Deep Learning-Based Location Spoofing Attack Detection and Time-of-Arrival Estimation through Power Received in IoT Networks
<p>Multilayer perceptron architecture [<a href="#B22-sensors-23-09606" class="html-bibr">22</a>].</p> "> Figure 2
<p>Typical LSTM network [<a href="#B26-sensors-23-09606" class="html-bibr">26</a>].</p> "> Figure 3
<p>System model.</p> "> Figure 4
<p>Mechanism of the two-way ranging (TWR) approach.</p> "> Figure 5
<p>Distance ratio <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>β</mi> <mo>)</mo> </mrow> </semantics></math> calculation.</p> "> Figure 6
<p>(<b>Left</b>) Power received by the AP. (<b>Right</b>) The legitimate signal and spoofing signal plotted against the UAV spoofer’s position on the <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math> plane. The purple dots indicate the UAV’s position over 500 steps.</p> "> Figure 7
<p>Estimation of the <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>o</mi> <mi>p</mi> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math> (denoted by <math display="inline"><semantics> <msub> <mi>T</mi> <mi>p</mi> </msub> </semantics></math>) based on the distance ratio (represented as <math display="inline"><semantics> <mi>β</mi> </semantics></math>) at different points along the spoofer’s trajectory with respect to the AP over 100 steps. Additionally, a scenario where the SNR at the edge node is approximately equal to <math display="inline"><semantics> <mi>γ</mi> </semantics></math> while the distance ratio <math display="inline"><semantics> <mi>β</mi> </semantics></math> is equal to 1 is shown.</p> "> Figure 8
<p>MLP structure.</p> "> Figure 9
<p>LSTM structure.</p> "> Figure 10
<p>Proposed architecture.</p> "> Figure 11
<p>Spoofer UAV hovering around the target area for <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>,</mo> <mn>000</mn> </mrow> </semantics></math> steps. The red triangle represents the target node, the cross line represents the AP, and the green circle depicts the trajectory.</p> "> Figure 12
<p>The actual and predicted values of <math display="inline"><semantics> <msub> <mi>T</mi> <mi>p</mi> </msub> </semantics></math> and Status. Left figure represents scaled <math display="inline"><semantics> <msub> <mi>T</mi> <mi>p</mi> </msub> </semantics></math>, while the right figure displays the scaled status.</p> "> Figure 13
<p>Actual and predicted values of <math display="inline"><semantics> <msub> <mi>T</mi> <mi>p</mi> </msub> </semantics></math> and Status. Left figure represents the inverse of <math display="inline"><semantics> <msub> <mi>T</mi> <mi>p</mi> </msub> </semantics></math>, while the right figure displays the inverse of status.</p> "> Figure 14
<p>(<b>a</b>) The MAE of the MLP model, (<b>b</b>) Loss of the MLP model, (<b>c</b>) MAE of the LSTM model, and (<b>d</b>) Loss of the LSTM model.</p> "> Figure 15
<p>Illustration of the predicted and estimated distances obtained from the MLP model. A comparison between the actual distances and the distances predicted by the model is also shown.</p> "> Figure 16
<p>Illustration of the predicted and estimated propagation time (Tp) values by the MLP model. Additionally, it provides a comparison between the actual Tp values and the values predicted by the model.</p> "> Figure 17
<p>Representation of the predicted and estimated status values obtained from the MLP model. The signal status is indicated, where 0 represents an authentic signal and 1 represents a spoofed signal.</p> "> Figure 18
<p>The XYZ coordinates estimated by MLP and LSTM. The coordinates predicted by the LSTM model are represented by the triangle, square, and circle dashed lines, while the solid line depicts the coordinates predicted by the MLP model.</p> ">
Abstract
:1. Introduction
- Detecting spoofed UAVs and estimating their ToA based on the power received from a single AP in an IoT environment.
- Locating the position of UAVs using the estimated distances between the UAVs and different points, thereby leveraging the predictions.
- Conducting a performance comparison between the MLP and LSTM models, thus resulting in the determination that the MLP model is capable of detecting the presence of a spoofer and estimating its ToA with the received power.
