Determination of Antimony (III) in Real Samples by Anodic Stripping Voltammetry Using a Mercury Film Screen-Printed Electrode
<p>Differential Pulse Anodic Stripping Voltammogram of 10<sup>−6</sup> M Sb (III) in 3.00 M HCl, E<sub>dep</sub> = −0.70 V and t<sub>dep</sub> = 718 s, using a mercury film modified graphite screen-printed electrode (Mercury film: C<sub>Hg</sub> = 800 mg/l, E<sub>dep</sub> = −0.90 V and t<sub>dep</sub> = 600 s).</p> ">
<p>Influence of the main factors in the response in the 2<sup>3</sup> factorial design for optimization of experimental variables in Sb (III) determination by DPASV.</p> ">
<p>Level curves for the 2<sup>2</sup> central composite design for optimization of experimental variables in Sb (III) determination by DPASV.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Optimization of Experimental Variables
tdep (Hg film) (+) = 600 s | tdep (Hg film) (0) = 390 s | tdep (Hg film) (-) = 180 s |
tdep (+) = 600 s | tdep (0) = 390 s | tdep (-) = 180 s |
Edep (+) = −0.40 V | Edep (0) = −0.60 V | Edep (-) = −0.80 V |
tdep (+) = 900 s | tdep [29] (0) = 600 s | tdep (-) = 300 s |
Edep (+) = −0.40 V | Edep [29] (0) = −0.80 V | Edep (-) = −1.20 V |
- Mercury film: CHg = 800 mg L−1, Edep = −0.90 V and tdep = 600 s
- Determination of antimony: HCl 3.00 M, Edep = −0.70 V and tdep = 718 s
3. Results and Discussion
- I = 1.25 ± 0.13 + (0.36 ± 0.03) × 108 C(Number of experimental points n = 8; R2 = 0.99 and Standard deviation (Syx) = 0.08)
3.1. Repeatability and Reproducibility
3.2. Interferences
3.3. Analytical Applications
4. Experimental Section
4.1 Reagents and Apparatus
4.1.1. Reagents
4.1.2. Apparatus
4.1.3. Software
4.2. Procedure
4.2.1. Construction of SPEs
4.2.2. Mercury Film Preparation
4.2.3. Anodic Stripping Voltammetry Measurements
Acknowledgments
References
- Furuta, N.; Iijima, A.; Kambe, A.; Sakai, K.; Sato, K. Concentrations, enrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004. J. Environ. Monit. 2005, 7, 1155–1161. [Google Scholar]
- Palchetti, I.; Cagnini, A.; Mascini, M.; Turner, A.P.F. Characterisation of screen-printed electrodes for detection of heavy metals. Microchim. Acta 1999, 131, 65–73. [Google Scholar]
- Quentel, F.; Filella, M. Determination of inorganic antimony species in seawater by differential pulse anodic stripping voltammetry: stability of the trivalent state. Anal. Chim. Acta 2002, 452, 237–244. [Google Scholar]
- Krachler, M.; Emons, H.; Zheng, J. Speciation of antimony for the 21st century: promises and pitfalls. Trac-Trend Anal. Chem. 2001, 20, 79–90. [Google Scholar]
- Gillain, G. Studies of pretreatments in the determination of Zn, Cd, Pb, Cu, Sb and Bi in suspended particulate matter and plankton by differential-pulse anodic-stripping voltammetry with a hanging mercury drop electrode. Talanta 1982, 29, 651–654. [Google Scholar]
- Sturgeon, R.E.; Willie, S.N.; Berman, S.S. Preconcentration of selenium and antimony from seawater for determination by graphite-furnace atomic-absorption spectrometry. Anal. Chem. 1985, 57, 6–9. [Google Scholar]
- Capodaglio, G.; Vandenberg, C.M.G.; Scarponi, G. Determination of antimony in seawater by cathodic stripping voltammetry. J. Electroanal. Chem. 1987, 235, 275–286. [Google Scholar]
