.; Dusel, G. Determination of polyphenol and crude nutrient content and nutrient digestibility of dried and ensiled white and red grape pomace cultivars. Arch. Anim. Nutr. 2015, 69, 187–200. [Google Scholar] [CrossRef]
- Cejudo-Bastante, C.; Arjona-Mudarra, P.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; de la Ossa, E.J.M.; Pereyra, C. Application of a Natural Antioxidant from Grape Pomace Extract in the Development of Bioactive Jute Fibers for Food Packaging. Antioxidants 2021, 10, 216. [Google Scholar] [CrossRef]
- Bangar, S.P.; Whiteside, W.S. Nano-cellulose reinforced starch bio composite films—A review on green composites. Int. J. Biol. Macromol. 2021, 185, 849–860. [Google Scholar] [CrossRef]
- Madadian, E.; Rahimi, J.; Mohebbi, M.; Simakov, D.S. Grape pomace as an energy source for the food industry: A thermochemical and kinetic analysis. Food Bioprod. Process. 2022, 132, 177–187. [Google Scholar] [CrossRef]
- Pedras, B.; Salema-Oom, M.; Sá-Nogueira, I.; Simões, P.; Paiva, A.; Barreiros, S. Valorization of white wine grape pomace through application of subcritical water: Analysis of extraction, hydrolysis, and biological activity of the extracts obtained. J. Supercrit. Fluids 2017, 128, 138–144. [Google Scholar] [CrossRef]
- Verma, J.; Petru, M.; Goel, S. Cellulose based materials to accelerate the transition towards sustainability. Ind. Crop. Prod. 2024, 210, 118078. [Google Scholar] [CrossRef]
- Teng, C.P.; Tan, M.Y.; Toh, J.P.W.; Lim, Q.F.; Wang, X.; Ponsford, D.; Lin, E.M.J.; Thitsartarn, W.; Tee, S.Y. Advances in Cellulose-Based Composites for Energy Applications. Materials 2023, 16, 3856. [Google Scholar] [CrossRef]
- Padzil, F.N.M.; Lee, C.H.; Lee, S.H.; Asa’ari, A.Z.M.; Chin, K.L.; Yasim-Anuar, T.A.T.; Ariffin, H. Nanocellulose composites in the pulp and paper industry. In Industrial Applications of Nanocellulose and Its Nanocomposites; Sapuan, S.M., Norrrahim, M.N.F., Ilyas, R.A., Soutis, C., Eds.; Woodhead Publishing: Sawston, UK, 2022; pp. 375–395. [Google Scholar] [CrossRef]
- Xu, E.; Yu, H.; Wu, W.; Ji, B.; Feng, X.; Xu, H.; Zhong, Y.; Wang, B.; Mao, Z. Preparation of high antioxidant nanolignin and its application in cosmetics. Int. J. Biol. Macromol. 2024, 272, 132635. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Ma, H.; Peng, Q.; Min, D.; Zhang, P.; Jiang, L. Improved antioxidant activity of pretreated lignin nanoparticles: Evaluation and self-assembly. Int. J. Biol. Macromol. 2024, 267, 131472. [Google Scholar] [CrossRef]
- Girard, V.; Fragnières, L.; Chapuis, H.; Brosse, N.; Marchal-Heussler, L.; Canilho, N.; Parant, S.; Ziegler-Devin, I. The Impact of Lignin Biopolymer Sources, Isolation, and Size Reduction from the Macro- to Nanoscale on the Performances of Next-Generation Sunscreen. Polymers 2024, 16, 1901. [Google Scholar] [CrossRef]
- Araújo, D.J.C.; Machado, A.V.; Vilarinho, M.C.L.G. Availability and Suitability of Agroindustrial Residues as Feedstock for Cellulose-Based Materials: Brazil Case Study. Waste Biomass Valorization 2019, 10, 2863–2878. [Google Scholar] [CrossRef]
- Costa, A.F.S.; Galdino, C.J.S.; Meira, H.M.; Amorim, J.D.P.; Siva, I.D.L.; Gomes, E.A.S.; Sarubbo, L.A. Production of Paper Using Bacterial Cellulose and Residue from the Sugar and Alcohol Industry. Chem. Eng. Trans. 2020, 79, 85–90. [Google Scholar] [CrossRef]
