Development of a High-Efficiency Device for Thermal Neutron Detection Using a Sandwich of Two High-Purity 10B Enriched Layers
<p>Pulsed Laser Deposition experimental setup.</p> "> Figure 2
<p>Top left: sketch of the mid-height section of the AmBe source box. Top right: 3D representation of the source box. Bottom: A picture of the AmBe neutron source with the detector in the test position.</p> "> Figure 3
<p>Sketch of the sandwich detector arrangement.</p> "> Figure 4
<p>Construction phases of the detector prototype: A silicon detector was assembled between two carbon fiber layers with <math display="inline"><semantics> <msup> <mrow/> <mn>10</mn> </msup> </semantics></math>B conversion films on the inner faces. Another identical silicon detector was coupled with a bare substrate. Both packages were boxed and assembled according to the scheme shown in <a href="#sensors-23-09831-f003" class="html-fig">Figure 3</a>. The same setup was also assembled using aluminum substrates.</p> "> Figure 5
<p>(<b>Left</b>) Secondary electrons SEM image of a <math display="inline"><semantics> <msup> <mrow/> <mn>10</mn> </msup> </semantics></math>B film (200 nm) deposited on Si/SiO<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math> substrate by PLD. (<b>Right</b>) BSE image of a droplet with the elemental analysis map on the droplet. The oxygen signal is only due to the substrate.</p> "> Figure 6
<p>Neutron counts acquired using sandwich devices. (<b>A</b>) Carbon fiber substrate. (<b>B</b>) Aluminum substrate.</p> ">
Abstract
:1. Introduction
- Elements with a high reaction cross-section enable the construction of compact detectors.
- The target nuclide should either have a high natural isotopic abundance or be artificially enriched through cost-effective isotopic separation techniques.
- A reaction with a large Q-value must be chosen to ensure that the energy of the resulting secondary particle is sufficiently high for effective discrimination against signals induced by -rays.
- A reaction producing light particles is to be preferred, so that they can more easily cross possible dead layers of material before being detected.
2. Materials and Methods
2.1. PLD Deposition and B Films Characterization
2.2. Neutron Detection: Experimental Test Set-Up
3. Results and Discussion
3.1. B Layers Properties
3.2. Measurements of Neutron Counts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, Q.; Yang, Q.; Bao, X.; Chen, J.; Han, M.; Wei, Q. The Development of Boron Analysis and Imaging in Boron Neutron Capture Therapy (BNCT). Mol. Pharm. 2022, 19, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Cao, P.; Liu, X.; Fang, Z.; Zhang, Z.; An, Q.; Shi, B.; Chen, J. Readout Electronics for Spatial Distribution Measurement of Neutron Beam Flux in BNCT. J. Instrum. 2023, 18, 1–18. [Google Scholar] [CrossRef]
- Özcan, M.; Kam, E.; Kaya, C.; Kaya, F. Boron-containing nonwoven polymeric nanofiber mats as neutron shields in compact nuclear fusion reactors. Int. J. Energy Res. 2022, 46, 7441–7450. [Google Scholar] [CrossRef]
- Ruddy, F.H.; Kleppinger, J.W.; Mandal, K.C. Design Considerations for Boron-Diffused and Implanted 4H-SiC Epitaxial Neutron Detectors for Dosimetry and Monitoring Applications. EPJ Web Conf. 2023, 278, 01002–01010. [Google Scholar] [CrossRef]
- Sathian, D.; Pal, R.; Bakshi, A.; Sapra, B. A study on the optimization of processing parameters of boron-doped CR-39 solid-state nuclear track detectors for response to thermal neutrons. Radiat. Prot. Environ. 2022, 45, 22–27. [Google Scholar] [CrossRef]
- Aspinall, M.; Binnersley, C.; Bradnam, S.; Croft, S.; Joyce, M.; Packer, L.; Wild, J. Boron-coated straw detector technology as an alternative to helium-3 and boron trifluoride based proportional counters for ground level neutron monitoring: A design study. In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022; p. EGU22-5376. [Google Scholar] [CrossRef]
- Pietropaolo, A.; Angelone, M.; Bedogni, R.; Colonna, N.; Hurd, A.; Khaplanov, A.; Murtas, F.; Pillon, M.; Piscitelli, F.; Schooneveld, E.; et al. Neutron detection techniques from μeV to GeV. Phys. Rep. 2020, 875, 1–65. [Google Scholar] [CrossRef]
- Kouzes, R.T. The 3He Supply Problem. 2009. Available online: www.pnnl.gov/main/publications/external/technical_reports/PNNL-18388.pdf (accessed on 5 November 2023).
