Predicting Deterioration from Wearable Sensor Data in People with Mild COVID-19
<p>Illustration of the feature extraction step from vital signs. (<b>a</b>) The process of extracting variables used for training models. Separating patients who experienced deterioration from those who did not and an observation window moved forward the prediction time; (<b>b</b>) The process of extracting variables used for model evaluation. An observation window moved one-time step through each patient’s signal data.</p> "> Figure 2
<p>Comparison of the area under the receiver operating characteristic curve (AUC) of different feature combinations. Delong’s test was used for statistical performance comparison. Model prediction of fever (<b>a</b>) 10 min in advance, (<b>b</b>) 8 h in advance. F refers to the final model, W refers to the model using only features extracted from wearable devices, and A refers to the model using all features. The black vertical lines represent the standard deviation.</p> "> Figure 3
<p>The importance of the final model using local interpretable model-agnostic explanation with optimal features. Negative values indicate parameters suggesting non-deterioration, and positive values indicate parameters suggesting deterioration. (<b>a</b>) is the 10 min deterioration prediction model with a non-deterioration case. (<b>b</b>) is the 10 min deterioration prediction model with a deterioration experienced case. (<b>c</b>) is the 8 h deterioration prediction model with a non-deterioration case. (<b>d</b>) is 8 h deterioration prediction model with a deterioration experienced case.</p> "> Figure A1
<p>Prediction performance for various observation window lengths. The area under the receiver operating characteristic curve (AUC) values was the average value of multiple models. (<b>a</b>) The AUC when predicting deterioration in derivation cohort 10 min in advance. (<b>b</b>) The AUC when predicting deterioration in derivation cohort 8 h in advance.</p> "> Figure A2
<p>Performance of the final two models. The red line represents the result of using the 8 h in the advance model, and the blue line represents the result of using 10 min in the advance model. The <span class="html-italic">x</span>-axis represents the prediction time, m means minutes, and h means hours. (<b>a</b>) is the area under the receiver operating characteristic curve (AUC) of both final models. (<b>b</b>) is the sensitivity of both final models.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Clinical Data Acquisition
2.3. Definition of Deterioration
2.4. Extraction of Outcomes and Features
2.5. Development of the Model
2.6. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Comparison of Predictive Performance
3.3. Comparison of Different Feature Types and Model Development
3.4. External Validation of the Proposed Models and Comparison of Their Predictive Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Non-Deterioration (n = 59) | Deterioration (n = 122) | p Value | |
---|---|---|---|
Continuous variable, mean ± SD | |||
Age | 37.057 ± 9.601 | 35.949 ± 7.673 | 0.838 |
Categorical variable, n (% total) | |||
Cough | 49 (83.05%) | 102 (83.61%) | >0.999 |
Sputum | 51 (86.44%) | 100 (81.97%) | 0.585 |
Fever | 9 (15.25%) | 51 (41.8%) | 0.001 |
Rhinorrhoea | 29 (49.15%) | 73 (59.84%) | 0.231 |
