Magnetic Nanoparticle Sensors
<p>Principle of Type I MRSws. Dispersed magnetic nanoparticles (NPs) form an aggregate upon binding with target analytes (triangle). The aggregated form of the NPs dephases the spins of the surrounding protons of water molecules more efficiently than NPs present as the dispersed state. The effect is observed as a decrease in spin-spin relaxation time, T<sub>2</sub> (reproduced with permission from reference [<a href="#b52-sensors-09-08130" class="html-bibr">52</a>]).</p> ">
<p>Methods for the improvement in MRSw assay sensitivities. (A) MPs (●) aggregate in a homogeneous magnetic field, whereas NPs (□) do not respond. A T<sub>2</sub> increase in time is observed in a 0.47 T field (gray) in an MP solution, but not in an NP solution. The T<sub>2</sub> value of the MP solution decreases as the MPs are dispersed with the field turn-off (white). Note that a T<sub>2</sub> increase is observed with MP aggregation. (type II MRSw). Since this effect is slowed by the viscosity of the medium, T<sub>2</sub>-based viscometer can be obtained, see [<a href="#b7-sensors-09-08130" class="html-bibr">7</a>]. (B) Three strategies for enhancing the sensitivities with a type II MRSw assay. (a) A decreased concentration of MPs formed aggregates at a lower concentration of analyte (anti-Tag antibody) than that of NPs. MPs are larger than NPs and used at a lower concentration. (b) Application of a magnetic field (0.47 T) induced aggregation of MPs as in (A) and accelerated the interaction between MPs and analytes. (c) Target valency enhancement by addition of a secondary antibody (sheep anti-mouse). The valency increase of targets from two (anti Tag) to four (anti Tag:anti mouse) enhanced MRSw sensitivities. Figure reproduced with permission from reference [<a href="#b6-sensors-09-08130" class="html-bibr">6</a>].</p> ">
<p>(A). Schematic representation of a miniaturized chip-based NMR system, diagnostic magnetic resonance (DMR). (B). NMR based CMOS RF biosensor. A complete NMR system was built with a portable platform (reproduced with permission (A) from reference [<a href="#b10-sensors-09-08130" class="html-bibr">10</a>] and (B) from reference [<a href="#b21-sensors-09-08130" class="html-bibr">21</a>]).</p> ">
<p>Principle of a SQUID-based homogeneous detector of bacteria. A. A pulse-form magnetic field orients the magnetic moments of NPs. B. After the field pulse is over, Brownian motion randomizes the magnetic moments of unbound NPs. However, the Brownian rotations of NPs bound to the bacteria are restricted. The bound NPs undergo Néel relaxation for reorientation of the magnetic moments. The SQUID detects the slower Néel relaxation for the bound NPs (reproduced with permission from reference [<a href="#b36-sensors-09-08130" class="html-bibr">36</a>]).</p> ">
<p>A schematic representation of a giant magnetoresistive (GMR) sensor for an ELISA-type protein assay. A. The probe surface was functionalized with a specific antibody, while the control surface was passivated with BSA. B. A sample solution was added for a specific binding of analyte proteins to the probe surface. C. A biotinylated antibody bound to the surface-immobilized analytes. D. Finally streptavidin-coated NPs were added for tagging the probe surface by biotin-streptavidin interaction. GMR signals were detected for sensing the presence of analytes on the surface. Courtesy from [<a href="#b48-sensors-09-08130" class="html-bibr">48</a>].</p> ">
