Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals
<p>Block diagrams of the calibration approaches. a) <span class="html-italic">FWF</span>(noise) with the switch in position 1 and <span class="html-italic">FWF</span>(Y1·Y2) with the switch in position 2. b) <span class="html-italic">FWF</span>(local).</p> ">
<p>Block diagrams of the calibration approaches. a) <span class="html-italic">FWF</span>(noise) with the switch in position 1 and <span class="html-italic">FWF</span>(Y1·Y2) with the switch in position 2. b) <span class="html-italic">FWF</span>(local).</p> ">
<p>Equivalent low-pass spectrum of PRN sequence (black) with different Symbol Rates (SR) and H(f) estimated from noise (gray). Positive and negative frequencies plotted normalized to the bandwidth.</p> ">
<p><span class="html-italic">FWF</span> estimated by cross-correlating receivers’ outputs at different time lags when injecting thermal noise at different equivalent noise temperatures <span class="html-italic">T<sub>N</sub></span> [K].</p> ">
<p>a) <span class="html-italic">FWF</span> estimated by cross-correlating receivers’ outputs when calibration signal is a <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(Y1·Y2) (<a href="#FD1" class="html-disp-formula">Equations 1</a>–<a href="#FD2" class="html-disp-formula">2</a>) and comparison with reference <span class="html-italic">FWF</span> computed with correlated noise with <span class="html-italic">T<sub>N</sub></span>= 1500 K (<a href="#f3-sensors-09-06131" class="html-fig">Figure 3</a>). b) <span class="html-italic">FWF</span> estimated by cross-correlating receivers’ output with local replica of <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(local) (<a href="#FD3" class="html-disp-formula">Equations 3</a>–<a href="#FD7" class="html-disp-formula">7</a>) and comparison with reference <span class="html-italic">FWF</span> computed with correlated noise with <span class="html-italic">T<sub>N</sub></span>= 1500 K (<a href="#f3-sensors-09-06131" class="html-fig">Figure 3</a>). Note: time axis is normalized to 1/<span class="html-italic">B.</span></p> ">
<p>a) <span class="html-italic">FWF</span> estimated by cross-correlating receivers’ output with local replica of <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(local) (<a href="#FD3" class="html-disp-formula">Equation 3</a>–<a href="#FD7" class="html-disp-formula">7</a>) for different input powers and comparison with reference <span class="html-italic">FWF</span> computed with correlated noise with <span class="html-italic">T<sub>N</sub></span>= 1500 K (<a href="#f3-sensors-09-06131" class="html-fig">Figure 3</a>). b) <span class="html-italic">FWF</span> estimated by cross-correlating receivers’ outputs when calibration signal is a <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(Y1·Y2) (<a href="#FD1" class="html-disp-formula">Equation 1</a>–<a href="#FD2" class="html-disp-formula">2</a>) for different input powers and comparison with reference <span class="html-italic">FWF</span> computed with correlated noise with <span class="html-italic">T<sub>N</sub></span>= 1500 K (<a href="#f3-sensors-09-06131" class="html-fig">Figure 3</a>). Note: time axis normalized to 1/<span class="html-italic">B</span>.</p> ">
<p>a) <span class="html-italic">FWF</span> estimated by cross-correlating receivers’ output with local replica of <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(local) (<a href="#FD3" class="html-disp-formula">Equation 3</a>–<a href="#FD7" class="html-disp-formula">7</a>) for different input powers and comparison with reference <span class="html-italic">FWF</span> computed with correlated noise with <span class="html-italic">T<sub>N</sub></span>= 1500 K (<a href="#f3-sensors-09-06131" class="html-fig">Figure 3</a>). b) <span class="html-italic">FWF</span> estimated by cross-correlating receivers’ outputs when calibration signal is a <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(Y1·Y2) (<a href="#FD1" class="html-disp-formula">Equation 1</a>–<a href="#FD2" class="html-disp-formula">2</a>) for different input powers and comparison with reference <span class="html-italic">FWF</span> computed with correlated noise with <span class="html-italic">T<sub>N</sub></span>= 1500 K (<a href="#f3-sensors-09-06131" class="html-fig">Figure 3</a>). Note: time axis normalized to 1/<span class="html-italic">B</span>.</p> ">
