Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing
"> Graphical abstract
">
<p>Location of WSN activities at the Belmont Research Station, near Rockhampton (Qld.) Australia, and a nearby study site at Pondicherry. (Spatial data source: Geoscience Australia, 2009)</p> ">
<p>(a) Cattle wearing GPS collars. (b) Cow and calf wearing proximity loggers.</p> ">
<p>Schematic of mobile animal sensors communicating with each other and an array of static nodes.</p> ">
<p>Compression of trajectory data for an animal moving around a paddock. The beacons in the figure are data transmission points.</p> ">
<p>Network diagrams representing total contact duration of contacts less than 5 m between animals logged by proximity loggers. (a) The complete network on day 2, based on 49 animals. (b) The network on day 2 where total contact time was greater than 40 minutes. (c) The network on day 4 where total contact time was greater than 60 minutes. (d) The network on day 6 where contact time was greater than 80 minutes. Isolates (those individuals with no contacts within the specified timeframe) in diagrams (b)-(d) have been removed. Key: colour: red = female, blue = male; shape: circle = adult, square = calf; label: first label is contact logger ID, second label is cow/calf pair code (same pair code equals identified cow/calf pair); thickness of lines represents association strength.</p> ">
<p>(a) The trajectories of 36 animals over three days in a paddock at Belmont Research Station. (b) Percentage of time during the experiment animals spent in each pixel. (c) Trajectories of two animals overlaid on satellite-derived NDVI values. (d) Same as (c) zoomed into the bottom right corner of the paddock. (e) LPI for each pixel in front of the fence based on the proportion of NDVI in this area for animal number 103. (f) Same as (e) for animal number 396.</p> ">
<p>For animals number 103 and 396 during the three day trial, and for the area in front of the virtual fence, (a) the percentage time spent at each distance from the watering point. (b) The percentage time spent at each distance from the fence lines, both virtual and physical. (c) The percentage time spent within pixels of each NDVI value (d) The LPI for each NDVI value.</p> ">
Abstract
:1. Introduction
- Monitor behavioural preferences;
- Quantify social behaviour and;
- Integrate data from ground based animal sensors with remote sensing data to understand animal-landscape interactions.
2. Sensing: Using Mobile Sensors to Monitor Animal Behaviour
2.1. Locating animals using GPS
2.2. Study areas
3. Communication: Using a WSN to explore Animal Affiliations
3.1. Transmission and compression of GPS data
3.2. WSN components and deployment
4. Integration: Sensing the Animal in Its Environment Using a WSN
4.2. Linking animal sensors with remote sensing to understand animal landscape interactions
5. Constraints to Integration
5.1. Logistical / contextual constraints of sensors within a WSN
5.2. Temporal constraints
5.3. Spatial constraints
6. Conclusions
Acknowledgments
References and Notes
- Ganskopp, D.; Cruz, R.; Johnson, D.E. Least-effort pathways?: A GIS analysis of livestock trails in rugged terrain. Appl. Anim. Behav. Sci. 2000, 68, 179–190. [Google Scholar]
- Turner, L.W.; Udal, M.C.; Larson, B.T.; Shearer, S.A. Monitoring cattle behavior and pasture use with GPS and GIS. Can. J. Anim. Sci. 2000, 80, 405–413. [Google Scholar]
- Hulbert, I.A.R.; French, J. The Accuracy of GPS for Wildlife Telemetry and Habitat Mapping. J. Appl. Ecol. 2001, 38, 869–878. [Google Scholar]
- Tomkins, N.; O'Reagain, P. Global positioning systems indicate landscape preferences of cattle in the subtropical savannas. Rangeland J. 2007, 29, 217–222. [Google Scholar]
- Moil, R.J.; Millspaugh, J.J.; Beringer, J.; Sartwell, J.; He, Z.H. A new ‘view’ of ecology and conservation through animal-borne video systems. Trends Ecol. Evol. 2007, 22, 660–668. [Google Scholar]