- Shotyk, W.; Krachler, M.; Chen, B. Contamination of Canadian and European bottled waters with antimony from PET containers. J. Environ. Monit. 2006, 8, 288–292. [Google Scholar]
- Guo, T.Z.; Baasner, J. Online microwave sample pretreatment for the determination of mercury in blood by flow-injection cold vapor atomic-absorption spectrometry. Talanta 1993, 40, 1927–1936. [Google Scholar]
- Kadara, R.O.; Tothill, I.E. Stripping chronopotentiometric measurements of lead(II) and cadmium(II) in soils extracts and wastewaters using a bismuth film screen-printed electrode assembly. Anal. Bioanal. Chem. 2004, 378, 770–775. [Google Scholar]
- Smichowski, P.; Madrid, Y.; Camara, C. Analytical methods for antimony speciation in waters at trace and ultratrace levels. A review. Fresenius J. Anal. Chem. 1998, 360, 623–629. [Google Scholar]
- Wagner, W.; Sander, S.; Henze, G. Trace analysis of antimony (III) and antimony (V) by adsorptive stripping voltammetry. Fresenius J. Anal. Chem. 1996, 354, 11–15. [Google Scholar]
- Bond, A.M.; Kratsis, S.; Newman, O.M.G. Combined use of differential pulse adsorptive and anodic stripping techniques for the determination of antimony(III) and antimony(V) in zinc electrolyte. Anal. Chim. Acta 1998, 372, 307–314. [Google Scholar]
- Wang, J.; Lu, J.M.; Tian, B.M.; Yarnitzky, C. Screen-Printed Ultramicroelectrode Arrays for on-Site Stripping Measurements of Trace-Metals. J. Electroanal. Chem. 1993, 361, 77–83. [Google Scholar]
- Yarnitzky, C.; Wang, J.; Tian, B.M. Hand-held lead analyzer. Talanta 2000, 51, 333–338. [Google Scholar]
- Ugo, P.; Moretto, L.M.; Bertoncello, P.; Wang, J. Determination of trace mercury in saltwaters at screen-printed electrodes modified with sumichelate Q10R. Electroanal 1998, 10, 1017–1021. [Google Scholar]
- Desmond, D.; Lane, B.; Alderman, J.; Hill, M.; Arrigan, D.W.M.; Glennon, J.D. An environmental monitoring system for trace metals using stripping voltammetry. Sensor Actuator B-Chem. 1998, 48, 409–414. [Google Scholar]
- Jasinski, M.; Grundler, P.; Flechsig, G.U.; Wang, J. Anodic stripping voltammetry with a heated mercury film on a screen-printed carbon electrode. Electroanal. 2001, 13, 34–36. [Google Scholar]
- Honeychurch, K.C.; Hart, J.P. Screen-printed electrochemical sensors for monitoring metal pollutants. Trac-Trends Anal. Chem. 2003, 22, 456–469. [Google Scholar]
- Beni, V.; Ogurtsov, V.I.; Bakunin, N.V.; Arrigan, D.W.M.; Hill, M. Development of a portable electroanalytical system for the stripping voltammetry of metals: Determination of copper in acetic acid soil extracts. Anal. Chim. Acta 2005, 552, 190–200. [Google Scholar]
- Palchetti, H.; Laschi, S.; Mascini, M. Miniaturised stripping-based carbon modified sensor for in field analysis of heavy metals. Anal. Chim. Acta 2005, 530, 61–67. [Google Scholar]
- Rodriguez, B.B.; Bolbot, J.A.; Tothill, I.E. Urease-glutamic dehydrogenase biosensor for screening heavy metals in water and soil samples. Anal. Bioanal. Chem. 2004, 380, 284–292. [Google Scholar]
- Honeychurch, K.C.; Hawkins, D.M.; Hart, J.P.; Cowell, D.C. Voltammetric behaviour and trace determination of copper at a mercury-free screen-printed carbon electrode. Talanta 2002, 57, 565–574. [Google Scholar]
- Kadara, R.O.; Tothill, L.E. Resolving the copper interference effect on the stripping chronopotentiometric response of lead(II) obtained at bismuth film screen-printed electrode. Talanta 2005, 66, 1089–1093. [Google Scholar]