<p>a) <span class="html-italic">FWF</span> amplitude and phase errors at τ = 0, ± <span class="html-italic">T<sub>s</sub></span> when <span class="html-italic">FWF</span> is estimated by cross-correlating receivers’ output with local replica of <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(local) (<a href="#FD3" class="html-disp-formula">Equations 3</a>–<a href="#FD7" class="html-disp-formula">7</a>) for different input powers. b) <span class="html-italic">FWF</span> amplitude and phase errors at τ = 0, ± <span class="html-italic">T<sub>s</sub></span> when <span class="html-italic">FWF</span> is estimated by cross-correlating receivers’ outputs when calibration signal is a <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(Y1·Y2) (<a href="#FD1" class="html-disp-formula">Equations 1</a>–<a href="#FD2" class="html-disp-formula">2</a>) for different input powers.</p> ">
<p>a) <span class="html-italic">FWF</span> amplitude and phase errors at τ = 0, ± <span class="html-italic">T<sub>s</sub></span> when <span class="html-italic">FWF</span> is estimated by cross-correlating receivers’ output with local replica of <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(local) (<a href="#FD3" class="html-disp-formula">Equations 3</a>–<a href="#FD7" class="html-disp-formula">7</a>) for different input powers. b) <span class="html-italic">FWF</span> amplitude and phase errors at τ = 0, ± <span class="html-italic">T<sub>s</sub></span> when <span class="html-italic">FWF</span> is estimated by cross-correlating receivers’ outputs when calibration signal is a <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(Y1·Y2) (<a href="#FD1" class="html-disp-formula">Equations 1</a>–<a href="#FD2" class="html-disp-formula">2</a>) for different input powers.</p> ">
<p>a) <span class="html-italic">FWF</span> estimated by cross-correlating receivers’ output with local replica of <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(local) (<a href="#FD3" class="html-disp-formula">Equations 3</a>–<a href="#FD7" class="html-disp-formula">7</a>) for different number of quantization bits and comparison with reference <span class="html-italic">FWF</span> computed with correlated noise with <span class="html-italic">T<sub>N</sub></span> = 1500 K (<a href="#f3-sensors-09-06131" class="html-fig">Figure 3</a>). b) <span class="html-italic">FWF</span> estimated by cross-correlating receivers’ outputs when calibration signal is a <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(Y1·Y2) (<a href="#FD1" class="html-disp-formula">Equations 1</a>–<a href="#FD2" class="html-disp-formula">2</a>) for different number of quantization bits and comparison with reference <span class="html-italic">FWF</span> computed with correlated noise with <span class="html-italic">T<sub>N</sub></span> = 1500 K (<a href="#f3-sensors-09-06131" class="html-fig">Figure 3</a>).</p> ">
<p>a) <span class="html-italic">FWF</span> estimated by cross-correlating receivers’ output with local replica of <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(local) (<a href="#FD3" class="html-disp-formula">Equations 3</a>–<a href="#FD7" class="html-disp-formula">7</a>) for different number of quantization bits and comparison with reference <span class="html-italic">FWF</span> computed with correlated noise with <span class="html-italic">T<sub>N</sub></span> = 1500 K (<a href="#f3-sensors-09-06131" class="html-fig">Figure 3</a>). b) <span class="html-italic">FWF</span> estimated by cross-correlating receivers’ outputs when calibration signal is a <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(Y1·Y2) (<a href="#FD1" class="html-disp-formula">Equations 1</a>–<a href="#FD2" class="html-disp-formula">2</a>) for different number of quantization bits and comparison with reference <span class="html-italic">FWF</span> computed with correlated noise with <span class="html-italic">T<sub>N</sub></span> = 1500 K (<a href="#f3-sensors-09-06131" class="html-fig">Figure 3</a>).</p> ">