- Cooke, S.J.; Hinch, S.G.; Wikelski, M.; Andrews, R.D.; Kuchel, L.J.; Wolcott, T.G.; Butler, P.J. Biotelemetry: a mechanistic approach to ecology. Trends Ecol. Evol. 2004, 19, 334–343. [Google Scholar]
- Ungar, E.D.; Henkin, Z.; Gutman, M.; Dolev, A.; Genizi, A.; Ganskopp, D. Inference of animal activity from GPS collar data on free-ranging cattle. Rangel. Ecol. Manag. 2005, 58, 256–266. [Google Scholar]
- Wark, T.; Swain, D.L.; Crossman, C.; Valencia, P.; Bishop-Hurley, G.J.; Handcock, R.N. Sensor and Actuator Networks for Protection of Environmentally Sensitive Areas. IEEE Pervasive Comput. 2009, 30–36. [Google Scholar]
- Wark, T.; Corke, P.; Sikka, P.; Klingbeil, L.; Guo, Y.; Crossman, C.; Valencia, P.; Swain, D.; Bishop-Hurley, G. Transforming agriculture through pervasive wireless sensor networks. IEEE Pervasive Comput. 2007, 6, 50–57. [Google Scholar]
- Krishnamachari, B. Networking Wireless Sensors; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Collins, S.L.; Bettencourt, L.M.A.; Hagberg, A.; Brown, R.F.; Moore, D.I.; Bonito, G.; Delin, K.A.; Jackson, S.P.; Johnson, D.W.; Burleigh, S.C.; et al. New opportunities in ecological sensing using wireless sensor networks. Front. Ecol. Environ. 2006, 4, 402–407. [Google Scholar]
- Hart, J.K.; Martinez, K. Environmental Sensor Networks: A revolution in the earth system science? Earth-Sci. Rev. 2006, 78, 177–191. [Google Scholar]
- Hamilton, M.; Graham, E.A.; Rundel, P.W.; Allen, M. New Approaches in Embedded Networked Sensing for Terrestrial Ecological Observatories. Environ. Eng. Sci. 2007, 24, 192–204. [Google Scholar]
- Swain, D.L.; Bishop-Hurley, G.J. Using contact logging devices to explore animal affiliations: Quantifying cow-calf interactions. Appl. Anim. Behav. Sci. 2007, 102, 1–11. [Google Scholar]
- Estrin, D.; Govindan, R.; Heidemann, J.; Kumar, S. Next century challenges: Scalable coordination in sensor networks. Proceedings of the 5th Annual International Conference on Mobile Computing and Networks (MobiCOM'99), Seattle, WA, USA, August 15-19, 1999.
- Ash, A.J.; McIvor, J.G.; Corfield, J.P.; Winter, W.H. How land condition alters plant-animal relationships in Australia's tropical rangelands. Agricult. Ecosys. Environ. 1995, 56, 77–92. [Google Scholar]
- Hunt, L.P. Heterogeneous grazing causes local extinction of edible perennial shrubs: A matrix analysis. J. Appl. Ecol. 2001, 38, 238–252. [Google Scholar]
- Kaine, G.W.; Tozer, P.R. Stability, resilience and sustainability in pasture-based grazing systems. Agricult. Sys. 2005, 83, 27–48. [Google Scholar]
- Meeuwig, R.O.; Packer, P.E. Erosion and runoff on forest and rangelands. Proceedings of the 5th Workshop of the US/Australia Rangelands Panel, Boise, ID, June, 1975.
- Dorrough, J.; Yen, A.; Turner, V.; Clark, S.G.; Crosthwaite, J.; Hirth, J.R. Livestock grazing management and biodiversity conservation in Australian temperate grassy landscapes. Aust. J. Agr. Res. 2004, 55, 279–295. [Google Scholar]
- Karfs, R.A.; Wallace, J.F. An analysis of temporal change at rangeland monitoring sites using remote sensing in northwest Australia. Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Sydney, Australia, July 9-13, 2001.
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 6th Ed. ed; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- de Jong, S.M.; van der Meer, F.D. (Eds.) Remote Sensing Image Analysis : Including the Spatial Domain; Dordrecht: London, UK, 2004; Vol. 5, pp. 1–359.
- Tucker, C.J.; Sellers, P.J. Satellite remote-sensing of primary production. Int. J. Remote Sens. 1986, 7, 1395–1416. [Google Scholar]
- Elvidge, C.D.; Chen, Z.K. Comparison of Broad-Band and Narrow-Band Red and near-infrared vegetation indexes. Remote Sens. Environ. 1995, 54, 38–48. [Google Scholar]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar]
- Eastwood, C.R.; Mata, G.; Handcock, R.N.; Kenny, S. Evaluating satellite-based pasture measurement for Australian dairy farmers. Proceedings of the Joint International Agricultural Conference, Wageningen, The Netherlands, July 6-8, 2009.