- Jeetah, P.; Jaffur, N. Coconut Husk, a Lignocellulosic Biomass, as a Promising Engineering Material for Non-wood Paper Production. J. Nat. Fibers 2022, 19, 5622–5636. [Google Scholar] [CrossRef]
- Barah, O.O.; Onyeloweb, K.; Olotua, E.B.; Dennison, M.S. Metal Matrix Composites Development and The Potential of Sugarcane Bagasse and Coir Fibre: A Review. Eur. J. Mater. Sci. 2022, 9, 25–43. [Google Scholar] [CrossRef]
- Guerra-Rivas, C.; Gallardo, B.; Mantecón, A.R.; del Álamo-Sanza, M.; Manso, T. Evaluation of grape pomace from red wine by-product as feed for sheep. J. Sci. Food Agric. 2017, 97, 1885–1893. [Google Scholar] [CrossRef] [PubMed]
- Eyiz, V.; Tontul, I.; Turker, S. Optimization of green extraction of phytochemicals from red grape pomace by homogenizer assisted extraction. J. Food Meas. Charact. 2020, 14, 39–47. [Google Scholar] [CrossRef]
- Castrica, M.; Rebucci, R.; Giromini, C.; Tretola, M.; Cattaneo, D.; Baldi, A. Total phenolic content and antioxidant capacity of agri-food waste and by-products. Ital. J. Anim. Sci. 2019, 18, 336–341. [Google Scholar] [CrossRef]
- Theagarajan, R.; Narayanaswamy, L.M.; Dutta, S.; Moses, J.A.; Chinnaswamy, A. Valorisation of grape pomace (cv. Muscat) for development of functional cookies. Int. J. Food Sci. Technol. 2019, 54, 1299–1305. [Google Scholar] [CrossRef]
- De Marsiglia, W.I.M.L.; de Oliveira, L.S.C.; Almeida, R.L.J.; Santos, N.C.; da Neto, J.M.S.; Santiago, A.M.; de Melo, B.C.A.; da Silva, F.L.H. Thermal stability of total phenolic compounds and antioxidant activities of jaboticaba peel: Effect of solvents and extraction methods. J. Indian Chem. Soc. 2023, 100, 100995. [Google Scholar] [CrossRef]
- Bender, A.B.B.; Speroni, C.S.; Moro, K.I.B.; Morisso, F.D.P.; dos Santos, D.R.; da Silva, L.P.; Penna, N.G. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT 2020, 117, 108652. [Google Scholar] [CrossRef]
- Yang, C.; Han, Y.; Tian, X.; Sajid, M.; Mehmood, S.; Wang, H.; Li, H. Phenolic composition of grape pomace and its metabolism. Crit. Rev. Food Sci. Nutr. 2024, 64, 4865–4881. [Google Scholar] [CrossRef]
- Haminiuk, C.W.I.; Maciel, G.M.; Plata-Oviedo, M.S.V.; Peralta, R.M. Phenolic compounds in fruits—An overview. Int. J. Food Sci. Technol. 2012, 47, 2023–2044. [Google Scholar] [CrossRef]
- Dantas, A.M.; Mafaldo, I.M.; de Oliveira, P.M.L.; dos Lima, M.S.; Magnani, M.; da Borges, G.S.C. Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier. Food Chem. 2019, 274, 202–214. [Google Scholar] [CrossRef]
- Moro, K.I.B.; Bender, A.B.B.; Ferreira, D.d.F.; Speroni, C.S.; Barin, J.S.; da Silva, L.P.; Penna, N.G. Recovery of phenolic compounds from grape pomace (Vitis vinifera L.) by microwave hydrodiffusion and gravity. LWT 2021, 150, 112066. [Google Scholar] [CrossRef]
- Mejia, J.A.A.; Ricci, A.; Figueiredo, A.S.; Versari, A.; Cassano, A.; Parpinello, G.P.; De Pinho, M.N. Recovery of Phenolic Compounds from Red Grape Pomace Extract through Nanofiltration Membranes. Foods 2020, 9, 1649. [Google Scholar] [CrossRef] [PubMed]
- Barroso, T.; Sganzerla, W.; Rosa, R.; Castro, L.; Maciel-Silva, F.; Rostagno, M.; Forster-Carneiro, T. Semi-continuous flow-through hydrothermal pretreatment for the recovery of bioproducts from jabuticaba (Myrciaria cauliflora) agro-industrial by-product. Food Res. Int. 2022, 158, 111547. [Google Scholar] [CrossRef] [PubMed]