Sore Throat | 42 (71.19%) | 101 (82.79%) | 0.109 |
Dyspnoea | 0 (0.0%) | 2 (1.64%) | 0.818 |
Chest pain | 6 (10.17%) | 11 (9.02%) | >0.999 |
Nausea | 2 (3.39%) | 16 (13.11%) | 0.074 |
Vomiting | 0 (0.0%) | 3 (2.46%) | 0.553 |
Abdominal discomfort | 6 (10.17%) | 10 (8.2%) | 0.874 |
Constipation | 7 (11.86%) | 11 (9.02%) | 0.737 |
Diarrhea | 6 (10.17%) | 11 (9.02%) | >0.999 |
Abdominal pain | 1 (1.69%) | 3 (2.46%) | >0.999 |
Pain | 28 (47.46%) | 66 (54.1%) | 0.497 |
Sleep disorder | 8 (13.56%) | 31 (25.41%) | 0.104 |
Characteristics | Year 1 (n = 50) | Year 2 (n = 181) | p Value |
---|---|---|---|
Continuous variable, mean ± SD | |||
Age | 39.62 ± 13.005 | 36.696 ± 9.011 | 0.263 |
Categorical variable, n (% total) | |||
Cough | 28 (56.0%) | 151 (83.43%) | <0.001 |
Sputum | 26 (52.0%) | 151 (83.43%) | <0.001 |
Fever | 8 (16.0%) | 60 (33.15%) | 0.029 |
Rhinorrhoea | 22 (44.0%) | 102 (56.35%) | 0.164 |
Sore Throat | 30 (60.0%) | 143 (79.01%) | 0.010 |
Dyspnoea | 4 (8.0%) | 2 (1.1%) | 0.027 |
Chest pain | 4 (8.0%) | 17 (9.39%) | 0.980 |
Nausea | 2 (4.0%) | 18 (9.94%) | 0.299 |
Vomiting | 0 (0.0%) | 3 (1.66%) | 0.833 |
Abdominal discomfort | 6 (12.0%) | 16 (8.84%) | 0.688 |
Constipation | 6 (12.0%) | 18 (9.94%) | 0.873 |
Diarrhea | 7 (14.0%) | 17 (9.39%) | 0.494 |
Abdominal pain | 5 (10.0%) | 4 (2.21%) | 0.035 |
Pain | 17 (34.0%) | 94 (51.93%) | 0.037 |
Sleep disorder | 13 (26.0%) | 39 (21.55%) | 0.634 |
Characteristics | Derivation | External Validation |
---|---|---|
10 min | ||
Maximum temperature | 0.860 | 0.349 |
Maximum respiratory rate | 0.400 | 0.099 |
Minimum respiratory rate | 0.297 | 0.090 |
Maximum heart rate | 0.299 | 0.031 |
Cough | 0.126 | 0.025 |
Abdominal discomfort | −0.044 | 0.000 |
Heart rate median | 0.438 | 0.059 |
Constipation | 0.017 | −0.002 |
Minimum temperature | 0.161 | 0.237 |
8 h | ||
Average temperature | 0.440 | 0.090 |
Minimum heart rate | 0.421 | 0.069 |
Nausea | 0.032 | 0.043 |
Standard deviation temperature | −0.011 | 0.012 |
Abdominal discomfort | −0.134 | 0.000 |
Sputum | 0.113 | 0.014 |
Sleep disorder | −0.084 | 0.026 |
Dyspnoea | 0.135 | −0.023 |
Chest pain | 0.145 | −0.013 |
Maximum heart rate | 0.262 | 0.057 |
Maximum SpO2 | 0.061 | −0.015 |
References
- World Health Organization. Coronavirus 2019 (COVID-19); World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Yadaw, A.S.; Li, Y.-C.; Bose, S.; Iyengar, R.; Bunyavanich, S.; Pandey, G. Clinical features of COVID-19 mortality: Development and validation of a clinical prediction model. Lancet Digit. Health 2020, 2, e516–e525. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Brady, W.J.; Koyfman, A.; Gottlieb, M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 2020, 38, 1504–1507. [Google Scholar] [CrossRef] [PubMed]
- Cates, J.; Lucero-Obusan, C.; Dahl, R.M.; Schirmer, P.; Garg, S.; Oda, G.; Hall, A.J.; Langley, G.; Havers, F.P.; Holodniy, M.; et al. Risk for in-hospital complications associated with COVID-19 and influenza—Veterans Health Administration, United States, October 1, 2018–May 31, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1528. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Kurzeder, L.; Jörres, R.A.; Unterweger, T.; Essmann, J.; Alter, P.; Kahnert, K.; Bauer, A.; Engelhardt, S.; Budweiser, S. A simple risk score for mortality including the PCR Ct value upon admission in patients hospitalized due to COVID-19. Infection 2022, 50, 1155–1163. [Google Scholar] [CrossRef]