Abstract
:1. Introduction
2. Magnetic Relaxation Switches (MRSws)
2.1. Mechanism of MRSws
2.2. Magnetic Particles
2.3. Instrumentation
2.4. Applications of Type I and Type II MRSw's
2.4.1. Type I MRSw
2.4.2. Type II MRSw
3. Magnetic Particle Relaxation-Based Sensors
3.1. Theory
3.2. Assays
3.2.1. Néel Relaxation Sensors
3.2.2. Brownian Relaxation Sensors
4. Magnetoresistive Sensors
5. Conclusions
Acknowledgments
References
- Lee, J.H.; Huh, Y.M.; Jun, Y.W.; Seo, J.W.; Jang, J.T.; Song, H.T.; Kim, S.; Cho, E.J.; Yoon, H.G.; Suh, J.S.; Cheon, J. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007, 13, 95–99. [Google Scholar]
- Weissleder, R.; Pittet, M.J. Imaging in the era of molecular oncology. Nature 2008, 452, 580–589. [Google Scholar]
- Weissleder, R. Molecular imaging in cancer. Science 2006, 312, 1168–1171. [Google Scholar]
- Josephson, L.; Perez, J.M.; Weissleder, R. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. Int. Ed. 2001, 40, 3204–3208. [Google Scholar]
- Perez, J.M.; Josephson, L.; O'Loughlin, T.; Hogemann, D.; Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 2002, 20, 816–820. [Google Scholar]
- Koh, I.; Hong, R.; Weissleder, R.; Josephson, L. Nanoparticle-target interactions parallel antibody-protein interactions. Anal. Chem. 2009, 81, 3618–3622. [Google Scholar]
- Hong, R.; Cima, M.J.; Weissleder, R.; Josephson, L. Magnetic microparticle aggregation for viscosity determination by MR. Magn. Reson. Med. 2008, 59, 515–520. [Google Scholar]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar]
- Kim, G.Y.; Josephson, L.; Langer, R.; Cima, M.J. Magnetic relaxation switch detection of human chorionic gonadotrophin. Bioconjug. Chem. 2007, 18, 2024–2028. [Google Scholar]
- Lee, H.; Sun, E.; Ham, D.; Weissleder, R. Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 2008, 14, 869–874. [Google Scholar]
- Perez, J.M.; Simeone, F.J.; Saeki, Y.; Josephson, L.; Weissleder, R. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 2003, 125, 10192–10193. [Google Scholar]
- Taktak, S.; Weissleder, R.; Josephson, L. Electrode chemistry yields a nanoparticle-based nmr sensor for Calcium. Langmuir 2008, 24, 7596–7598. [Google Scholar]
- Harisinghani, M.G.; Barentsz, J.; Hahn, P.F.; Deserno, W.M.; Tabatabaei, S.; van de Kaa, C.H.; de la Rosette, J.; Weissleder, R. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 2003, 348, 2491–2499. [Google Scholar]
- Jun, Y.W.; Huh, Y.M.; Choi, J.S.; Lee, J.H.; Song, H.T.; Kim, S.; Yoon, S.; Kim, K.S.; Shin, J.S.; Suh, J.S.; Cheon, J. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 2005, 127, 5732–5733. [Google Scholar]
- Park, J.; An, K.J.; Hwang, Y.S.; Park, J.G.; Noh, H.J.; Kim, J.Y.; Park, J.H.; Hwang, N.M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895. [Google Scholar]
- Lee, H.; Yoon, T.J.; Figueiredo, J.L.; Swirski, F.K.; Weissleder, R. Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc. Natl. Acad. Sci. USA 2009. [Google Scholar] [CrossRef]