- Barroso, T.L.C.T.; da Rosa, R.G.; Sganzerla, W.G.; Castro, L.E.N.; Maciel-Silva, F.W.; Rostagno, M.A.; Forster-Carneiro, T. Hydrothermal pretreatment based on semi-continuous flow-through sequential reactors for the recovery of bioproducts from jabuticaba (Myrciaria cauliflora) peel. J. Supercrit. Fluids 2022, 191, 105766. [Google Scholar] [CrossRef]
- Tomaz, I.; Maslov, L.; Stupić, D.; Preiner, D.; Ašperger, D.; Kontić, J.K. Recovery of flavonoids from grape skins by enzyme-assisted extraction. Sep. Sci. Technol. 2016, 51, 255–268. [Google Scholar] [CrossRef]
- Ekalu, A.; Habila, J.D. Flavonoids: Isolation, characterization, and health benefits. Beni-Suef Univ. J. Basic Appl. Sci. 2020, 9, 45. [Google Scholar] [CrossRef]
- Matos, A.L.; Bruno, D.F.; Ambrósio, A.F.; Santos, P.F. The Benefits of Flavonoids in Diabetic Retinopathy. Nutrients 2020, 12, 3169. [Google Scholar] [CrossRef]
- Saini, R.K.; Ranjit, A.; Sharma, K.; Prasad, P.; Shang, X.; Gowda, K.G.M.; Keum, Y.-S. Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants 2022, 11, 239. [Google Scholar] [CrossRef]
- Cui, W.; Wang, Y.; Sun, Z.; Cui, C.; Li, H.; Luo, K.; Cheng, A. Effects of steam explosion on phenolic compounds and dietary fiber of grape pomace. LWT 2023, 173, 114350. [Google Scholar] [CrossRef]
- Monteiro, G.C.; Minatel, I.O.; Junior, A.P.; Gomez-Gomez, H.A.; de Camargo, J.P.C.; Diamante, M.S.; Basílio, L.S.P.; Tecchio, M.A.; Lima, G.P.P. Bioactive compounds and antioxidant capacity of grape pomace flours. LWT 2021, 135, 110053. [Google Scholar] [CrossRef]
- Szabó, É.; Marosvölgyi, T.; Szilágyi, G.; Kőrösi, L.; Schmidt, J.; Csepregi, K.; Márk, L.; Bóna, Á. Correlations between Total Antioxidant Capacity, Polyphenol and Fatty Acid Content of Native Grape Seed and Pomace of Four Different Grape Varieties in Hungary. Antioxidants 2021, 10, 1101. [Google Scholar] [CrossRef] [PubMed]
- de la Cerda-Carrasco, A.; López-Solís, R.; Nuñez-Kalasic, H.; Peña-Neira, Á.; Obreque-Slier, E. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). J. Sci. Food Agric. 2015, 95, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Chen, X.; Huang, Z.; Chen, D.; Li, M.; He, J.; Chen, H.; Zheng, P.; Yu, J.; Luo, Y.; et al. Effects of dietary grape seed proanthocyanidin extract supplementation on meat quality, muscle fiber characteristics and antioxidant capacity of finishing pigs. Food Chem. 2022, 367, 130781. [Google Scholar] [CrossRef] [PubMed]
- Paun, N.; Botoran, O.R.; Niculescu, V.-C. Total Phenolic, Anthocyanins HPLC-DAD-MS Determination and Antioxidant Capacity in Black Grape Skins and Blackberries: A Comparative Study. Appl. Sci. 2022, 12, 936. [Google Scholar] [CrossRef]
- Wei, X.; Li, L.; Yan, H.; Li, Q.; Gao, J.; Hao, R. Grape seed procyanidins improve intestinal health by modulating gut microbiota and enhancing intestinal antioxidant capacity in weaned piglets. Livest. Sci. 2022, 264, 105066. [Google Scholar] [CrossRef]
- Bendaali, Y.; Vaquero, C.; González, C.; Morata, A. Contribution of Grape Juice to Develop New Isotonic Drinks with Antioxidant Capacity and Interesting Sensory Properties. Front. Nutr. 2022, 9, 890640. [Google Scholar] [CrossRef]