2. Literature Review
2.1. Neural Networks
2.2. Multi-Layer Perceptron (MLP) Network
2.3. Long Short-Term Memory (LSTM)
3. System Model
4. Materials and Methods
4.1. Two-Way Range (TWR) Protocol
4.2. Feature Extraction Process
4.3. Dataset
4.4. Pre-Processing and Re-Scaling
5. Proposed Model Architecture
Error Metrics
6. Simulation and Results
Distance Estimation and Localization
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khanna, A.; Kaur, S. Internet of things (IoT), applications and challenges: A comprehensive review. Wirel. Pers. Commun. 2020, 114, 1687–1762. [Google Scholar] [CrossRef]
- Chen, L.; Thombre, S.; Järvinen, K.; Lohan, E.S.; Alén-Savikko, A.; Leppäkoski, H.; Bhuiyan, M.Z.H.; Bu-Pasha, S.; Ferrara, G.N.; Honkala, S.; et al. Robustness, security and privacy in location-based services for future IoT: A survey. IEEE Access 2017, 5, 8956–8977. [Google Scholar] [CrossRef]
- Selvaraj, S.; Sundaravaradhan, S. Challenges and opportunities in IoT healthcare systems: A systematic review. SN Appl. Sci. 2020, 2, 139. [Google Scholar] [CrossRef]
- Ullo, S.L.; Sinha, G.R. Advances in IoT and smart sensors for remote sensing and agriculture applications. Remote Sens. 2021, 13, 2585. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M. From pre-quantum to post-quantum IoT security: A survey on quantum-resistant cryptosystems for the Internet of Things. IEEE Internet Things J. 2019, 7, 6457–6480. [Google Scholar] [CrossRef]
- Azmoodeh, A.; Dehghantanha, A.; Choo, K.K.R. Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 2018, 4, 88–95. [Google Scholar] [CrossRef]
- Sadowski, S.; Spachos, P. Rssi-based indoor localization with the internet of things. IEEE Access 2018, 6, 30149–30161. [Google Scholar] [CrossRef]
- Shahbazian, R.; Macrina, G.; Scalzo, E.; Guerriero, F. Machine Learning Assists IoT Localization: A Review of Current Challenges and Future Trends. Sensors 2023, 23, 3551. [Google Scholar] [CrossRef]
- Janssen, T.; Weyn, M.; Berkvens, R. A primer on real-world RSS-based outdoor NB-IoT localization. In Proceedings of the 2020 International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 2–4 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Keerthika, M.; Shanmugapriya, D. Wireless sensor networks: Active and passive attacks-vulnerabilities and countermeasures. Glob. Transit. Proc. 2021, 2, 362–367. [Google Scholar] [CrossRef]
- Xiao, L.; Li, Y.; Han, G.; Liu, G.; Zhuang, W. PHY-layer spoofing detection with reinforcement learning in wireless networks. IEEE Trans. Veh. Technol. 2016, 65, 10037–10047. [Google Scholar] [CrossRef]
- Basan, E.; Basan, A.; Nekrasov, A.; Fidge, C.; Sushkin, N.; Peskova, O. GPS-spoofing attack detection technology for UAVs based on Kullback–Leibler divergence. Drones 2021, 6, 8. [Google Scholar] [CrossRef]
- Zhang, P.; Nagarajan, S.G.; Nevat, I. Secure location of things (SLOT): Mitigating localization spoofing attacks in the Internet of Things. IEEE Internet Things J. 2017, 4, 2199–2206. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, K.; Li, R.; Zhao, J.; Du, J. PHYAlert: Identity spoofing attack detection and prevention for a wireless edge network. J. Cloud Comput. 2020, 9, 5. [Google Scholar] [CrossRef]
- Khan, F.; Al-Atawi, A.A.; Alomari, A.; Alsirhani, A.; Alshahrani, M.M.; Khan, J.; Lee, Y. Development of a Model for Spoofing Attacks in Internet of Things. Mathematics 2022, 10, 3686. [Google Scholar] [CrossRef]
- Jullian, O.; Otero, B.; Stojilović, M.; Costa, J.J.; Verdú, J.; Pajuelo, M.A. Deep Learning Detection of GPS Spoofing. In Proceedings of the International Conference on Machine Learning, Optimization, and Data Science, Grasmere, UK, 4–8 October 2021; Springer: Cham, Switzerland, 2021; pp. 527–540. [Google Scholar]
- Zhang, Y.; Tiňo, P.; Leonardis, A.; Tang, K. A survey on neural network interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 5, 726–742. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Meng, L. Model Compression for Deep Neural Networks: A Survey. Computers 2023, 12, 60. [Google Scholar] [CrossRef]