- Galloway, J.B.; Norton, S.; Barker, R.D.; Brookes, A.; Carey, I.; Clarke, B.D.; Jina, R.; Reid, C.; Russell, M.D.; Sneep, R.; et al. A clinical risk score to identify patients with COVID-19 at high risk of critical care admission or death: An observational cohort study. J. Infect. 2020, 81, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Bertsimas, D.; Lukin, G.; Mingardi, L.; Nohadani, O.; Orfanoudaki, A.; Stellato, B.; Wiberg, H.; Gonzalez-Garcia, S.; Parra-Calderón, C.L.; Robinson, K.; et al. COVID-19 mortality risk assessment: An international multi-center study. PLoS ONE 2020, 15, e0243262. [Google Scholar] [CrossRef]
- Kim, G.-U.; Kim, M.-J.; Ra, S.; Lee, J.; Bae, S.; Jung, J.; Kim, S.-H. Clinical characteristics of asymptomatic and symptomatic patients with mild COVID-19. Clin. Microbiol. Infect. 2020, 26, 948.e1–948.e3. [Google Scholar] [CrossRef]
- Weng, Z.; Chen, Q.; Li, S.; Li, H.; Zhang, Q.; Lu, S.; Wu, L.; Xiong, L.; Mi, B.; Liu, D.; et al. ANDC: An early warning score to predict mortality risk for patients with Coronavirus Disease 2019. J. Transl. Med. 2020, 18, 328. [Google Scholar] [CrossRef]
- Kwok, K.O.; Huang, Y.; Tsoi, M.T.F.; Tang, A.; Wong, S.Y.S.; Wei, W.I.; Hui, D.S.C. Epidemiology, clinical spectrum, viral kinetics and impact of COVID-19 in the Asia-Pacific region. Respirology 2021, 26, 322–333. [Google Scholar] [CrossRef]
- Buttia, C.; Llanaj, E.; Raeisi-Dehkordi, H.; Kastrati, L.; Amiri, M.; Meçani, R.; Taneri, P.E.; Ochoa, S.A.G.; Raguindin, P.F.; Wehrli, F.; et al. Prognostic models in COVID-19 infection that predict severity: A systematic review. Eur. J. Epidemiol. 2023, 38, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Al-Shwaheen, T.I.; Moghbel, M.; Hau, Y.W.; Ooi, C.Y. Use of learning approaches to predict clinical deterioration in patients based on various variables: A review of the literature. Artif. Intell. Rev. 2022, 55, 1055–1084. [Google Scholar] [CrossRef]
- Noy, O.; Coster, D.; Metzger, M.; Atar, I.; Shenhar-Tsarfaty, S.; Berliner, S.; Rahav, G.; Rogowski, O.; Shamir, R. A machine learning model for predicting deterioration of COVID-19 inpatients. Sci. Rep. 2022, 12, 2630. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gutiérrez, S.; Esteban-Aizpiri, C.; Lafuente, I.; Barrio, I.; Quiros, R.; Quintana, J.M.; Uranga, A. Machine learning-based model for prediction of clinical deterioration in hospitalized patients by COVID 19. Sci. Rep. 2022, 12, 7097. [Google Scholar] [CrossRef] [PubMed]
- Vultaggio, A.; Vivarelli, E.; Virgili, G.; Lucenteforte, E.; Bartoloni, A.; Nozzoli, C.; Morettini, A.; Berni, A.; Malandrino, D.; Rossi, O.; et al. Prompt predicting of early clinical deterioration of moderate-to-severe COVID-19 patients: Usefulness of a combined score using IL-6 in a preliminary study. J. Allergy Clin. Immunol. Pract. 2020, 8, 2575–2581.e2. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, W.; Qian, J.; Lin, B.; Nan, Y.; Lu, F.; Wan, L.; Zhao, X.; Luo, A.; Liao, X.; et al. Predicting the Risk of Clinical Deterioration in Patients with Severe COVID-19 Infection Using Machine Learning. 2020. Available online: https://ses.library.usyd.edu.au/handle/2123/23370 (accessed on 27 November 2023).