- Ozkan, K.; Karadag, A.; Sagdic, O. The effects of different drying methods on the in vitro bioaccessibility of phenolics, antioxidant capacity, minerals and morphology of black ‘Isabel’ grape. LWT 2022, 158, 113185. [Google Scholar] [CrossRef]
- Gutiérrez-Del-Río, I.; López-Ibáñez, S.; Magadán-Corpas, P.; Fernández-Calleja, L.; Pérez-Valero, A.; Tuñón-Granda, M.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Terpenoids and Polyphenols as Natural Antioxidant Agents in Food Preservation. Antioxidants 2021, 10, 1264. [Google Scholar] [CrossRef]
- Franco-Arnedo, G.; Buelvas-Puello, L.; Miranda-Lasprilla, D.; Martínez-Correa, H.; Parada-Alfonso, F. Obtaining antioxidant extracts from tangerine (C. reticulata var. Arrayana) peels by modified supercritical CO2 and their use as protective agent against the lipid oxidation of a mayonnaise. J. Supercrit. Fluids 2020, 165, 104957. [Google Scholar] [CrossRef]
- Petcu, C.D.; Tăpăloagă, D.; Mihai, O.D.; Gheorghe-Irimia, R.-A.; Negoiță, C.; Georgescu, I.M.; Tăpăloagă, P.R.; Borda, C.; Ghimpețeanu, O.M. Harnessing Natural Antioxidants for Enhancing Food Shelf Life: Exploring Sources and Applications in the Food Industry. Foods 2023, 12, 3176. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Feo, V.; Pimentel, T.C.; Coppola, R.; Cruz, A.G. Polyphenols applications in food industry sector. In Technologies to Recover Polyphenols from AgroFood By-Products and Wastes; Pintado, M.E., da Cruz Alexandre, E.M., Saraiva, J.M.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 301–336. [Google Scholar] [CrossRef]
- Jabbar, S.S.; Salman, N.A.; Dawood, F.A.; Al-Fahham, A.A. The Chemical Structure and Clinical Significance of Phenolic Compounds. Int. J. Health Med. Res. 2024, 3, 741–745. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef] [PubMed]
- Sanches, V.L.; de Mesquita, L.M.S.; Viganó, J.; Contieri, L.S.; Pizani, R.; Chaves, J.; da Silva, L.C.; de Souza, M.C.; Breitkreitz, M.C.; Rostagno, M.A. Insights on the Extraction and Analysis of Phenolic Compounds from Citrus Fruits: Green Perspectives and Current Status. Crit. Rev. Anal. Chem. 2022, 54, 1173–1199. [Google Scholar] [CrossRef] [PubMed]
- Lachman, J.; Hejtmánková, A.; Hejtmánková, K.; Horníčková, Š.; Pivec, V.; Skala, O.; Dědina, M.; Přibyl, J. Towards complex utilisation of winemaking residues: Characterisation of grape seeds by total phenols, tocols and essential elements content as a by-product of winemaking. Ind. Crop. Prod. 2013, 49, 445–453. [Google Scholar] [CrossRef]
- Mollica, A.; Scioli, G.; Della Valle, A.; Cichelli, A.; Novellino, E.; Bauer, M.; Kamysz, W.; Llorent-Martínez, E.J.; Córdova, M.L.F.-D.; Castillo-López, R.; et al. Phenolic Analysis and In Vitro Biological Activity of Red Wine, Pomace and Grape Seeds Oil Derived from Vitis vinifera L. cv. Montepulciano d’Abruzzo. Antioxidants 2021, 10, 1704. [Google Scholar] [CrossRef]
- Perra, M.; Leyva-Jiménez, F.-J.; Manca, M.L.; Manconi, M.; Rajha, H.N.; Borrás-Linares, I.; Segura-Carretero, A.; Lozano-Sánchez, J. Application of pressurized liquid extraction to grape by-products as a circular economy model to provide phenolic compounds enriched ingredient. J. Clean. Prod. 2023, 402, 136712. [Google Scholar] [CrossRef]
- Corrales, M.; Toepfl, S.; Butz, P.; Knorr, D.; Tauscher, B. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov. Food Sci. Emerg. Technol. 2008, 9, 85–91. [Google Scholar] [CrossRef]
