Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy)
<p>Location of the study area.</p> ">
<p>(a) ASD field spectra of limestone, asphalt and trachyte paving materials. (b) Spectra of new and weathered lateritic tiles and leads tiles (roofing materials). All spectra are plotted with the relative σ standard deviation.</p> ">
<p>Flow diagram indicating the steps followed in the methods.</p> ">
<p>Object-oriented approach results of MIVIS data (8m/pixel).</p> ">
<p>SAM classification results.</p> ">
<p>Images (a) and (c) show respectively Hyperion (zoom 12x) and MIVIS (zoom 5x) false color composite (Red=1520nm, Green=820nm, Blue=680nm) images of the cemetery island north to Venice. Images (b) and (d) show respectively Hyperion and MIVIS limestone band-depth analysis (at 2.34 μm) results.</p> ">
<p>MIVIS and Hyperion fractional abundance images of the cemetery island north of Venice. IKONOS image is shown as reference. Color scale bar expresses the percentages of occurrence of the four endmembers used in the LSU analysis.</p> ">
Abstract
:1. Introduction
2. Study area
3. Data
3.1. Remote sensing data
3.2. Image pre-processing
3.3. Field campaign
4. Methods
4.1. Image segmentation
4.1.1. Object-Oriented approach
4.1.2. ISODATA Clustering
4.2. SAM classification
4.3. Spectral analyses
4.3.1. Band and Material Detection Limit analyses
4.3.2. Band-Depth Analysis
4.3.3. Linear Spectral Unmixing
5. Results and discussion
5.1. Image segmentation results
5.2. SAM classification results
5.3. Spectral Analyses results
5.3.1. Material Detection Limit results
5.3.2. Band-Depth and Linear Spectral Unmixing results
6. Conclusions
Acknowledgments
References
- Bassani, C.; Cavalli, R.M.; Cavalcante, F.; Cuomo, V.; Palombo, A.; Pascucci, S.; Pignatti, S. Deterioration status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data. Remote Sensing of Environment 2007, 109, 361–378. [Google Scholar]
- Ben-Dor, E.; Levin, N.; Saaroni, H. A spectral based recognition of the urban environment using the visible and near-infrared spectral region (0.4–1.1 m). A case study over Tel-Aviv. International Journal of Remote Sensing 2001, 22(11), 2193–2218. [Google Scholar]
- Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, D.C.; Chetwynd, J.H.; Adler-Golden, S.M. MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS. Remote Sensing of the Environment 1998, 65, 367–375. [Google Scholar]
- Bianchi, R.; Marino, C.M.; Pignatti, S. Airborne hyperspectral remote sensing in Italy. Proceedings of Recent Advances in Remote Sensing and Hyperspectral Remote Sensing, Rome, Italy, September 23-30, 1994; pp. 29–37.
- Bokoye, A.I.; Dionne, P. Urban material characterization from the Hyperion hyperspectral imager: Application to downtown Montreal (Quebec, Canada). Image and signal processing for remote sensing. Conference No.9, Barcelona, ESPAGNE, (09/09/2003); 2004; 5238, pp. 569–574. [Google Scholar]
- Carlson, T.N.; Sanchez-Azofeifa, G.A. Satellite remote sensing of land use changes in and around San José, Costa Rica. Remote Sensing of Environment 1999, 70, 247–256. [Google Scholar]
- Chan, C.I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification.; Kluwer Academic Publishers: Dordrecht, 2003. [Google Scholar]
- Clapham, W.B. Continuum-based classification of remotely sensed imagery to describe urban sprawl on a watershed scale. Remote Sensing of Environment 2003, 86, 322–340. [Google Scholar]
- Clark, R.N.; Roush, T.D. Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing Applications. Journal of Geophysical Research 1984, 89, 6329–6340. [Google Scholar]
- Collwell, R.N. Manual of Remote Sensing; American Society of Photogrammetry and Remote Sensing: Falls Church Eds., 1983. [Google Scholar]
- Datt, B.; McVicar, T.R.; van Niel, T.G.; Jupp, D.L.B.; Pearlman, J.S. Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Transactions on Geoscience and Remote Sensing 2003, 41, 1246–1259. [Google Scholar]
- European Space Agency Scientific Campaign Unit ESTEC. Exploitation of CHRIS data from the Proba Mission for Science and Applications. In Experimenters' Handbook Issue 4: Baseline Programme; 1999; ESA-ESTEC. [Google Scholar]
- Forster, B.C. An examination of some problems and solutions in monitoring urban areas from satellite platforms. International Journal of Remote Sensing 1985, 6, 139–151. [Google Scholar]
- Gao, B. An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers. Remote Sensing of Environment 1993, 43, 23–33. [Google Scholar]
- Heiden, U.; Roessner, S.; Segl, K.; Kaufmann, H. Analysis of spectral signatures of urban surfaces for their area-wide identification using hyperspectral HyMap data. Proceedings of IEEE -ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Rome, Italy, November 8-9, 2001; pp. 173–177.