- Hahm, C.R.; Lee, Y.K.; Oh, D.H.; Ahn, M.Y.; Choi, J.-P.; Kang, N.R.; Oh, J.; Choi, H.; Kim, S. Factors Associated with Worsening Oxygenation in Patients with Non-severe COVID-19 Pneumonia. Tuberc. Respir. Dis. 2021, 84, 115–124. [Google Scholar] [CrossRef]
- Yitao, Z.; Mu, C.; Ling, Z.; Shiyao, C.; Jiaojie, X.; Zhichong, C.; Huajing, P.; Maode, O.; Kanglin, C.; Mao, O.Y.; et al. Predictors of clinical deterioration in non-severe patients with COVID-19: A retrospective cohort study. Curr. Med. Res. Opin. 2021, 37, 385–391. [Google Scholar] [CrossRef]
- Gadaleta, M.; Radin, J.M.; Baca-Motes, K.; Ramos, E.; Kheterpal, V.; Topol, E.J.; Steinhubl, S.R.; Quer, G. Passive detection of COVID-19 with wearable sensors and explainable machine learning algorithms. Npj Digit. Med. 2021, 4, 166. [Google Scholar] [CrossRef]
- Radin, J.M.; Wineinger, N.E.; Topol, E.J.; Steinhubl, S.R. Harnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: A population-based study. Lancet Digit. Health 2020, 2, e85–e93. [Google Scholar] [CrossRef]
- Cheong, S.H.R.; Ng, Y.J.X.; Lau, Y.; Lau, S.T. Wearable technology for early detection of COVID-19: A systematic scoping review. Prev. Med. 2022, 162, 107170. [Google Scholar] [CrossRef]
- Dunn, J.; Kidzinski, L.; Runge, R.; Witt, D.; Hicks, J.L.; Rose, S.M.S.-F.; Li, X.; Bahmani, A.; Delp, S.L.; Hastie, T.; et al. Wearable sensors enable personalized predictions of clinical laboratory measurements. Nat. Med. 2021, 27, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Qi, T.; Liu, L.; Ling, Y.; Qian, Z.; Li, T.; Li, F.; Xu, Q.; Zhang, Y.; Xu, S.; et al. Clinical progression of patients with COVID-19 in Shanghai, China. J. Infect. 2020, 80, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Joosten, S.A.; Smeets, M.J.; Arbous, M.S.; Manniën, J.; Laverman, S.; Driessen, M.M.; Cannegieter, S.C.; Roukens, A.H.; Leiden University Medical Center BEAT-COVID Group. Daily disease severity in patients with COVID-19 admitted to the hospital: The SCODA (severity of coronavirus disease assessment) score. PLoS ONE 2023, 18, e0291212. [Google Scholar] [CrossRef] [PubMed]
- Doheny, E.P.; Flood, M.; Ryan, S.; McCarthy, C.; O’Carroll, O.; O’Seaghdha, C.; Mallon, P.W.; Feeney, E.R.; Keatings, V.M.; Wilson, M.; et al. Prediction of low pulse oxygen saturation in COVID-19 using remote monitoring post hospital discharge. Int. J. Med. Inform. 2023, 169, 104911. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 17 August 2016. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Wojtusiak, J.; Bagais, W.; Vang, J.; Roess, A.; Alemi, F. Order of Occurrence of COVID-19 Symptoms. Qual. Manag. Health Care 2023, 32 (Suppl. S1), S29–S34. [Google Scholar] [CrossRef]
- Ekroth, A.K.; Patrzylas, P.; Turner, C.; Hughes, G.J.; Anderson, C. Comparative symptomatology of infection with SARS-CoV-2 variants Omicron (B. 1.1. 529) and Delta (B. 1.617. 2) from routine contact tracing data in England. Epidemiol. Infect. 2022, 150, e162. [Google Scholar] [CrossRef]
- Zhu, T.Y.; Rothenbühler, M.; Hamvas, G.; Hofmann, A.; Welter, J.; Kahr, M.; Kimmich, N.; Shilaih, M.; Leeners, B. The Accuracy of Wrist Skin Temperature in Detecting Ovulation Compared to Basal Body Temperature: Prospective Comparative Diagnostic Accuracy Study. J. Med. Internet Res. 2021, 23, e20710. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 17 August 2016. [Google Scholar]
- Fluss, R.; Faraggi, D.; Reiser, B. Estimation of the Youden Index and its associated cutoff point. Biom. J. J. Math. Methods Biosci. 2005, 47, 458–472. [Google Scholar] [CrossRef] [PubMed]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Quer, G.; Radin, J.M.; Gadaleta, M.; Baca-Motes, K.; Ariniello, L.; Ramos, E.; Kheterpal, V.; Topol, E.J.; Steinhubl, S.R. Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 2020, 27, 73–77. [Google Scholar] [CrossRef]
