Efficient Chemical Sensing by Coupled Slot SOI Waveguides
<p>(a) Slot waveguide typical structure (BOX: Buried Silicon Oxide). (b) Profiles of quasi-TE and quasi-TM modes confined in a slot waveguide.</p> ">
<p>Architecture of proposed integrated optical sensor.</p> ">
<p>Confinement factor in a circular region versus <span class="html-italic">R</span> (cover medium: Teflon or aqueous solution).</p> ">
<p>Main electric field component distribution related to supermodes supported by the asymmetrical directional coupler (<span class="html-italic">d</span> = 1 μm). (a) Quasi-TE symmetric supermode. (b) Quasi-TE antisymmetric supermode. (c) Quasi-TM symmetric supermode. (d) Quasi-TM antisymmetric supermode.</p> ">
<p>Quasi-TE mode optical propagation in the designed asymmetrical directional coupler (<span class="html-italic">d</span> = 1 μm). Optical field intensity plot obtained by EME method.</p> ">
<p>Optical intensity (quasi-TE mode by EME method) distribution in the cross-section of asymmetrical directional coupler (<span class="html-italic">d</span> = 1 μm) at: (a) <span class="html-italic">z</span> = 23.5 μm; (b) <span class="html-italic">z</span> = 47 μm.</p> ">
<p>Normalized optical power confined in the two coupled waveguides (with <span class="html-italic">d</span> = 1 μm) versus propagation length for quasi-TE mode (Solid curves: modelling technique of this paper based on CMT and FEM; Dashed curves: results by 3D EME method).</p> ">
<p>Dependence of <span class="html-italic">β<sub>c</sub></span> on <span class="html-italic">n<sub>cs</sub></span>: a) <span class="html-italic">d</span> = 0.8 μm; b) <span class="html-italic">d</span> = 1 μm; c) <span class="html-italic">d</span> = 1.2 μm.</p> ">
<p><span class="html-italic">δ</span> as a function of <span class="html-italic">n<sub>cs</sub></span> for quasi-TE and quasi-TM modes.</p> ">
Abstract
:1. Introduction
2. Sensor architecture and guiding structure
3. Sensor modelling
4. Sensor optimization and performance
5. Conclusions
References
- Passaro, V.M. N.; Dell'Olio, F.; Casamassima, B.; De Leonardis, F. Guided-Wave Optical Biosensors. Sensors 2007, 7, 508–536. [Google Scholar]
- Luff, B.J.; Harris, R. D.; Wilkinson, J. S.; Wilson, R.; Schiffrin, D. J. Integrated-optical directional coupler biosensor. Opt. Lett. 1996, 21, 618–620. [Google Scholar]
- Heideman, R.G.; Lambeck, P. V. Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sens. Actuat. B. 1999, 61, 100–127. [Google Scholar]
- Prieto, F.; Sepulveda, B.; Calle, A.; Llobera, A.; Domynguez, C.; Abad, A.; Montoya, A.; Lechuga, L.M. An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 2003, 14, 907–912. [Google Scholar]
- Brosinger, F.; Freimuth, H.; Lacher, M.; Ehrfeld, W.; Gedig, E.; Katerkamp, A.; Spenser, F.; Camman, K. A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon. Sens. Actuat. B. 1997, 44, 350–355. [Google Scholar]
- Hopman, W.C. L.; Pottier, P.; Yudistira, D.; van Lith, J.; Lambeck, P. V.; De La Rue, R. M.; Driessen, A. Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors. IEEE J. Sel. Top. Quant. Electron. 2005, 11, 11–16. [Google Scholar]
- Passaro, V.M. N.; Loiacono, R.; D'Amico, G.; De Leonardis, F. Design of Bragg Grating Sensors Based on Submicrometer Optical Rib Waveguides in SOI. IEEE Sensors J. 2008, 11, 1603–1611. [Google Scholar]
- Chao, C.Y.; Fung, W.; Guo, L. J. Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Top. Quant. Electron. 2006, 12, 134–142. [Google Scholar]
- Yalçyn, A.; Popat, K.C.; Aldridge, J. C.; Desai, T.A.; Hryniewicz, J.; Chbouki, N.; Little, B. E.; King, O.; Van, V.; Chu, S.; Gill, D.; Anthes-Washburn, M.; Unlu, M. S.; Goldberg, B. B. Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quant. Electron. 2006, 12, 148–155. [Google Scholar]
- Passaro, V.M. N.; Dell'Olio, F.; De Leonardis, F. Ammonia Optical Sensing by Microring Resonators. Sensors. 2007, 7, 2741–2749. [Google Scholar]