<p>a) <span class="html-italic">FWF</span> amplitude and phase errors at τ = 0, ± <span class="html-italic">T<sub>s</sub></span> as a function of the quantization bits when <span class="html-italic">FWF</span> is estimated by cross-correlating receivers’ output with local replica of <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(local) (<a href="#FD3" class="html-disp-formula">Equation 3</a>–<a href="#FD7" class="html-disp-formula">7</a>), b) <span class="html-italic">FWF</span> amplitude and phase errors at τ = 0, ± <span class="html-italic">T<sub>s</sub></span> as a function of the quantization bits when <span class="html-italic">FWF</span> is estimated by cross-correlating receivers’ outputs when calibration signal is a <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(Y1·Y2) (<a href="#FD1" class="html-disp-formula">Equations 1</a>–<a href="#FD2" class="html-disp-formula">2</a>).</p> ">
<p>a) <span class="html-italic">FWF</span> amplitude and phase errors at τ = 0, ± <span class="html-italic">T<sub>s</sub></span> as a function of the quantization bits when <span class="html-italic">FWF</span> is estimated by cross-correlating receivers’ output with local replica of <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(local) (<a href="#FD3" class="html-disp-formula">Equation 3</a>–<a href="#FD7" class="html-disp-formula">7</a>), b) <span class="html-italic">FWF</span> amplitude and phase errors at τ = 0, ± <span class="html-italic">T<sub>s</sub></span> as a function of the quantization bits when <span class="html-italic">FWF</span> is estimated by cross-correlating receivers’ outputs when calibration signal is a <span class="html-italic">PRN</span> sequence <span class="html-italic">FWF</span>(Y1·Y2) (<a href="#FD1" class="html-disp-formula">Equations 1</a>–<a href="#FD2" class="html-disp-formula">2</a>).</p> ">
<p>Concept block diagram of the implementation network in fibre optics [<a href="#b21-sensors-09-06131" class="html-bibr">21</a>].</p> ">
Abstract
:1. Introduction
- only separable errors, those can be assigned to each particular receiver, can be calibrated [7], and
- the signal amplitude is constant, which allows higher receivers input power levels than in the case of injecting noise, without the need to allow a margin to avoid signal clipping. This makes the calibration less sensitive to the receivers’ thermal noise,
- all receivers are driven with the same PRN signal, which allows the calibration of baseline errors as well (baseline calibration refers to all errors associated to the particular pair of receivers forming a baseline, and not just the “separable” error terms that can be associated to each particular receiver) ,
- 1 bit/2 level digital correlators can be used, the same ones typically used for the noise signals to be measured later on,
- the signal pattern is deterministic and known, which allows new calibration strategies different from the cross-correlation between receivers’ outputs, such as the cross-correlation of receivers’ output with an exact replica of the input sequence,
- new approaches to distribute the calibration signal such as:
- - electrical distribution at baseband,
- - optical distribution with a modulation at RF followed by an opto-electrical conversion at each receiver input, or even
- - the generation of the calibration signal at each receiver’s input using a reference clock, and
- the PRN source can be turned ON for calibration and OFF during the measurements, without the thermal stabilization problems of noise sources. At the same time the isolation requirements of the input switch are fulfilled and EMC problems minimized.
2. Theoretical Basis and Simulator Description
3. Experimental Validation of the Technique
- In order to compare and evaluate the performance of this technique, the first method, or ideal case, has been implemented injecting thermal noise [4] [“FWF(noise)”, as shown in Figure 1a, with the switch in the position 1]. The FWF is computed directly from the cross-correlation of the output signals of each channel using Equations (1) and (2).
- In the second method [“FWF(Y1·Y2)”], the signal noise is replaced by a PRN signal (Figure 1a with the switch in the position 2). The FWF is also computed using Equations (1) and (2).