- Gurney, K. An Introduction to Neural Networks; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Rezai, A.; Keshavarzi, P.; Mahdiye, R. A novel MLP network implementation in CMOL technology. Eng. Sci. Technol. Int. J. 2014, 17, 165–172. [Google Scholar] [CrossRef]
- Driss, S.B.; Soua, M.; Kachouri, R.; Akil, M. A comparison study between MLP and convolutional neural network models for character recognition. In Proceedings of the Real-Time Image and Video Processing 2017, Anaheim, CA, USA, 1 May 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10223, pp. 32–42. [Google Scholar]
- Ma, X.; Qin, C.; You, H.; Ran, H.; Fu, Y. Rethinking network design and local geometry in point cloud: A simple residual MLP framework. arXiv 2022, arXiv:2202.07123. [Google Scholar]
- Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329. [Google Scholar]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Mohan, A.T.; Gaitonde, D.V. A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks. arXiv 2018, arXiv:1804.09269. [Google Scholar]
- Rahman, S.M.; Pawar, S.; San, O.; Rasheed, A.; Iliescu, T. Nonintrusive reduced order modeling framework for quasigeostrophic turbulence. Phys. Rev. E 2019, 100, 053306. [Google Scholar] [CrossRef]
- Miao, Q.; Huang, B.; Jia, B. Estimating distances via received signal strength and connectivity in wireless sensor networks. Wirel. Netw. 2020, 26, 971–982. [Google Scholar] [CrossRef]
- Hsieh, C.H.; Chen, J.Y.; Nien, B.H. Deep learning-based indoor localization using received signal strength and channel state information. IEEE Access 2019, 7, 33256–33267. [Google Scholar] [CrossRef]
- Lozano, A.; Tulino, A.M.; Verdú, S. High-SNR power offset in multiantenna communication. IEEE Trans. Inf. Theory 2005, 51, 4134–4151. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2019, 58, 106–112. [Google Scholar] [CrossRef]
- Kurt, S.; Tavli, B. Path-Loss Modeling for Wireless Sensor Networks: A review of models and comparative evaluations. IEEE Antennas Propag. Mag. 2017, 59, 18–37. [Google Scholar] [CrossRef]
- Qin, F.; Dai, X.; Mitchell, J.E. Effective-SNR estimation for wireless sensor network using Kalman filter. Ad Hoc Netw. 2013, 11, 944–958. [Google Scholar] [CrossRef]
- Lian Sang, C.; Adams, M.; Hörmann, T.; Hesse, M.; Porrmann, M.; Rückert, U. Numerical and experimental evaluation of error estimation for two-way ranging methods. Sensors 2019, 19, 616. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, R.; Ye, F.; Guo, G.; Li, Z.; Qian, L. Improved TOA estimation method for acoustic ranging in a reverberant environment. IEEE Sens. J. 2020, 22, 4844–4852. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, X.P.; Cui, X.; Lu, M. A new TOA localization and synchronization system with virtually synchronized periodic asymmetric ranging network. IEEE Internet Things J. 2021, 8, 9030–9044. [Google Scholar] [CrossRef]
- Geng, C.; Yuan, X.; Huang, H. Exploiting channel correlations for NLOS ToA localization with multivariate Gaussian mixture models. IEEE Wirel. Commun. Lett. 2019, 9, 70–73. [Google Scholar] [CrossRef]
- Aldosari, W.; Moinuddin, M.; Aljohani, A.J.; Al-Saggaf, U.M. Distributed extended Kalman filtering based techniques for 3-D UAV jamming localization. Sensors 2020, 20, 6405. [Google Scholar] [CrossRef] [PubMed]
- Sinsomboonthong, S. Performance comparison of new adjusted min-max with decimal scaling and statistical column normalization methods for artificial neural network classification. Int. J. Math. Math. Sci. 2022, 2022, 3584406. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Liu, Q. Modified Least Squares Algorithm for Three-Dimensional Target Location Based on Wireless Communication Base Stations. Complexity 2020, 2020, 5879415. [Google Scholar] [CrossRef]
Reference | Objectives | Techniques | Evaluation Metrics | Simulator | Application |