- Palchetti, I.; Majid, S.; Kicela, A.; Marrazza, G.; Mascini, M. Polymer-mercury coated screen-printed sensors for electrochemical stripping analysis of heavy metals. Int. J. Environ. Anal. Chem. 2003, 83, 701–711. [Google Scholar]
- Zen, J.M.; Yang, C.C.; Kumar, A.S. Voltammetric behavior and trace determination of Pb2+ at a mercury-free screen-printed silver electrode. Anal. Chim. Acta 2002, 464, 229–235. [Google Scholar]
- Choi, J.Y.; Seo, K.; Cho, S.R.; Oh, J.R.; Kahng, S.H.; Park, J. Screen-printed anodic stripping voltammetric sensor containing HgO for heavy metal analysis. Anal. Chim. Acta 2001, 443, 241–247. [Google Scholar]
- Rajesh; Bisht, V.; Takashima, W.; Kaneto, K. An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Biomaterials 2005, 26, 3683–3690. [Google Scholar]
- Adeloju, S.B.; Young, T.M. Anodic-stripping potentiometric determination of antimony in environmental materials. Anal. Chim. Acta 1995, 302, 225–232. [Google Scholar]
- Adeloju, S.B.; Young, T.M.; Jagner, D.; Batley, G.E. Anodic stripping potentiometric determination of antimony on a combined electrode. Analyst 1998, 123, 1871–1874. [Google Scholar]
- Statgraphics Centurion; StatPoint Inc.: Warrenton, VA, USA; pp. 1994–1999.
- Rousseeuw, P.J.; Leroy, A. M. Robust Regression and Outlier Detection; Wiley & Sons, Inc.: New York, NY, USA, 1987. [Google Scholar]
- Massart, D.L.; Vandeginste, B.G.M.; Buydens, L.M.C.; de Jong, S.; Lewi, P.J.; Smeyers-Verbeke, J.; Mann, C.K. Handbook of Chemometrics and Qualimetrics, Part A; Amsterdam; Elsevier, 1998. [Google Scholar]
- Capability of Detection. Part 2: Methodology in the Linear Calibration Case (11843-2); International Organization for Standardization, ISO: Geneva, Switzerland, 2000.
- Flores, E.M.D.; da Silva, F.E.B.; dos Santos, E.P.; Paula, F.R.; Barin, J.S.; Zanella, R.; Dressler, V.L.; Bittencourt, C.F. Determination of total arsenic by batch hydride generation atomic absorption spectrometry in injectable drugs containing high levels of Sb(V) as N-methylglucamine antimonate. Spectrochim. Acta B 2002, 57, 2095–2102. [Google Scholar]
- Batley, G.E.; Florence, T.M. Evaluation and comparison of some techniques of anodic-stripping voltammetry. J. Electroanal. Chem. 1974, 55, 23–43. [Google Scholar]
- Postupolski, A.; Golimowski, J. Trace determination of antimony and bismuth in snow and water samples by stripping voltammetry. Electroanal. 1991, 3, 793–797. [Google Scholar]
- Gillain, G.; Rutagengwa, J. Determination of Zn, Cd, Pb, Cu, Sb and bi in milk by differential pulse anodic-stripping voltammetry with a hanging mercury drop electrode following 2 independent mineralization methods. Analusis 1985, 13, 471–473. [Google Scholar]
- Costantini, S.; Giordano, R.; Rizzica, M.; Benedetti, F. Applicability of anodic-stripping voltammetry and graphite-furnace atomic-absorption spectrometry to the determination of antimony in biological matrices - A comparative-study. Analyst 1985, 110, 1355–1359. [Google Scholar]
- Mok, W.M.; Wai, C.M. Simultaneous extraction of trivalent and pentavalent antimony and arsenic species in natural-waters for neutron-activation analysis. Anal. Chem. 1987, 59, 233–236. [Google Scholar]