- Heiden, U.; Segl, K.; Roessner, S.; Kaufmann, H. Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sensing of Environment 2007, 111, 537–552. [Google Scholar]
- Hepner, G.F.; Chen, J. Investigation of imaging spectroscopy for discriminating urban land covers and surface materials. Proceedings of AVIRIS Earth Science and Applications Workshop, Palo Alto, CA, 27 Feb - 2 Mar 2001.
- Herold, M.; Gardner, M.; Roberts, D. Spectral resolution requirements for mapping urban areas. IEEE Transactions on Geoscience and Remote Sensing 2003, 41(9), 1907–1919. [Google Scholar]
- Herold, M.; Roberts, D.A.; Gardner, M.E.; Dennison, P.E. Spectrometry for urban area remote sensing. Development and analysis of a spectral library from 350 to 2400 nm. Remote Sensing of Environment 2004, (91), 304–319. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing PerspectiveUpper Saddle River, NJ; Prentice Hall, 3rd Ed. ed; 2005; 526 pages. [Google Scholar]
- Ji, M.; Jensen, J.R. Effectiveness of subpixel analysis in detecting and quantifying urban imperviousness from Landsat Thematic Mapper Imagery. Geocarto International 1999, 14, 31–39. [Google Scholar]
- Kirkland, L.E.; Kenneth, C.H.; Salisbury, J.W. Thermal Infrared spectral band detection limits for unidentified surface materials. Applied Optics 2001, 40(27), 4852–4864. [Google Scholar]
- Kirkland, L.E.; Herr, K.C.; Adams, P.M. Infrared stealthy surfaces: Why TES and THEMIS may miss some substantial mineral deposits on Mars and implications for remote sensing of planetary surfaces. Journal of Geophysical Research 2003, 108(E12), 5137. [Google Scholar]
- Kokaly, R.F.; Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment 1999, 67, 267–287. [Google Scholar]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.B.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A. F. H. The Spectral Image Processing System (SIPS) - Interactive Visualization and Analysis of Imaging spectrometer Data. Remote Sensing of the Environment 1993, 44, 145–163. [Google Scholar]
- ITT Visual Information Solutions. ENVI - Environment for Visualizing Images, Version 4.4. 2008. Available at: www.ittvis.com/envi/.
- Lhermitte, S.; Verbesselt, J.; Jonckheere, I.; Nackaerts, K.; van Aardt, J.A.N.; Verstraeten, W.W.; Coppin, P. Hierarchical image segmentation based on similarity of NDVI time series. Remote Sensing of Environment 2007, 112, 506–521. [Google Scholar]
- Mathieu, R.; Aryal, J.; Chong, A.K. Object-Based Classification of Ikonos Imagery for Mapping Large-Scale Vegetation Communities in Urban Areas. Sensors 2007, 7, 2860–2880. [Google Scholar]
- Matthew, M.W.; Adler-Golden, S.M.; Berk, A.; Richtsmeier, S.C.; Levine, R.Y.; Bernstein, L.S.; Acharya, P.K.; Anderson, G.P.; Felde, G.W.; Hoke, M.P.; Ratkowski, A.; Burke, H.H.; Kaiser, R.D.; Miller, D.P. Status of Atmospheric Correction Using a MODTRAN4-based Algorithm. In SPIE Proceedings; Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, 2000; pp. 199–207. [Google Scholar]
- Myint, S.W.; Lam, N.S.; Tyler, J.M. Wavelets for urban spatial feature discrimination: comparisons with fractal, spatial autocorrelation, and spatial co-occurrence approaches. Photogrammetric Engineering and Remote Sensing 2004, 70, 803–812. [Google Scholar]