- Hurd, A.J.; Kouzes, R.T. Why new neutron detector materials must replace helium-3. Eur. Phys. J. Plus 2014, 129, 1–3. [Google Scholar] [CrossRef]
- Kouzes, R.T.; Lintereur, A.T.; Siciliano, E.R. Progress in alternative neutron detection to address the helium-3 shortage. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 784, 172–175. [Google Scholar] [CrossRef]
- Caricato, A.P.; Cesaria, M.; Finocchiaro, P.; Amaducci, S.; Longhitano, F.; Provenzano, C.; Marra, M.; Martino, M.; Aziz, M.R.; Serra, A.; et al. Thermal neutron conversion by high purity 10B-enriched layers: PLD-growth, thickness-dependence and neutron-detection performances. EPJP 2022, 137, 431. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Frosin, C. Tecniche di Analisi Digitale dei Segnali Prodotti da Rivelatori per Neutroni; Alma Mater Studiorum Università di Bologna: Bologna, Italy, 2013. [Google Scholar]
- Gamagea, K.A.A.; Joycea, M.J.; Hawkesb, N.P. A comparison of four different algorithms for pulse-shape discrimination in fast scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 642, 78–83. [Google Scholar] [CrossRef]
- D’Mellow, B.; Aspinall, M.D.; Mackin, R.O.; Joyce, M.J.; Peyton, J.A. Digital discrimination of neutrons and/gamma-rays in liquid scintillators using pulse gradient analysis. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 578, 191–197. [Google Scholar] [CrossRef]
- Normanda, S.; Mouandab, B.; Haana, S.; Louvel, M. Discrimination methods between neutron and gamma rays for boron loaded plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2002, 484, 342–350. [Google Scholar] [CrossRef]
- Bertrand, G.; Hamel, M.; Normand, S.; Sguerra, F. Pulse shape discrimination between (fast or thermal) neutrons and gamma rays with plastic scintillators: State of the art. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 776, 114–128. [Google Scholar] [CrossRef]
- Kaburagi, M.; Shimazoe, K.; Terasaka, Y.; Tomita, H.; Yoshihashi, S.; Yamazaki, A.; Uritani, A.; Takahashi, H. Neutron γ-ray discrimination based on the property and thickness controls of scintillators using Li glass and LiCAF (Ce) in a γ-ray field. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2022, 1046, 167636. [Google Scholar] [CrossRef]
- Caccia, M.; Galoppo, M.; Malinverno, L.; Monti-Guarnieri, P.; Santoro, R. Impact of the Detected Scintillation Light Intensity on Neutron-Gamma Discrimination. IEEE Ransaction Nucl. Sci. 2022, 69, 2197–2203. [Google Scholar] [CrossRef]
- Liao, C.; Yang, H. Pulse shape discrimination using EJ-299-33 plastic scintillator coupled with a Silicon Photomultiplier array. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 789, 150–157. [Google Scholar] [CrossRef]
- Caracciolo, A.; Buonanno, L.; Vita, D.D.; D’Adda, I.; Chacon, A.; Kielly, M.; Carminati, M.; Safavi-Naeini, M.; Fiorini, C. BeNEdiCTE (Boron NEutron CapTurE): A Versatile Gamma-Ray Detection Module for Boron Neutron Capture Therapy. IEEE Trans. Radiat. Plasma Med. Sci. 2022, 6, 886–892. [Google Scholar] [CrossRef]