- Ciminelli, C.; Armenise, M.N. Modeling and design of a 2D photonic crystal microcavity on polymer material for sensing applications. Proc. SPIE. 2007, 6619, 661933. [Google Scholar]
- Passaro, V. M. N. Silicon Photonics.; Research Signpost: Kerala, India, 2006. [Google Scholar]
- Timotijevic, B.D.; Gardes, F. Y.; Headley, W. R.; Reed, G. T.; Paniccia, M.; Cohen, O.; Hak, D.; Masanovic, G. Z. Multi stage racetrack resonator filters in silicon-on-insulator. J. Opt A, Pure Appl. Opt. 2006, 8, S473–S476. [Google Scholar]
- Canning, J.; Sceats, M.G.; Fleming, S. Grating structures with phase mask period in silica-on-silicon planar waveguides. Optics Comm. 1999, 171, 213–217. [Google Scholar]
- Barrios, C.A.; Almeida, V. R.; Panepucci, R. R.; Schmidt, B. S.; Lipson, M. Compact Silicon Tunable Fabry-Perot Resonator with Low Power Consumption. IEEE Photon. Tech. Lett. 2004, 16, 506–508. [Google Scholar]
- Almeida, V.R.; Xu, Q.; Barrios, C. A.; Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 2004, 29, 1209–1211. [Google Scholar]
- Jordana, E.; Fedeli, J. M.; El Melhaoui, L.; Lyan, P.; Colonna, J.P.; Daldosso, N.; Pavesi, L.; Pellegrino, P.; Garrido, B.; Vilà, A.; Lebour, Y. Deep-UV Lithography Fabrication of Slot Waveguides and Sandwiched Waveguides for Nonlinear Applications. In Eur. Conf. Integrated Optics Proc.; WB4, Copenhagen: Denmark, 2007 25-27 April. [Google Scholar]
- Xu, Q.; Almeida, V.R.; Panepucci, R. R.; Lipson, M. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 2004, 29, 1626–1628. [Google Scholar]
- Baehr-Jones, T.; Hochberg, M.; Walker, C.; Scherera, A. High-Q optical resonators in silicon-on-insulator-based slot waveguides. Appl. Phys. Lett. 2005, 86, 081101. [Google Scholar]
- Schrauwen, J.; Van Lysebettens, J.; Claes, T.; De Vos, K.; Bienstman, P.; Van Thourhout, D.; Baets, R. Focused-ion-beam fabrication of slots in silicon waveguides and ring resonators. IEEE Photon. Technol. Lett. 2009, 21. in publication. [Google Scholar]
- Barrios, C. A.; Xu, Q.; Shakya, J.; Manolatou, C.; Lipson, M. Compact silicon slot-waveguide disk resonator. In OSA Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies; Technical Digest, 2006; paper CTuCC3. [Google Scholar]
- Barrios, C.A. High-performance all-optical silicon micro-switch. Electron. Lett. 2004, 40, 862–863. [Google Scholar]
- Baehr-Jones, T.; Hochberg, M.; Wang, G.; Lawson, R.; Liao, Y.; Sullivan, P.A.; Dalton, L.; Jen, A. K.-Y.; Scherer, A. Optical modulation and detection in slotted silicon waveguides. Opt. Express 2005, 13, 5216–5226. [Google Scholar]
- Hochberg, M.; Baehr-Jones, T.; Wang, G.; Huang, J.; Sullivan, P.; Dalton, L.; Scherer, A. Towards a millivolt optical modulator with nano-slot waveguides. Opt. Express 2007, 15, 8401–8410. [Google Scholar]
- Baehr-Jones, T.; Penkov, B.; Huang, J.; Sullivan, P.; Davies, J.; Takayesu, J.; Luo, J.; Kim, T.-D.; Dalton, L.; Jen, A.; Hochberg, M.; Scherer, A. Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V. Appl. Phys. Lett. 2008, 92, 163303. [Google Scholar]
- Barrios, C.A. Ultrasensitive Nanomechanical Photonic Sensor Based on Horizontal Slot-Waveguide Resonator. IEEE Photon. Technol. Lett. 2006, 18, 2419–2421. [Google Scholar]
- Barrios, C.A.; Lipson, M. Electrically driven silicon resonant light emitting device based on slot waveguide. Opt. Express 2005, 13, 10092–10101. [Google Scholar]
- Fujisawa, T.; Koshiba, M. Polarization-independent optical directional coupler based on slot waveguides. Opt. Lett. 2006, 31, 56–58. [Google Scholar]
- Magno, F.; Passaro, V. M. N.; Dell'Olio, F.; De Leonardis, F. Investigation of Silicon Slot-based Directional Couplers. Eur. Conf. Integrated Optics Proc. ThG24, Copenhagen. 2007. [Google Scholar]
- Fujisawa, T.; Koshiba, M. All-optical logic gates based on nonlinear slot-waveguide couplers. J. Opt. Soc. Am. B. 2006, 23, 684–691. [Google Scholar]
- Fujisawa, T.; Koshiba, M. Theoretical Investigation of Ultrasmall Polarization-Insensitive 1 × 2 Multimode Interference Waveguides Based on Sandwiched Structures. IEEE Photon. Technol. Lett. 2006, 18, 1246–1248. [Google Scholar]