- Botelho, T.; Costa, M.; Wilk, M.; Magdziarz, A. Evaluation of the combustion characteristics of raw and torrefied grape pomace in a thermogravimetric analyzer and in a drop tube furnace. Fuel 2018, 212, 95–100. [Google Scholar] [CrossRef]
- Valente, M.; Brillard, A.; Schönnenbeck, C.; Brilhac, J.-F. Investigation of grape marc combustion using thermogravimetric analysis. Kinetic modeling using an extended independent parallel reaction (EIPR). Fuel Process. Technol. 2015, 131, 297–303. [Google Scholar] [CrossRef]
- Khiari, B.; Jeguirim, M. Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis. Energies 2018, 11, 730. [Google Scholar] [CrossRef]
- Torres-Garcia, E.; Brachi, P. Non-isothermal pyrolysis of grape marc. J. Therm. Anal. Calorim. 2020, 139, 1463–1478. [Google Scholar] [CrossRef]
- Olsson, A.-M.; Salmén, L. The effect of lignin composition on the viscoelastic properties of wood. Nord. Pulp Pap. Res. J. 1997, 12, 140–144. [Google Scholar] [CrossRef]
- Yalcin, D.; Ozcalik, O.; Altiok, E.; Bayraktar, O. Characterization and recovery of tartaric acid from wastes of wine and grape juice industries. J. Therm. Anal. Calorim. 2008, 94, 767–771. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. Structural, functional and physicochemical properties of pectin from grape pomace as affected by different extraction techniques. Int. J. Biol. Macromol. 2023, 224, 739–753. [Google Scholar] [CrossRef] [PubMed]
- Assoumani, N.; El Marouani, M.; El Hamdaoui, L.; Trif, L.; Kifani-Sahban, F.; Simo-Tagne, M. Extraction, characterization and kinetics of thermal decomposition of lignin from date seeds using model-free and fitting approaches of Saudi Arabia, cellulose chemistry and technology. Cell. Chem. Technol. 2023, 57, 775–787. [Google Scholar] [CrossRef]
- Metzler, J.; Coley, C. Evaluation of Knowledge-guided Tensor Decomposition in Engineering Applications. In Proceedings of the AIAA SciTech Forum and Exposition, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar] [CrossRef]
- Ross, K.; Leung, A.; Godfrey, D.; Mazza, G. Evaluation of Thermal Decomposition and Antioxidant Activity of Crop Residues and Ionic Liquid Extracted Lignin. World Appl. Sci. J. 2012, 16, 160–178. [Google Scholar]
- Rocky, K.A.; Islam, A.; Pal, A.; Ghosh, S.; Thu, K.; Nasruddin; Saha, B.B. Experimental investigation of the specific heat capacity of parent materials and composite adsorbents for adsorption heat pumps. Appl. Therm. Eng. 2020, 164, 114431. [Google Scholar] [CrossRef]
- Santos, E.B.C.; Barros, J.J.P.; de Moura, D.A.; Moreno, C.G.; de Fim, F.C.; da Silva, L.B. Rheological and thermal behavior of PHB/piassava fiber residue-based green composites modified with warm water. J. Mater. Res. Technol. 2019, 8, 531–540. [Google Scholar] [CrossRef]
- Torres-Mayanga, P.C.; Castro, L.E.N.; Azambuja, S.P.H.; Lachos-Perez, D.; Brown, A.B.; Timko, M.T.; Goldbeck, R.; Forster-Carneiro, T.; Rostagno, M.A. Detoxification of furanic aldehydes of the hemicellulosic hydrothermal hydrolysate of brewers’ spent grains by continuous adsorption on a fixed-bed column. Biofuels Bioprod. Biorefining 2023, 17, 829–842. [Google Scholar] [CrossRef]
- Sam, D.K.; Cao, Y. Porous carbon materials for adsorption: A mini-review. Fuller. Nanotub. Carbon Nanostruct. 2024, 32, 721–732. [Google Scholar] [CrossRef]