- Chacon, A.; Kielly, M.; Rutherford, H.; Franklin, D.R.; Caracciolo, A.; Buonanno, L.; D’Adda, I.; Rosenfeld, A.; Guatelli, S.; Carminati, M.; et al. Detection and discrimination of neutron capture events for NCEPT dose quantification. Sci. Rep. 2022, 12, 5863. [Google Scholar] [CrossRef]
- Liu, L.; Shao, H. Study on neutron–gamma discrimination method based on the KPCA-GMM-ANN. Radiat. Phys. Chem. 2023, 203, 110602. [Google Scholar] [CrossRef]
- Liu, H.R.; Zuo, Z.; Li, P.; Liu, B.Q.; Chang, L.; Yan, Y.C. Anti-noise performance of the pulse coupled neural network applied in discrimination of neutron and gamma-ray. Nucl. Sci. Tech. 2022, 33, 75. [Google Scholar] [CrossRef]
- Singh, R.K.; Narayan, J. Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 1990, 41, 8843. [Google Scholar] [CrossRef] [PubMed]
- Finocchiaro, P.; Cosentino, L.; Meo, S.L.; Nolte, R.; Radeck, D. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 885, 86–90. [Google Scholar] [CrossRef]
- Hutchins, R.; Watson, D.; Nichols, D.; Sieh, B.; McGregor, D. Survivability of microstructure semiconductor neutron detectors (MSND) in a thermal neutron radiation environment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2023, 1057, 168721. [Google Scholar] [CrossRef]
Species | Reaction | Q (MeV) | E Products (MeV) | (Barn) |
---|---|---|---|---|
+n→+p | 0.764 | , | 5320 | |
+n→+ | 2.792 | , | 230 | |
+n→++ | 2.310 (94%) | , | 3607 | |
+n→+ | , | 942 |
Detection Efficiency | |||
---|---|---|---|
Single layer of B | C-fiber | 7.73 ± 0.19 | no reference flux |
Single layer of B | Aluminum | 7.88 ± 0.18 | no reference flux |
Sandwich of two B layers | C-fiber | 19.96 ± 0.11 | 3.5% |
Sandwich of two B layers | Aluminum | 20.47 ± 0.12 | 3.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Provenzano, C.; Marra, M.; Caricato, A.P.; Finocchiaro, P.; Amaducci, S.; Longhitano, F.; Martino, M.; Poma, G.E.; Quarta, G. Development of a High-Efficiency Device for Thermal Neutron Detection Using a Sandwich of Two High-Purity 10B Enriched Layers. Sensors 2023, 23, 9831. https://doi.org/10.3390/s23249831
Provenzano C, Marra M, Caricato AP, Finocchiaro P, Amaducci S, Longhitano F, Martino M, Poma GE, Quarta G. Development of a High-Efficiency Device for Thermal Neutron Detection Using a Sandwich of Two High-Purity 10B Enriched Layers. Sensors. 2023; 23(24):9831. https://doi.org/10.3390/s23249831
Chicago/Turabian StyleProvenzano, Chiara, Marcella Marra, Anna Paola Caricato, Paolo Finocchiaro, Simone Amaducci, Fabio Longhitano, Maurizio Martino, Gaetano Elio Poma, and Gianluca Quarta. 2023. "Development of a High-Efficiency Device for Thermal Neutron Detection Using a Sandwich of Two High-Purity 10B Enriched Layers" Sensors 23, no. 24: 9831. https://doi.org/10.3390/s23249831
APA StyleProvenzano, C., Marra, M., Caricato, A. P., Finocchiaro, P., Amaducci, S., Longhitano, F., Martino, M., Poma, G. E., & Quarta, G. (2023). Development of a High-Efficiency Device for Thermal Neutron Detection Using a Sandwich of Two High-Purity 10B Enriched Layers. Sensors, 23(24), 9831. https://doi.org/10.3390/s23249831