- Xiao, J.; Liu, X.; Sun, X. Design of an ultra-compact MMI wavelength demultiplexer in slot waveguide structures. Opt. Express 2007, 15, 8300–8308. [Google Scholar]
- Feng, N.-N.; Michel, J.; Kimerling, L. C. Low-loss compact-size slotted waveguide polarization rotator and transformer. Opt. Lett. 2007, 32, 2131–2133. [Google Scholar]
- Riboli, F.; Bettotti, P.; Pavesi, L. Band gap characterization and slow light effect in one dimentional photonic crystals based on silicon slot-waveguides. Opt. Express 2007, 15, 11769–11775. [Google Scholar]
- Mu, J.; Zhang, H.; Huang, W.-P. A Theoretical Investigation of Slot Waveguide Bragg Gratings. IEEE J. Quantum Electron. 2008, 44, 622–627. [Google Scholar]
- Yang, A.H. J.; Moore, S. D.; Schmidt, B. S.; Klug, M.; Lipson, M.; Erickson, D. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 2009, 457, 71–75. [Google Scholar]
- Sanchis, P.; Blasco, J.; Martínez, A.; Martí, J. Design of Silicon-Based Slot Waveguide Configurations for Optimum Nonlinear Performance. J. Lightwave Technol 2007, 25, 1298–1305. [Google Scholar]
- Fujisawa, T.; Koshiba, M. Guided Modes of Nonlinear Slot Waveguides. IEEE Photon. Technol. Lett. 2006, 18, 1530–1532. [Google Scholar]
- Passaro, V. M. N.; Lagioia, M.; De Leonardis, F. Design of nonlinear SOI slot waveguides. Proc. 14th Eur. Conf. Int. Optics (ECIO 2008) ThP13. 225–228.
- Feng, N.-N.; Sun, R.; Kimerling, L. C.; Michel, J. Lossless strip-to-slot waveguide transformer. Opt. Lett. 2007, 32, 1250–1252. [Google Scholar]
- Galan, J.V.; Sanchis, P.; Blasco, J.; Marti, J. Study of High Efficiency Grating Couplers for Silicon-Based Horizontal Slot Waveguides. IEEE Photon. Technol. Lett. 2008, 20, 985–987. [Google Scholar]
- Barrios, C.A.; Sánchez, B.; Gylfason, K. B.; Griol, A.; Sohlström, H.; Holgado, M.; Casquel, R. Demonstration of slot-waveguide structures on silicon nitride/silicon oxide platform. Opt. Express 2007, 15, 6846–6856. [Google Scholar]
- Müllner, P.; Hainberger, R. Structural Optimization of Silicon-On-Insulator Slot Waveguides. IEEE Photon. Technol. Lett. 2006, 18, 2557–2559. [Google Scholar]
- Preston, K.; Lipson, M. Slot waveguides with polycrystalline silicon for electrical injection. Opt. Express 2009, 17, 1527–1534. [Google Scholar]
- Galli, M.; Gerace, D.; Politi, A.; Liscidini, M.; Patrini, M.; Andreani, L.C.; Canino, A.; Miritello, M.; Lo Savio, R.; Irrera, A.; Priolo, F. Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides. Appl. Phys. Lett. 2006, 89, 241114. [Google Scholar]
- Feng, N.-N.; Michel, J.; Kimerling, L. C. Optical Field Concentration in Low-Index Waveguides. IEEE J. Quant. Electron. 2006, 42, 885–890. [Google Scholar]
- Chen, X.; Jiang, W.; Chen, J.; Gu, L.; Chen, R.T. 20 dB-enhanced coupling to slot photonic crystal waveguide using multimode interference coupler. Appl. Phys. Lett. 2007, 91, 091111. [Google Scholar]
- Wülbern, J.H.; Petrov, A.; Eich, M. Electro-optical modulator in a polymer infiltrated silicon slotted photonic crystal waveguide heterostructure resonator. Opt. Express 2009, 17, 304–313. [Google Scholar]
- Veronis, G.; Fan, S. Modes of Subwavelength Plasmonic Slot Waveguides. J. Lightwave Technol 2007, 25, 2511–2521. [Google Scholar]
- Dell'Olio, F.; Passaro, V.M. N. Optical sensing by optimized silicon slot waveguides. Opt. Express 2007, 15, 4977–4993. [Google Scholar]
- Barrios, C.A.; Gylfason, K. B.; Sánchez, B.; Griol, A.; Sohlström, H.; Holgado, M.; Casquel, R. Slot-waveguide biochemical sensor. Opt. Lett. 2007, 32, 3080–3082. [Google Scholar]
- Barrios, C.A.; Bañuls, M. J.; González-Pedro, V.; Gylfason, K. B.; Sánchez, B.; Griol, A.; Maquieira, A.; Sohlström, H.; Holgado, M.; Casquel, R. Label-free optical biosensing with slot-waveguides. Opt. Lett. 2008, 33, 708–710. [Google Scholar]
- Robinson, J.T.; Chen, L.; Lipson, M. On-Chip Gas Detection in Silicon Optical Microcavities. Opt. Express 2008, 16, 4296–4301. [Google Scholar]
- Comsol Multiphysics by COMSOL ©. single license 2005. ver. 3.2.