- Lee, H.; Yoon, T.J.; Weissleder, R. Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angew.Chem. Int. Ed. 2009, 48, 5657–5660. [Google Scholar]
- Park, J.H.; von Maltzahn, G.; Zhang, L.L.; Schwartz, M.P.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater. 2008, 20, 1630–1635. [Google Scholar]
- Koh, I.; Hong, R.; Weissleder, R.; Josephson, L. Sensitive NMR sensors detect antibodies to influenza. Angew. Chem. Int. Ed. 2008, 47, 4119–4121. [Google Scholar]
- Perez, J.M.; Josephson, L.; Weissleder, R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chembiochem 2004, 5, 261–264. [Google Scholar]
- Sun, N.; Liu, Y.; Lee, H.; Weissleder, R.; Ham, D. CMOS RF biosensor utilizing nuclear magnetic resonance. IEEE J. Solid-State Circuits 2009, 44, 1629–1643. [Google Scholar]
- Grimm, J.; Perez, J.M.; Josephson, L.; Weissleder, R. Novel nanosensors for rapid analysis of telomerase activity. Cancer Res. 2004, 64, 639–643. [Google Scholar]
- Tsourkas, A.; Hofstetter, O.; Hofstetter, H.; Weissleder, R.; Josephson, L. Magnetic relaxation switch immunosensors detect enantiomeric impurities. Angew. Chem. Int. Ed. 2004, 43, 2395–2399. [Google Scholar]
- Sun, E.Y.; Josephson, L.; Weissleder, R. “Clickable” nanoparticles for targeted imaging. Mol. Imaging 2006, 5, 122–128. [Google Scholar]
- Sun, E.Y.; Weissleder, R.; Josephson, L. Continuous analyte sensing with magnetic nanoswitches. Small 2006, 2, 1144–1147. [Google Scholar]
- Weissleder, R.; Kelly, K.; Sun, E.Y.; Shtatland, T.; Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 2005, 23, 1418–1423. [Google Scholar]
- Perez, J.M.; O'Loughin, T.; Simeone, F.J.; Weissleder, R.; Josephson, L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc. 2002, 124, 2856–2857. [Google Scholar]
- Daniel, K.D.; Kim, G.Y.; Vassiliou, C.C.; Galindo, M.; Guimaraes, A.R.; Weissleder, R.; Charest, A.; Langer, R.; Cima, M.J. Implantable diagnostic device for cancer monitoring. Biosens. Bioelectron. 2009, 24, 3252–3257. [Google Scholar]
- Daniel, K.D.; Kim, G.Y.; Vassiliou, C.C.; Jalali-Yazdi, F.; Langer, R.; Cima, M.J. Multi-reservoir device for detecting a soluble cancer biomarker. Lab. Chip. 2007, 7, 1288–1293. [Google Scholar]
- Doyle, P.S.; Bibette, J.; Bancaud, A.; Viovy, J.L. Self-assembled magnetic matrices for DNA separation chips. Science 2002, 295, 2237. [Google Scholar]
- Baudry, J.; Rouzeau, C.; Goubault, C.; Robic, C.; Cohen-Tannoudji, L.; Koenig, A.; Bertrand, E.; Bibette, J. Acceleration of the recognition rate between grafted ligands and receptors with magnetic forces. Proc. Natl. Acad. Sci.USA 2006, 103, 16076–16078. [Google Scholar]
- Singh, H.; Laibinis, P.E.; Hatton, T.A. Rigid, superparamagnetic chains of permanently linked beads coated with magnetic nanoparticles. Synthesis and rotational dynamics under applied magnetic fields. Langmuir 2005, 21, 11500–11509. [Google Scholar]
- Zerrouki, D.; Baudry, J.; Pine, D.; Chaikin, P.; Bibette, J. Chiral colloidal clusters. Nature 2008, 455, 380–382. [Google Scholar]
- Cohen-Tannoudji, L.; Bertrand, E.; Baudry, J.; Robic, C.; Goubault, C.; Pellissier, M.; Johner, A.; Thalmann, F.; Lee, N.K.; Marques, C.M.; Bibette, J. Measuring the kinetics of biomolecular recognition with magnetic colloids. Phys. Rev. Lett. 2008, 100, 108301:1–108301:4. [Google Scholar]