- Lang, Q.; Lu, P.; Yang, X.; Valtchev, V. Zeolites for the environment. Green Carbon 2024, 2, 12–32. [Google Scholar] [CrossRef]
- Jagadeesan, D.; Babu, D.; Mohan, A.M.; Deivasigamani, P. Renewable and Commercially Viable Porous Material-Supported Heterojunction Nanocomposites as UV-Visible Light-Responsive Photocatalysts for Environmental and Energy-Related Applications. In Green Energy and Technology Part F; Sathishkumar, P., Ed.; Springer: Singapore, 2024; Volume 2928, pp. 51–80. [Google Scholar] [CrossRef]
- Aresta, A.; Cotugno, P.; De Vietro, N.; Massari, F.; Zambonin, C. Determination of Polyphenols and Vitamins in Wine-Making by-Products by Supercritical Fluid Extraction (SFE). Anal. Lett. 2020, 53, 2585–2595. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Anggraini, I.; Kresnowati, M.T.A.P.; Purwadi, R.; Setiadi, T. Bioethanol Production via Syngas Fermentation. MATEC Web Conf. 2018, 156, 03025. [Google Scholar] [CrossRef]
- Beluhan, S.; Mihajlovski, K.; Šantek, B.; Šantek, M.I. The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing. Energies 2023, 16, 7003. [Google Scholar] [CrossRef]
- Jayakumar, M.; Vaithilingam, S.K.; Karmegam, N.; Gebeyehu, K.B.; Boobalan, M.S.; Gurunathan, B. Fermentation technology for ethanol production: Current trends and challenges. In Biofuels and Bioenergy: A Techno-Economic Approach; Gurunathan, B., Sahadevan, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 105–131. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Skrzypczak, D.; Mironiuk, M.; Mikula, K.; Samoraj, M.; Gil, F.; Taf, R.; Moustakas, K.; Chojnacka, K. Lignocellulosic biomass fertilizers: Production, characterization, and agri-applications. Sci. Total Environ. 2024, 923, 171343. [Google Scholar] [CrossRef]
- Bergstrand, K.-J. Organic fertilizers in greenhouse production systems—A review. Sci. Hortic. 2022, 295, 110855. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indones. J. Sci. Technol. 2019, 4, 97. [Google Scholar] [CrossRef]
- Antunes, F.A.F.; Chandel, A.K.; Terán-Hilares, R.; Ingle, A.P.; Rai, M.; dos Milessi, T.S.S.; da Silva, S.S.; dos Santos, J.C. Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: Emerging role of nano, biotechnological and promising approaches. 3 Biotech 2019, 9, 230. [Google Scholar] [CrossRef]
- de Castro, L.E.N.; Meurer, E.C.; Alves, H.J.; dos Santos, M.A.R.; de Vasques, E.C.; Colpini, L.M.S. Photocatalytic Degradation of Textile dye Orange-122 Via Electrospray Mass Spectrometry. Braz. Arch. Biol. Technol. 2020, 63, e20180573. [Google Scholar] [CrossRef]
- Castro, L.E.N.; Meira, A.H.; Almeida, L.N.B.; Lenzi, G.G.; Colpini, L.M.S. Experimental design and optimization of textile dye photodiscoloration using Zn/TiO2 catalysts. Desalination Water Treat. 2022, 266, 173–185. [Google Scholar] [CrossRef]
- Castro, L.E.N.; Santos, J.V.F.; Fagnani, K.C.; Alves, H.J.; Colpini, L.M.S. Evaluation of the effect of different treatment methods on sugarcane vinasse remediation. J. Environ. Sci. Health Part B 2019, 54, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Sun, R.; Hu, S.; Meng, C.; Xie, B.; Yi, M.; Wu, Y. Recent advances and future perspective on lignocellulose-based materials as adsorbents in diverse water treatment applications. Int. J. Biol. Macromol. 2023, 253, 126984. [Google Scholar] [CrossRef] [PubMed]