- FIMMPROP by Photon Design ©. single license. 2007. ver. 4.6.
- Yeh, Y. L.; Wang, C. C.; Jang, M. J.; Chen, C. H.; Tzeng, S. M.; Lin, Y. P.; Chen, K. S. Real-time measurement of glucose concentration using position sensing detector. Proc. 3rd IEEE Int. Conf. Nano/Micro Engineered Molec. Syst. 2008, 561–565. [Google Scholar]
- Datta, A.; Eom, I.-Y.; Dhar, A.; Kuban, P.; Manor, R.; Ahmad, I.; Gangopadhyay, S.; Dallas, T.; Holtz, M.; Temkin, H.; Dasgupta, P. K. Microfabrication and Characterization of Teflon AF-Coated Liquid Core Waveguide Channels in Silicon. IEEE Sensors J. 2003, 3, 788–795. [Google Scholar]
- Parriaux, O.; Lambeck, P.V.; Hoekstra, H. J.W. M.; Veldhuis, G. J.; Pandraud, G. Evanescent wave sensor of sensitivity larger than a free space wave. Opt. Quant. Electron. 2000, 32, 909–921. [Google Scholar]
- Liu, J. M. Photonic Devices.; Cambridge University Press: Cambridge, 2005. [Google Scholar]
Parameter | Value |
---|---|
Si-wire height (h) | 324 nm |
Si-wire width (w) | 180 nm |
Slot gap region width (g) | 100 nm |
Effective index (quasi-TE) | 1.578638 |
Effective index (quasi-TM) | 1.999899 |
Cover confinement factor (quasi-TE) | 0.7644 |
Cover confinement factor (quasi-TM) | 0.4117 |
Waveguide sensitivity (quasi-TE) | 1.0076 |
Waveguide sensitivity (quasi-TM) | 0.4040 |
d = 0.8 μm | d = 1 μm | d = 1.2 μm | ||||
---|---|---|---|---|---|---|
quasi-TE | quasi-TM | quasi-TE | quasi-TM | quasi-TE | quasi-TM | |
q0 (μm-1) | -0.5894 | -0.0625 | -1.5080 | -0.5688 | -2.1670 | -0.9662 |
q1 (μm-1) | 0.5349 | 0.1228 | 1.1820 | 0.4514 | 1.6601 | 0.7398 |
Parameter | Value |
---|---|
Coupler length (L) | 400 μm |
Distance between slot waveguides (d) | 1,094.4 nm |
Device area | 1,200 μm2 |
SP1 (quasi-TE mode) | 500 |
S(P1– P2) (quasi-TE mode) | 1,000 |
Minimum detectable refractive index change | 10-5 |
Minimum detectable glucose concentration | 0.1 g/L |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Passaro, V.M.N.; Dell’Olio, F.; Ciminelli, C.; Armenise, M.N. Efficient Chemical Sensing by Coupled Slot SOI Waveguides. Sensors 2009, 9, 1012-1032. https://doi.org/10.3390/s90201012
Passaro VMN, Dell’Olio F, Ciminelli C, Armenise MN. Efficient Chemical Sensing by Coupled Slot SOI Waveguides. Sensors. 2009; 9(2):1012-1032. https://doi.org/10.3390/s90201012
Chicago/Turabian StylePassaro, Vittorio M. N., Francesco Dell’Olio, Caterina Ciminelli, and Mario N. Armenise. 2009. "Efficient Chemical Sensing by Coupled Slot SOI Waveguides" Sensors 9, no. 2: 1012-1032. https://doi.org/10.3390/s90201012
APA StylePassaro, V. M. N., Dell’Olio, F., Ciminelli, C., & Armenise, M. N. (2009). Efficient Chemical Sensing by Coupled Slot SOI Waveguides. Sensors, 9(2), 1012-1032. https://doi.org/10.3390/s90201012