- Chemla, Y.R.; Grossman, H.L.; Poon, Y.; McDermott, R.; Stevens, R.; Alper, M.D.; Clarke, J. Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc. Natl. Acad. Sci. USA 2000, 97, 14268–14272. [Google Scholar]
- Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Bruehl, R.; Alper, M.D.; Bertozzi, C.R.; Clarke, J. Detection of bacteria in suspension by using a superconducting quantum interference device. Proc. Natl. Acad. Sci. USA 2004, 101, 129–134. [Google Scholar]
- Lee, S.; Myers, W.R.; Grossman, H.L.; Cho, H.M.; Chemla, Y.R.; Clarke, J. Magnetic gradiometer based on a high-transition temperature superconducting quantum interference device for improved sensitivity of a biosensor. Appl. Phys. Lett. 2002, 81, 3094–3096. [Google Scholar]
- Hong, C.Y.; Wu, C.C.; Chiu, Y.C.; Yang, S.Y.; Horng, H.E.; Yang, H.C. Magnetic susceptibility reduction method for magnetically labeled immunoassay. Appl. Phys. Lett. 2006, 88, 212512:1–212512:3. [Google Scholar]
- Hong, C.Y.; Chen, W.S.; Jian, Z.F.; Yang, S.Y.; Horng, H.E.; Yang, L.C.; Yang, H.C. Wash-free immunomagnetic detection for serum through magnetic susceptibility reduction. Appl. Phys. Lett. 2007, 90, 074105:1–074105:3. [Google Scholar]
- Connolly, J.; St Pierre, T.G. Proposed biosensors based on time-dependent properties of magnetic fluids. J. Magn. Magn. Mater. 2001, 225, 156–160. [Google Scholar]
- Chung, S.H.; Hoffmann, A.; Bader, S.D.; Liu, C.; Kay, B.; Makowski, L.; Chen, L. Biological sensors based on Brownian relaxation of magnetic nanoparticles. Appl. Phys. Lett. 2004, 85, 2971–2973. [Google Scholar]
- Fornara, A.; Johansson, P.; Petersson, K.; Gustafsson, S.; Qin, J.; Olsson, E.; Ilver, D.; Krozer, A.; Muhammed, M.; Johansson, C. Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett. 2008, 8, 3423–3428. [Google Scholar]
- Stromberg, M.; Goransson, J.; Gunnarsson, K.; Nilsson, M.; Svedlindh, P.; Stromme, M. Sensitive molecular diagnostics using volume-amplified magnetic nanobeads. Nano Lett. 2008, 8, 816–821. [Google Scholar]
- Stromberg, M.; Zardan Gomez de la Torre, T.; Goransson, J.; Gunnarsson, K.; Nilsson, M.; Svedlindh, P.; Stromme, M. Multiplex detection of DNA sequences using the volume-amplified magnetic nanobead detection assay. Anal. Chem. 2009, 81, 3398–3406. [Google Scholar]
- Wang, S.X.; Li, G. Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: Review and outlook. IEEE Trans. Magn. 2008, 44, 1687–1702. [Google Scholar]
- Graham, D.L.; Ferreira, H.A.; Freitas, P.P. Magnetoresistive-based biosensors and biochips. Trends Biotechnol. 2004, 22, 455–462. [Google Scholar]
- Fu, A.; Hu, W.; Xu, L.; Wilson, R.J.; Yu, H.; Osterfeld, S.J.; Gambhir, S.S.; Wang, S.X. Protein-functionalized synthetic antiferromagnetic nanoparticles for biomolecule detection and magnetic manipulation. Angew. Chem. Int. Ed. 2009, 48, 1620–1624. [Google Scholar]
- Osterfeld, S.J.; Yu, H.; Gaster, R.S.; Caramuta, S.; Xu, L.; Han, S.J.; Hall, D.A.; Wilson, R.J.; Sun, S.; White, R.L.; Davis, R.W.; Pourmand, N.; Wang, S.X. Multiplex protein assays based on real-time magnetic nanotag sensing. Proc. Natl. Acad. Sci. USA 2008, 105, 20637–20640. [Google Scholar]