- Welz, B.; Sucmanova, M. L-cysteine as a reducing and releasing agent for the determination of antimony and arsenic using flow-injection hydride generation atomic-absorption spectrometry. 1. Optimization of the analytical parameters. Analyst 1993, 118, 1417–1423. [Google Scholar]
- Welz, B.; Sucmanova, M. L-cysteine as a reducing and releasing agent for the determination of antimony and arsenic using flow-injection hydride generation atomic-absorption spectrometry .2. Interference studies and the analysis of copper and steel. Analyst 1993, 118, 1425–1432. [Google Scholar]
- Domínguez-Renedo, O.; Arcos-Martínez, M.J. Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes. Anal. Chim. Acta 2007, 589, 255–260. [Google Scholar]
- Domínguez-Renedo, O.; Arcos-Martínez, M.J. A novel method for the anodic stripping voltammetry determination of Sb(III) using silver nanoparticle-modified screen-printed electrodes. Electrochem. Commun. 2007, 9, 820–826. [Google Scholar]
Effect | SS* | DF* | MS* | Fratio* | Plevel* |
---|---|---|---|---|---|
A: tdep (Hg | 58.70 | 1 | 58.70 | 3.01 | 0.22 |
B: Edep | 844.40 | 1 | 844.40 | 43.25 | 0.02 (a) |
C: tddep | 2118.68 | 1 | 2118.68 | 108.51 | 0.01 (a) |
AB | 313.12 | 1 | 313.12 | 16.04 | 0.06 |
AC | 2.75 | 1 | 2.75 | 0.14 | 0.74 |
BC | 280.49 | 1 | 280.49 | 14.37 | 0.06 |
Lack of fit | 300.04 | 2 | 150.02 | 7.68 | 0.11 |
Pure error | 39.05 | 2 | 19.52 | ||
Total | 3957.23 | 10 | |||
R2 = 0.91 |
Effect | SS* | DF* | MS* | Fratio* | Plevel* |
---|---|---|---|---|---|
A: Edep | 1973.24 | 1 | 1973.24 | 92.76 | 0.01 (a) |
B: tdep | 1526.14 | 1 | 1526.14 | 71.74 | 0.01 (a) |
AA | 7142.17 | 1 | 7142.17 | 335.74 | 0.003 (a) |
AB | 110.25 | 1 | 110.25 | 5.18 | 0.15 |
BB | 2096.10 | 1 | 2096.10 | 98.53 | 0.01 (a) |
Lack of fit | 1066.40 | 3 | 355.45 | 16.71 | 0.06 |
Pure error | 42.55 | 2 | 21.27 | ||
Total | 12340.20 | 10 | |||
R2 = 0.91 |
1st Calibration | 2nd Calibration | 3rd Calibration | |
---|---|---|---|
Sensitivity × 10−7 (μA mol−1 M−1 dm3) | 3.34 | 3.59 | 3.55 |
Intercept (μA) | −6.67 | −5.74 | −4.49 |
Residual Standard Deviation | 0.56 | 0.45 | 0.19 |
Coefficient of determination. (R2) | 0.99 | 0.99 | 0.99 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Domínguez-Renedo, O.; Jesús Gómez González, M.; Julia Arcos-Martínez, M. Determination of Antimony (III) in Real Samples by Anodic Stripping Voltammetry Using a Mercury Film Screen-Printed Electrode. Sensors 2009, 9, 219-231. https://doi.org/10.3390/s90100219
Domínguez-Renedo O, Jesús Gómez González M, Julia Arcos-Martínez M. Determination of Antimony (III) in Real Samples by Anodic Stripping Voltammetry Using a Mercury Film Screen-Printed Electrode. Sensors. 2009; 9(1):219-231. https://doi.org/10.3390/s90100219
Chicago/Turabian StyleDomínguez-Renedo, Olga, M. Jesús Gómez González, and M. Julia Arcos-Martínez. 2009. "Determination of Antimony (III) in Real Samples by Anodic Stripping Voltammetry Using a Mercury Film Screen-Printed Electrode" Sensors 9, no. 1: 219-231. https://doi.org/10.3390/s90100219
APA StyleDomínguez-Renedo, O., Jesús Gómez González, M., & Julia Arcos-Martínez, M. (2009). Determination of Antimony (III) in Real Samples by Anodic Stripping Voltammetry Using a Mercury Film Screen-Printed Electrode. Sensors, 9(1), 219-231. https://doi.org/10.3390/s90100219