- In the third method [“FWF(local)”, in Figure 1b] the output signal of each channel yi(n) and yj (n) is correlated with a local replica of the PRN (x(n)] to obtain Hi(k) and Hj(k) as in Equation (5). The FWF is then computed according to Equation (7). As additional feature, this method allows also to make a diagnosis of the receivers’ frequency response, which can be very helpful in monitoring the instrument’s health.
4. Considerations for the Implementation of a Calibration System for Large Aperture Synthesis Interferometric Radiometers
- Generation of the PRN signal in a central point and radio frequency (RF) distribution. In this case a distribution network similar to the current noise injection network would be required [4], or
- Generation of the PRN signal in a central point and optical distribution to each receiver using an optical fibre distribution network, or
- Generation of the PRN signal in a central point and baseband distribute it to all receivers. In this case an up-converter is needed at each receiver input, being all phase-locked to a common reference, or
- Generation of the PRN signal at each receiver input. In this case, up-conversion, phase-locking and synchronism are required.
5. Conclusions
Acknowledgments
References and Notes
- Thompson, A.R.; Moran, J.M.; Swenson, G.W., Jr. Interferometry and Synthesis in Radio Astronomy, 2nd ed; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Camps, A.; Torres, F.; Lopez-Dekker, P.; Frasier, S.J. Redundant space calibration of hexagonal and Y-shaped beamforming radars and interferometric radiometers. Int. J. Remote Sens 2003, 24, 5183–5196. [Google Scholar]
- SMOS: ESA’s Water Mission; Brochure BR-224;. ESA Publications Division: Noordwijk, The Netherlands. [Online] June 2004. Available at: http://www.esa.int/esapub/br/br224/br224.pdf.
- Torres, F.; Camps, A.; Bará, J.; Corbella, I; Ferrero, R. On-board phase and modulus calibration of large aperture synthesis radiometers: Study applied to MIRAS. IEEE T. Geosci. Remote 1996, 4, 1000–1009. [Google Scholar]
- Tanner, A.B.; Wilson, W.J.; Kangaslahti, P.P.; Lambrigsten, B.H.; Dinardo, S.J.; Piepmeier, J.R.; Ruf, C.S.; Rogacki, S.; Gross, S.M.; Musko, S. Prototype development of a geostationary synthetic thinned aperture radiometer (GeoSTAR). 2004 IEEE International Geoscience and Remote Sensing Symposium, Long Beach, CA, USA, September 20–24, 2005; 2, pp. 2075–2078.
- Carlström, A.; Christensen, J.; Emrich, A.; de Maagt, P. Image retrieval simulations for the Geo Atmospheric Sounder (GAS). IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008, Boston, MA, USA, July 6–11, 2008.
- Torres, F.; Camps, A.; Bará, J.; Corbella, I. Impact of receiver errors on the radiometric resolution of large 2D aperture synthesis radiometers. Study applied to MIRAS. Radio Science 1997, 32, 629–642. [Google Scholar]
- Corbella, I.; Camps, A.; Torres, F.; Bará, J. Analysis of Noise-Injection Networks for Interferometric-Radiometer Calibration. IEEE T. Microw. Theor 2000, 48, 545–552. [Google Scholar]
- Brown, M.A.; Torres, F.; Corbella, I.; Colliander, A. SMOS calibration. IEEE T. Geosci. Remote 2008, 46, 646–658. [Google Scholar]
- Ruf, C.S.; Li, J. A correlated noise calibration standard for interferometric, polarimetric, and autocorrelation microwave radiometers. IEEE T. Geosci. Remote 2003, 41, 2187–2196. [Google Scholar]
- Hagen, J.B.; Farley, D.T. Digital correlation techniques in radio science. Radio Science 1973, 8, 775–784. [Google Scholar]
- Camps, A. Passive Advanced Unit (PAU): A Hybrid L Band Radiometer, GNSS-reflectometer and IR-Adiometer for Passive Remote Sensing of the Ocean; European Young Investigator Awards: Strasbourg Cedex, France, 2004; http://www.esf.org/activities/euryi/awards/2004.html.