- Srinivasan, B.; Li, Y.; Jing, Y.; Xu, Y.; Yao, X.; Xing, C.; Wang, J.P. A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine. Angew. Chem. Int. Ed. 2009, 48, 2764–2767. [Google Scholar]
- De Palma, R.; Reekmans, G.; Liu, C.; Wirix-Speetjens, R.; Laureyn, W.; Nilsson, O.; Lagae, L. Magnetic bead sensing platform for the detection of proteins. Anal. Chem. 2007, 79, 8669–8677. [Google Scholar]
- Hu, W.; Wilson, C.R.J.; Koh, A.; Fu, A.H.; Faranesh, A.Z.; Earhart, C.M.; Osterfeld, S.J.; Han, S.J.; Xu, L.; Guccione, S.; Sinclair, R.; Wang, S.X. High-moment antiferromagnetic nanoparticles with tunable magnetic properties. Adv. Mater. 2008, 20, 1479–1483. [Google Scholar]
- Lowery, T.J.; Palazzolo, R.; Wong, S.M.; Prado, P.J.; Taktak, S. Single-coil, multisample, proton relaxation method for magnetic relaxation switch assays. Anal. Chem. 2008, 80, 1118–1123. [Google Scholar]
Particle | Size | Composition | Characteristics | Reference |
---|---|---|---|---|
CLIO | ∼30 nm | 5 nm core, 10 nm dextran coating | MRSw, R2 = 50 (s·mM Fe)-1 | [5] |
Core/shell | 16 nm | Fe core, iron oxide shell, 2.5 nm shell thickness | MRSw, R2 = 260 (s·mM Fe)-1 | [17] |
Mn-MNPa | 16 nm | Mn-doped iron oxide | MRSw, R2 = 420 (s·mM metal)-1 | [16] |
MP | 1000 nm | Commercial (Dynabeads) | MRSw, R2 = 43 (s·mM Fe)-1 | [19] |
Iron oxide | 56 nm | Commercial (Quantum Magnetics, Miltenyi Biotech) | SQUID | [35,36] |
Iron oxide | 19.5 nm | AC susceptometer | [42] | |
Cubic FeCo | 12.8 nm | 1.5 nm oxidized shell | GMR | [49] |
SAFb | 100 nm | Multilayers of ferromagnetic, interlayer of nonmagnetic material | GMR, disk shape | [47] |
Magnetic bead | 130, 250 nm | Commercial (Micromod Partikeltechnologie) | SQUID | [43] |
Analyte | Magnetic particle/instrumentation | Sensitivity | Sample volume | Reference | |
---|---|---|---|---|---|
MRSw type I | nucleotide | CLIO, bench top relaxometer | Low nM∼pM | 300 μL | [4,5] |
proteins | CLIO, bench top relaxometer | Low nM | 300 μL | [5,9] | |
virus | CLIO, MRI | 50 viruses/100 μL | 100 μL | [11] | |
bacteria | core/shell, DMRa | 20 CFUb/100 μL (membrane filetered) | 5 μL | [17] | |
Cancer cell | Mn-MNP, DMR | 2 cells/1 μL | 5 μL | [16] | |
MRSw Type II | antibody | MP, bench top relaxometer | <1 pM | 300 μL | [19] |
AC susceptometer | antibody | Iron oxide NP | <1 nM | [42] | |
SQUID | bacteria | Iron oxide NP | 1.1 × 105 bacteria/20 μL | [36] | |
DNA | Magnetic bead | 3∼10 pM (signal amplification) | [43] | ||
GMR | Protein | Cubic FeCo NP | 2 × 106 proteins | 2 μL | [49] |
DNA | Antiferromagnetic NP | 10 pM | [47] | ||
Protein | Iron oxide NP | 2.4 pM | [48] |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Koh, I.; Josephson, L. Magnetic Nanoparticle Sensors. Sensors 2009, 9, 8130-8145. https://doi.org/10.3390/s91008130
Koh I, Josephson L. Magnetic Nanoparticle Sensors. Sensors. 2009; 9(10):8130-8145. https://doi.org/10.3390/s91008130
Chicago/Turabian StyleKoh, Isaac, and Lee Josephson. 2009. "Magnetic Nanoparticle Sensors" Sensors 9, no. 10: 8130-8145. https://doi.org/10.3390/s91008130
APA StyleKoh, I., & Josephson, L. (2009). Magnetic Nanoparticle Sensors. Sensors, 9(10), 8130-8145. https://doi.org/10.3390/s91008130