- Hill, M.J.; Donald, G.E.; Hyder, M.W.; Smith, R.C.G. Estimation of pasture growth rate in the south west of Western Australia from AVHRR NDVI and climate data. Remote Sens. Environ. 2004, 93, 528–545. [Google Scholar]
- Ruimy, A.; Saugier, B.; Dedieu, G. Methodology for the estimation of terrestrial net primary production from remotely sensed data. J. Geophys. Res. 1994, 99, 5263–5283. [Google Scholar]
- Field, C.B.; Randerson, J.T.; Malmstrom, C.M. Global Net Primary Production - Combining Ecology and Remote-Sensing. Remote Sens. Environ. 1992, 51, 74–88. [Google Scholar]
- Todd, S.W.; Hoffer, R.M.; Milchunas, D.G. Biomass estimation on grazed and ungrazed rangelands using spectral indices. Int. J. Remote Sens. 1998, 19, 427–438. [Google Scholar]
- Bro-Jorgensen, J.; Brown, M.E.; Pettorelli, N. Using the satellite-derived normalized difference vegetation index (NDVI) to explain ranging patterns in a lek-breeding antelope: the importance of scale. Oecologia 2008, 158, 177–182. [Google Scholar]
- Bailey, P.J.; Britt, A.G. Electronic identification and tracking of cattle in Victoria, Australia. In Performance Recording of Animals - State of the Art, 2000; Klopcic, M., Malinger, K., Siard, N., Zgur, S., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2001; pp. 327–330. [Google Scholar]
- Böhm, M.; Palphramand, K.L.; Newton-Cross, G.; Hutchings, M.R.; White, P.C.L. Dynamic interactions among badgers: implications for sociality and disease transmission. J. Anim. Ecol. 2008, 77, 735–745. [Google Scholar]
- Swain, D.L.; Wark, T.; Bishop-Hurley, G.J. Using high fix rate GPS data to determine the relationships between fix rate, prediction errors and patch selection. Ecol. Model. 2008, 212, 273–279. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; D'Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: a new map of life on earth. Bioscience 2001, 51, 933–938. [Google Scholar]
- Wark, T.; Crossman, C.; Valencia, P.; Corke, P.; Bishop-Hurley, G.J.; Swain, D.L. A sensor network for compression and streaming of GPS trajectory data. In Proceedings of SenSysACM; Raleigh, NC, USA, November 5-7 2008. [Google Scholar]
- Conradt, L.; Roper, T.J. Consensus decision making in animals. Trends Ecol. Evol. 2005, 20, 449–456. [Google Scholar]
- Cameron, E.Z.; Du Toit, J.T. Social influences on vigilance behaviour in giraffes, Giraffa camelopardalis. Anim. Behav. 2005, 69, 1337–1344. [Google Scholar]
- Connor, R.C.; Smolker, R.; Bejder, L. Synchrony, social behaviour and alliance affiliation in Indian Ocean bottlenose dolphins, Tursiops aduncus. Anim. Behav. 2006, 72, 1371–1378. [Google Scholar]
- Dumont, B.; Boissy, A. Grazing behaviour of sheep in a situation of conflict between feeding and social motivations. Behav. Process. 2000, 49, 131–138. [Google Scholar]
- Johnsen, T.S.; Zuk, M.; Fessler, E.A. Social dominance, male behaviour and mating in mixed-sex flocks of red jungle fowl. Behaviour 2001, 138, 1–18. [Google Scholar]
- Ji, W.; White, P.C.L.; Clout, M.N. Contact rates between possums revealed by proximity data loggers. J. Appl. Ecol. 2005, 42, 595–604. [Google Scholar]
- CNES SPOT User's Handbook; SPOT Image. Centre National d'Etudes Spatiales and SPOT Image Corporation: Toulouse, France, 1988; p. 285.
- Hobbs, N.T.; Bowden, D.C. Confidence intervals on food preference indices. J. Wildlife Manage. 1982, 46, 505–507. [Google Scholar]
- Krischke, M. RapidEye: New moves in small satellites. GIM Int. 2003, 12–15. [Google Scholar]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar]
- Salomonson, V.V.; Barnes, W.L.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. Modis - Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens. 1989, 27, 145–153. [Google Scholar]
Spatial constraints | Temporal constraints | Logistical / contextual constraints of sensors within a WSN | |
---|---|---|---|
Ground-based sensors within a WSN |
|
|
|
Animal-based sensors |
|
|
|
Satellite remote-sensing |
|
|
|
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Handcock, R.N.; Swain, D.L.; Bishop-Hurley, G.J.; Patison, K.P.; Wark, T.; Valencia, P.; Corke, P.; O’Neill, C.J. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing. Sensors 2009, 9, 3586-3603. https://doi.org/10.3390/s90503586
Handcock RN, Swain DL, Bishop-Hurley GJ, Patison KP, Wark T, Valencia P, Corke P, O’Neill CJ. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing. Sensors. 2009; 9(5):3586-3603. https://doi.org/10.3390/s90503586
Chicago/Turabian StyleHandcock, Rebecca N., Dave L. Swain, Greg J. Bishop-Hurley, Kym P. Patison, Tim Wark, Philip Valencia, Peter Corke, and Christopher J. O’Neill. 2009. "Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing" Sensors 9, no. 5: 3586-3603. https://doi.org/10.3390/s90503586
APA StyleHandcock, R. N., Swain, D. L., Bishop-Hurley, G. J., Patison, K. P., Wark, T., Valencia, P., Corke, P., & O’Neill, C. J. (2009). Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing. Sensors, 9(5), 3586-3603. https://doi.org/10.3390/s90503586