- Camps, A.; Bosch-Lluis, X.; Marchan-Hernandez, J.F.; Ramos-Perez, I.; Izquierdo, B.; Rodríguez, N. New instruments for ocean remote sensing: PAU description and analysis of PAU-radiometer. IEEE T. Geosci. Remote 2007, 45, 3180–3192. [Google Scholar]
- Camps, A.; Torres, F.; Bará, J.; Corbella, I.; Monzón, F. Automatic calibration of channels frequency response in interferometric radiometers. Electron. Lett 1999, 35, 115–116. [Google Scholar]
- Proakis, J.G.; Manolakis, D.G. Introduction to Digital Signal Processing; MacMillan Publishing Company: New York, NY, USA, 1988; Ch. 2; section 2.5. [Google Scholar]
- Gold, R. Co-optimal binary sequences for spread spectrum multiplexing. IEEE T. Inform. Theory 1967, 13, 619–621. [Google Scholar]
- Ramos-Perez, I.; Bosch-Lluis, X.; Camps, A.; Marchan-Hernandez, J.F.; Prehn, R. Design of a compact dual-polarization receiver for pseudo-correlation radiometers at L-band. In International Geoscience and Remote Sensing Symposium, Denver, CO, USA, July 31–August 4, 2006; pp. 1172–1175.
- Thompson, A.R.; Moran, J.M.; Swenson, G.W. Interferometry and Synthesis in Radio Astronomy; Wiley: NY, 1986; and reprinted by Kreiger: Malabar, FL, USA, 1991, 1994; Ch. 8. [Google Scholar]
- Thompson, A.R. MMA Memo 220: Quantization Efficiency for Eight or More Sampling Levels. 9 July 1998. Available at: http://www.alma.nrao.edu/memos/html-memos/alma220/memo220.html.
- Fischman, M.A.; England, A.W.; Ruf, C.S. How digital correlation affects the fringe washing function in L-band aperture synthesis radiometry. IEEE T. Geosci. Remote 2002, 40, 671–679. [Google Scholar]
- DAS Photonics. SMOSops: Estudio Preliminar de Viabilidad de la Distribución Óptica de la Señal de Calibración; Technical Note DAS-AS-INT-D-TI01-A: Valencia, Spain, March 2008. [Google Scholar]
- Microwave Photonics Distribution of Local Oscillators; (ESA ITT AO 1-5456/07/NL/GLC),; Noordwijk: The Netherlands, October 2007.
- Cox, C.H. Analog Optical Links: Theory and Practice; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
© 2009 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pérez, I.R.; Bosch-Lluis, X.; Camps, A.; Alvarez, N.R.; Hernandez, J.F.M.; Domènech, E.V.; Vernich, C.; De la Rosa, S.; Pantoja, S. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals. Sensors 2009, 9, 6131-6149. https://doi.org/10.3390/s90806131
Pérez IR, Bosch-Lluis X, Camps A, Alvarez NR, Hernandez JFM, Domènech EV, Vernich C, De la Rosa S, Pantoja S. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals. Sensors. 2009; 9(8):6131-6149. https://doi.org/10.3390/s90806131
Chicago/Turabian StylePérez, Isaac Ramos, Xavi Bosch-Lluis, Adriano Camps, Nereida Rodriguez Alvarez, Juan F. Marchán Hernandez, Enric Valencia Domènech, Carlos Vernich, Sonia De la Rosa, and Sebastián Pantoja. 2009. "Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals" Sensors 9, no. 8: 6131-6149. https://doi.org/10.3390/s90806131
APA StylePérez, I. R., Bosch-Lluis, X., Camps, A., Alvarez, N. R., Hernandez, J. F. M., Domènech, E. V., Vernich, C., De la Rosa, S., & Pantoja, S. (2009). Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals. Sensors, 9(8), 6131-6149. https://doi.org/10.3390/s90806131