- Natarajan, A.; Su, H.-W.; Heneghan, C. Assessment of physiological signs associated with COVID-19 measured using wearable devices. NPJ Digit. Med. 2020, 3, 156. [Google Scholar] [CrossRef]
Non-Deterioration (n = 22) | Deterioration (n = 28) | p Value | |
---|---|---|---|
Continuous variable, mean ± SD | |||
Age | 39.0 ± 15.141 | 40.107 ± 11.318 | 0.597 |
Systolic blood pressure | 123.045 ± 14.147 | 124.214 ± 13.72 | 0.799 |
Diastolic blood pressure | 82.545 ± 9.075 | 87.071 ± 9.718 | 0.068 |
Pulse rate | 69.909 ± 11.309 | 77.679 ± 10.353 | 0.012 |
Respiratory rate | 19.318 ± 7.779 | 17.643 ± 3.358 | 0.906 |
Temperature | 35.973 ± 0.638 | 36.329 ± 0.546 | 0.041 |
Oxygen saturation | 97.182 ± 1.259 | 97.071 ± 1.016 | 0.462 |
Categorical variable, n (% total) | |||
Cough | 12 (54.55%) | 16 (57.14%) | >0.999 |
Sputum | 9 (40.91%) | 17 (60.71%) | 0.269 |
Fever | 4 (18.18%) | 4 (14.29%) | >0.999 |
Rhinorrhoea | 8 (36.36%) | 14 (50.0%) | 0.498 |
Sore throat | 11 (50.0%) | 19 (67.86%) | 0.323 |
Dyspnoea | 1 (4.55%) | 3 (10.71%) | 0.785 |
Chest pain | 1 (4.55%) | 3 (10.71%) | 0.785 |
Nausea | 0 (0.0%) | 2 (7.14%) | 0.581 |
Vomiting | 0 (0.0%) | 0 (0.0%) | - |
Abdominal discomfort | 3 (13.64%) | 3 (10.71%) | >0.999 |
Constipation | 2 (9.09%) | 4 (14.29%) | 0.902 |
Diarrhea | 2 (9.09%) | 5 (17.86%) | 0.634 |
Abdominal pain | 2 (9.09%) | 3 (10.71%) | >0.999 |
Pain | 4 (18.18%) | 13 (46.43%) | 0.073 |
Sleep disorder | 5 (22.73%) | 8 (28.57%) | 0.886 |
Forecast Range and Model | AUC | Accuracy | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|
10 min | ||||||
RF | 0.988 | 0.939 | 0.973 | 0.919 | 0.874 | 0.983 |
XGB | 0.994 | 0.967 | 0.974 | 0.962 | 0.951 | 0.980 |
LGBM | 0.992 | 0.961 | 0.951 | 0.967 | 0.944 | 0.972 |
CAT | 0.992 | 0.959 | 0.951 | 0.963 | 0.938 | 0.972 |
8 h | ||||||
RF | 0.814 | 0.820 | 0.674 | 0.911 | 0.826 | 0.817 |
XGB | 0.842 | 0.804 | 0.700 | 0.887 | 0.834 | 0.786 |
LGBM | 0.794 | 0.847 | 0.658 | 0.964 | 0.920 | 0.819 |
CAT | 0.808 | 0.807 | 0.653 | 0.904 | 0.809 | 0.806 |
Prediction Model | AUC | Accuracy | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|
10 min | ||||||
W | 0.970 | 0.917 | 0.931 | 0.916 | 0.430 | 0.995 |
C | 0.572 | 0.733 | 0.399 | 0.756 | 0.100 | 0.949 |
A | 0.968 | 0.929 | 0.912 | 0.931 | 0.498 | 0.993 |
F | 0.973 | 0.921 | 0.926 | 0.920 | 0.468 | 0.994 |
8 h | ||||||
W | 0.649 | 0.760 | 0.431 | 0.777 | 0.094 | 0.962 |
C | 0.512 | 0.168 | 0.936 | 0.127 | 0.054 | 0.973 |
A | 0.689 | 0.702 | 0.576 | 0.718 | 0.213 | 0.927 |
F | 0.690 | 0.713 | 0.548 | 0.735 | 0.215 | 0.925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.-Y.; Bae, Y.S.; Chie, E.K.; Lee, S.-B. Predicting Deterioration from Wearable Sensor Data in People with Mild COVID-19. Sensors 2023, 23, 9597. https://doi.org/10.3390/s23239597
Kang J-Y, Bae YS, Chie EK, Lee S-B. Predicting Deterioration from Wearable Sensor Data in People with Mild COVID-19. Sensors. 2023; 23(23):9597. https://doi.org/10.3390/s23239597
Chicago/Turabian StyleKang, Jin-Yeong, Ye Seul Bae, Eui Kyu Chie, and Seung-Bo Lee. 2023. "Predicting Deterioration from Wearable Sensor Data in People with Mild COVID-19" Sensors 23, no. 23: 9597. https://doi.org/10.3390/s23239597
APA StyleKang, J. -Y., Bae, Y. S., Chie, E. K., & Lee, S. -B. (2023). Predicting Deterioration from Wearable Sensor Data in People with Mild COVID-19. Sensors, 23(23), 9597. https://doi.org/10.3390/s23239597