- Pearlman, J.S.; Barry, P.S.; Segal, C.C.; Shepanski, J.; Beiso, D.; Carman, S.L. Hyperion, a space-based imaging spectrometer. IEEE Transactions on Geoscience and Remote Sensing 2003, 41, 1160–1173. [Google Scholar]
- Powell, R.L.; Roberts, D.A.; Dennison, P.E.; Hess, L.L. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sensing of Environment 2007, 106(2), 253–267. [Google Scholar]
- Pu, R.; Xu, B.; Gong, P. Oakwood crown closure estimation by unmixing Landsat TM data. Int. J. Remote Sensing 2003, 24(22), 4433–4445. [Google Scholar]
- Rashed, T.; Weeks, J.R.; Stow, D.; Fugate, D. Measuring temporal compositions of urban morphology through spectral mixture analysis: Towards a soft approach to change analysis in crowded cities. International Journal of Remote Sensing 2005, 26, 699–718. [Google Scholar]
- Richards, J.A. Remote Sensing Digital Image Analysis.; Springer-Verlag: Berlin, 1999; p. 240. [Google Scholar]
- Ridd, M.K. Exploring a V–I–S (vegetation–impervious surface–soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. International Journal of Remote Sensing 1995, 16, 2165–2185. [Google Scholar]
- Settle, J.J.; Drake, N.A. Linear mixing and estimation of ground cover proportions. International Journal of Remote Sensing 1993, 14(6), 1159–1177. [Google Scholar]
- Small, C. Scaling Properties of Urban Reflectance Spectra. Proceeding of AVIRIS Earth Science and Applications Workshop, Pasadena, CA, 27 Feb -2 Mar, 2001.
- Small, C. High spatial resolution spectral mixture analysis of urban reflectance. Remote Sensing of Environment 2003, 88, 170–186. [Google Scholar]
- Small, C. A global analysis of urban reflectance. International Journal of Remote Sensing 2005, 26, 661–681. [Google Scholar]
- Smith, G.M.; Curran, P.J. Methods for estimating image signal-to-noise ratio (SNR). Atkinson, P.M., Tate, N. J., Eds.; In Advances in remote sensing and GIS analysis; pp. 61–74. New York; John Wiley & Sons, 1999. [Google Scholar]
- Stuckens, J.; Coppin, P.R.; Bauer, M.E. Integrating contextual information with per-pixel classifications for improved land cover classifications. Remote Sensing of Environment 2000, 71, 282–296. [Google Scholar]
- Tou, J.T.; Gonzalez, R.C. Pattern Recognition Principles; Addison-Wesley Publishing Company: Reading, Massachusetts, 1974. [Google Scholar]
- Toutin, T. Error Tracking in Ikonos Geometric Processing Using a 3D Parametric Model. Photogrammetric Engineering and Remote Sensing 2003, 69(1), 43–51. [Google Scholar]
- Ungar, S. G.; Pearlman, J. S.; Mendenhall, J. A.; Reuter, D. Overview of the Earth Observing One (EO-1) mission. IEEE Transactions on Geoscience and Remote Sensing 2003, 41, 1149–1159. [Google Scholar]
- Van Der Meer, F.D.; De Jong, S. Imaging Spectrometry, Basic Principles and Prospective Applications; 2003; Kluwer Academic Publishers: Dordrecht. [Google Scholar]
- Vermote, E.F.; El Saleous, N.; Justice, C.O.; Kaufman, Y.J.; Privette, J.L.; Remer, L. Asbestos: Geology, Mineralogy, Mining, and Uses. U.S. Department of the Interior; U.S. Geological Survey, Open-File Report 02-149, 1997. Available: http://minerals.usgs.gov/minerals/pubs/commodity/asbestos/ (accessed:02/2008).