---|---|---|---|---|---|
[11] | Detection | Reinforcement learning | RSS | Software radio peripherals | Indoor environments |
[12] | Detection | SVM, deep learning method | Navigation parameters | software package | UAV |
[13] | Localization | Location estimation technique | Range, DToA | Monte Carlo | IoT |
[14] | Detection | KNN | CSI, OFDM | Commercial off-the-shelf (COTS) | Wi-Fi |
[15] | Detection, Prevention | RSS and Number of Connected Neighbors (NCN) | RSS | Network simulator-2 | IoT |
[16] | Detection | MAVLINK Dataset | Fight system parameters | PX4 autopilot and Gazebo robotics | GPS |
−70.858 | 18.860 | 0.202 | 1.163 | 34.908 | 11.110 | 43.688 | 1.826 | Authentic |
−70.859 | 18.820 | 0.203 | 1.163 | 34.910 | 11.111 | 43.442 | 1.818 | Authentic |
−70.856 | 18.805 | 0.204 | 1.163 | 34.901 | 11.109 | 43.334 | 1.814 | Authentic |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
−69.213 | 3.195 | 1.231 | 0.962 | 28.884 | 11.108 | 2.084 | 0.300 | Spoofed |
−69.158 | 3.024 | 1.255 | 0.956 | 28.702 | 11.110 | 2.260 | 0.295 | Spoofed |
−68.662 | 1.674 | 1.466 | 0.903 | 27.108 | 11.111 | 3.534 | 0.252 | Spoofed |
0.0182 | 0.6685 | 0.0807 | 0.9787 | 0.9787 | 0.4904 | 0.2969 | 0.3194 | 0 |
0.0181 | 0.6670 | 0.0813 | 0.9789 | 0.9789 | 0.6168 | 0.2952 | 0.3178 | 0 |
0.0188 | 0.6665 | 0.0815 | 0.9780 | 0.9780 | 0.3642 | 0.2945 | 0.3170 | 0 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
0.0185 | 0.6646 | 0.0823 | 0.9784 | 0.9784 | 0.5627 | 0.2923 | 0.3150 | 1 |
0.0177 | 0.6635 | 0.0827 | 0.9793 | 0.9793 | 0.9064 | 0.2911 | 0.3138 | 1 |
0.0192 | 0.6622 | 0.0833 | 0.9775 | 0.9775 | 0.4269 | 0.2894 | 0.3121 | 1 |
Abbreviation | Description |
---|---|
Total power received by AP | |
Signal-to-noise ratio at AP | |
Distance ratio | |
Propagation time between spoofer and AP | |
Propagation time between target and AP | |
Distance between target and AP | |
Distance between spoofer and edge node | |
Distance from edge to AP |
Patch Size = 25, Optimizer Adam | ||||||
MLP | LSTM | |||||
# of Epoch | RMSE | MAE | std | RMSE | MAE | std |
10 | 0.050 | 0.508 | 0.426 | 0.375 | 0.512 | 0.155 |
100 | 0.025 | 0.513 | 0.430 | 0.369 | 0.512 | 0.155 |
400 | 0.024 | 0.514 | 0.430 | 0.370 | 0.511 | 0.155 |
Patch Size = 25, Optimizer SGD | ||||||
MLP | LSTM | |||||
# of Epoch | RMSE | MAE | std | RMSE | MAE | std |
10 | 0.071 | 0.512 | 0.424 | 0.378 | 0.511 | 0.155 |
100 | 0.036 | 0.509 | 0.428 | 0.378 | 0.513 | 0.155 |
400 | 0.035 | 0.512 | 0.428 | 0.378 | 0.512 | 0.155 |
Adam Optimizer | SGD Optimizer | |||
---|---|---|---|---|
Metrics | MLP | LSTM | MLP | LSTM |
Accuracy | 99.5% | 55.93% | 99.98% | 55.93% |
Precision | 100.0% | 55.93% | 100% | 55.93% |
Recall | 99.04% | 100% | 99.97% | 100% |
F1-Score | 99.52% | 71.74% | 99.98% | 71.74% |
Adam Optimizer | SGD Optimizer | |||
---|---|---|---|---|
Metrics | MLP | LSTM | MLP | LSTM |
MSE | 0.00047 | 0.0305 | 0.00077 | 0.03049 |
MAE | 0.4929 | 0.4927 | 0.4925 | 0.4944 |
MAE | Std | RMSE | |
---|---|---|---|
MLP | 2.26 | 2.25 | 3.06 |
LSTM | 13.21 | 10.23 | 15.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldosari, W. Deep Learning-Based Location Spoofing Attack Detection and Time-of-Arrival Estimation through Power Received in IoT Networks. Sensors 2023, 23, 9606. https://doi.org/10.3390/s23239606
Aldosari W. Deep Learning-Based Location Spoofing Attack Detection and Time-of-Arrival Estimation through Power Received in IoT Networks. Sensors. 2023; 23(23):9606. https://doi.org/10.3390/s23239606
Chicago/Turabian StyleAldosari, Waleed. 2023. "Deep Learning-Based Location Spoofing Attack Detection and Time-of-Arrival Estimation through Power Received in IoT Networks" Sensors 23, no. 23: 9606. https://doi.org/10.3390/s23239606
APA StyleAldosari, W. (2023). Deep Learning-Based Location Spoofing Attack Detection and Time-of-Arrival Estimation through Power Received in IoT Networks. Sensors, 23(23), 9606. https://doi.org/10.3390/s23239606