Parameters | Values | |
---|---|---|
pH | 4.05 ± 0.10 | |
Titratable acidity (g tartaric acid 100 g−1 dry BGP) | 1.25 ± 0.02 | |
Energy (kcal kg−1 of dry BGP) | 3764.00 ± 57.00 | |
Hygroscopicity analysis | ||
Room temperature (°C) | Relative humidity (%) | Ḣ * (g of moisture 100 g−1 of dry sample) |
10 | 11 | 31.31 ± 0.21 aA |
43 | 34.80 ± 0.39 aA | |
75 | 39.34 ± 0.13 bA | |
98 | 42.86 ± 0.51 bA | |
25 | 11 | 34.61 ± 0.03 aB |
43 | 36.95 ± 0.27 abA | |
75 | 40.58 ± 0.74 bAB | |
98 | 49.44 ± 0.21 cB | |
35 | 11 | 36.71 ± 0.10 aB |
43 | 39.33 ± 0.21 aB | |
75 | 45.26 ± 0.45 bB | |
98 | 50.23 ± 0.33 cB |
Parameters | Values (g 100 g−1 Dry BGP) |
---|---|
Moisture | 9.70 ± 0.39 |
Ash | 6.79 ± 0.33 |
Protein | 12.78 ± 0.92 |
Lipid | 6.98 ± 0.57 |
Total sugar | 20.35 ± 1.05 |
Reducing sugar | 3.82 ± 0.25 |
Non-reducing sugar * | 18.70 ± 1.26 |
Crude fiber | 22.78 ± 2.12 |
Neutral-detergent fiber | 75.21 ± 1.57 |
Acid-detergent fiber | 52.33 ± 2.88 |
Cellulose | 24.95 ± 1.60 |
Lignin | 21.37 ± 1.33 |
Hemicellulose * | 27.38 ± 2.02 |
Parameters * | Values |
---|---|
Total phenolic compounds (mg GAE 100 g−1 BGP extract) | 5956.56 ± 573.30 |
Total anthocyanins (mg C3G 100 g−1 BGP extract) | 66.92 ± 5.29 |
Total flavonoids (mg CAT 100 g−1 BGP extract) | 1958.33 ± 102.33 |
DPPH (μmol TEAC g−1 BGP extract) | 20.12 ± 2.53 |
FRAP (μmol TEAC g−1 BGP extract) | 16.85 ± 1.22 |
Retention Time (min) | Molecular Ion [M+] (m/z) | MS/MS | Aglycone | Putative Identification * |
---|---|---|---|---|
3.25 | 611 | 449, 253 | Cyanidin | Cyanidin-3,5-O-diglucoside |
3.53 | 465 | 303 | Delphidin | Delphidin-3-O-glucoside |
3.71 | 625 | 463, 301 | Peonidin | Peonidin-3,5-O-diglucoside |
3.93 | 449 | 287 | Cyanidin | Cyanidin-3-O-glucoside |
4.18 | 479 | 317 | Petunidin | Petunidin-3-O-glucoside |
4.74 | 463 | 301 | Peonidin | Peonidin-3-O-glucoside |
4.89 | 493 | 331 | Malvidin | Malvidin-3-O-glucoside |
6.48 | 625 | 463, 317 | Malvidin | Malvidin-3-O-(6-O-p-coumaryl)-glucoside |
Sample | So (m2 g−1) | Vp (cm3 g−1) | dp (nm) | dBJH (nm) |
BGP | 120.44 ± 0.87 | 0.05 ± 0.001 | 3.99 ± 0.03 | 1.81 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, L.E.N.; Barroso, T.L.C.T.; Ferreira, V.C.; Forster Carneiro, T. Characterization of Benitaka Grape Pomace (Vitis vinifera L.): An Analysis of Its Properties for Future Biorefinery Applications. Waste 2025, 3, 4. https://doi.org/10.3390/waste3010004
Castro LEN, Barroso TLCT, Ferreira VC, Forster Carneiro T. Characterization of Benitaka Grape Pomace (Vitis vinifera L.): An Analysis of Its Properties for Future Biorefinery Applications. Waste. 2025; 3(1):4. https://doi.org/10.3390/waste3010004
Chicago/Turabian StyleCastro, Luiz Eduardo Nochi, Tiago Linhares Cruz Tabosa Barroso, Vanessa Cosme Ferreira, and Tânia Forster Carneiro. 2025. "Characterization of Benitaka Grape Pomace (Vitis vinifera L.): An Analysis of Its Properties for Future Biorefinery Applications" Waste 3, no. 1: 4. https://doi.org/10.3390/waste3010004
APA StyleCastro, L. E. N., Barroso, T. L. C. T., Ferreira, V. C., & Forster Carneiro, T. (2025). Characterization of Benitaka Grape Pomace (Vitis vinifera L.): An Analysis of Its Properties for Future Biorefinery Applications. Waste, 3(1), 4. https://doi.org/10.3390/waste3010004