- Wu, C. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sensing of Environment 2004, 93, 480–492. [Google Scholar]
Spatial Resolution (m) | Bands | Spectral coverage (μm) | System of Acquisition | Radiometric calibration | |
---|---|---|---|---|---|
(a) ALI | 10-30 | 10 | 0.4-2.4 | Push-broom | L1R |
(b) HYPERION | 30 | 220 | 0.4-2.5 | Push-broom | L1R |
(c) ETM+ | 30 | 8 | 0.4-12.5 | Push-broom | L1R |
(d) IKONOS | 1 | 4 | 0.4-0.7 | Push-broom | |
(e) MIVIS | 8 (at 4000m) | 102 | 0.4-12.7 | Whisk-broom | CNR-LARA |
VIS | 20 | 0.4-0.83 | |||
VNIR | 8 | 1.15-1.55 | |||
SWIR | 64 | 2-2.5 | |||
TIR | 10 | 8.2-12.7 |
Conifers | Broadleaves | Grass | Lateritic STiles | Lead Tiles | Limestone | Asphalt pavements | Trachyte pavements | Other materials | |
---|---|---|---|---|---|---|---|---|---|
MIVIS | 13.9 | 2.3 | 2.3 | 53.9 | 1.6 | 1.4 | 7.7 | 10.4 | 6.6 |
IKONOS ground truth | 17.8 | 52.4 | 1.9 | 1.0 | 5.4 | 12.3 | 9.2 |
Vegetation % | Roofing Tiles % | Paving materials % | Other materials % | |
---|---|---|---|---|
ALI | 22.5 | 71.7 | 3 | 2.8 |
ETM+ | 22.3 | 71.12 | 4.22 | 2.36 |
Hyperion | 18.72 | 60.3 | 15.16 | 5.82 |
MIVIS | 20.31 | 51.23 | 26.27 | 2.19 |
IKONOS Ground truth | 17.8 | 52.4 | 20.6 | 9.2 |
VEGETATION | ROOFING MATERIALS | PAVING MATERIALS | OTHER MATERIS | ||||||
---|---|---|---|---|---|---|---|---|---|
Conifers | Broadleaves | Grass | Lateritic Tiles | Lead Tiles | Limestone | Asphalt pavements | Trachyte pavements | ||
ALI | 10.3 | 11.3 | 3.2 | 54.2 | 2.2 | 16.7 | 2.1 | ||
ETM+ | 7.8 | 2.8 | 7.9 | 51.0 | 8.0 | 11.1 | 114 | ||
Hyperion | 7.7 | 17.6 | 3.5 | 48.2 | 1.5 | 0.7 | 7.1 | 7.9 | 5.8 |
MIVIS | 12.3 | 4.9 | 4.0 | 49.7 | 1.7 | 1.6 | 7.1 | 8.5 | 10.2 |
IKONOS ground-truh | 17.8 | 52.4 | 1.9 | 1.0 | 5.4 | 12.3 | 9.2 |
Limestone d = 0,48 | New Lateritic Tiles d = 0,02 | Asphalt d = 0,08 | ||||
---|---|---|---|---|---|---|
MIVIS | Hyperion | MIVIS | Hyperion | MIVIS | Hyperion | |
BDL % | 10,47 | 5,17 | 3,64 | 3,63 | 17,98 | 8,17 |
fmin% | 21,99 | 10,85 | > 100 | > 100 | > 100 | > 100 |
MDA (m2) | 14 | 98 | > pixel | > pixel | > pixel | > pixel |
Correlation | MIVIS | ||||
---|---|---|---|---|---|
Coefficient | Limestone | Grass | Cypress | Tiles | |
Ground Truth | Limestone | 0.45 | 0.39 | 0.02 | 0.05 |
Grass | 0.42 | 0.75 | 0.22 | 0.16 | |
Cypress | 0.18 | 0.30 | 0.43 | 0.11 | |
Tiles | 0.00 | 0.04 | 0.09 | 0.42 | |
Correlation | Hyperion | ||||
Coefficient | Limestone | Grass | Cypress | Tiles | |
Ground Truth | Limestone | 0.68 | 0.32 | 0.16 | 0.22 |
Grass | 0.40 | 0.56 | 0.55 | 0.09 | |
Cypress | 0.30 | 0.53 | 0.40 | 0.10 | |
Tiles | 0.07 | 0.12 | 0.00 | 0.53 |
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cavalli, R.M.; Fusilli, L.; Pascucci, S.; Pignatti, S.; Santini, F. Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy). Sensors 2008, 8, 3299-3320. https://doi.org/10.3390/s8053299
Cavalli RM, Fusilli L, Pascucci S, Pignatti S, Santini F. Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy). Sensors. 2008; 8(5):3299-3320. https://doi.org/10.3390/s8053299
Chicago/Turabian StyleCavalli, Rosa Maria, Lorenzo Fusilli, Simone Pascucci, Stefano Pignatti, and Federico Santini. 2008. "Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy)" Sensors 8, no. 5: 3299-3320. https://doi.org/10.3390/s8053299
APA StyleCavalli, R. M., Fusilli, L., Pascucci, S., Pignatti, S., & Santini, F. (2008). Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy). Sensors, 8(5), 3299-3320. https://doi.org/10.3390/s8053299