Miner Fatigue Detection from Electroencephalogram-Based Relative Power Spectral Topography Using Convolutional Neural Network
<p>The general framework of the proposed methodology.</p> "> Figure 2
<p>EEG input construction. (<b>a</b>) The 32-channel EEG placement in this experiment. (<b>b</b>) EEG channel matrix.</p> "> Figure 3
<p>The convolutional neural network diagram.</p> "> Figure 4
<p>Comparison between the raw EEG signal, denoised EEG signal, and the filtered EEG signal.</p> "> Figure 5
<p>The topographic maps of PSD in the normal, critical, and fatigue states.</p> "> Figure 6
<p>The topographic maps of RPSD in the normal, critical, and fatigue states.</p> "> Figure 7
<p>Plot of the CNN model’s accuracy and loss on training and testing. (<b>a</b>) Accuracy of the training and testing with respect to iterations; (<b>b</b>) loss of the training and testing with respect to iterations.</p> "> Figure 8
<p>(<b>a</b>) The ROC curves and AUC values of PSD; (<b>b</b>) the ROC curves and AUC values of RPSD.</p> "> Figure 9
<p>Performance plot of ten-fold cross validation vs. (<b>a</b>) accuracy; (<b>b</b>) precision; (<b>c</b>) sensitivity; (<b>d</b>) F1 for four different classifiers.</p> "> Figure 10
<p>The t-SNE visualization for (<b>a</b>) the original dataset; (<b>b</b>) the data of the RPSD–CNN model.</p> ">
Abstract
:1. Introduction
- This work contributes to our understanding of fatigue detection in mining accidents, specifically by employing deep-learning methods to assess miner fatigue. Previous research primarily focused on laboratory simulation studies or subjective questionnaire surveys concerning miner fatigue. However, there exists a knowledge gap that motivated the expansion of this research, which utilizes deep-learning techniques to measure miner fatigue;
- The RPSD–CNN method has been utilized for feature extraction and classification, leading to improved classification performance.
- CNNs have rarely been used for EEG-based fatigue classification in coal mine areas. In this respect, the third significant contribution of this work is the attempt to generate EEG signals using the proposed method;
- The fourth contribution of this work involves the detection of miner fatigue through EEG signals, which encompass both physiological and physical signals. It is the first introduced EEG model to estimate fatigue detection in coal miners. Importantly, this approach has the potential to enhance the detection ability of miner fatigue, as EEG signals contain a wealth of information that reflects the state, activities, and diseases of the brain.
2. Related Work
2.1. EEG Features
2.2. EEG-Based Fatigue Detection Using Deep Learning
3. Materials and Methods
3.1. Participants and Experimental Apparatus
3.2. Experimental Procedure and Data Collection
3.3. Fatigue Evaluation Methods
3.4. EEG Data Pre-Processing
3.5. Power Spectral Density
3.6. Relative Power Spectral Density
3.7. Convolutional Neural Network
3.8. Performance Measures
4. Experimental Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional neural network |
EEG | Electroencephalogram |
ECG | Electrocardiogram |
EOG | Electrooculography |
EMG | Electromyography |
RM | Respiratory measurement |
PPG | Photoplethysmography |
EDA | Electrodermal activity |
SVM | Support vector machine |
ANN | Artificial neural network |
KNN | K-nearest neighbors |
RNN | Recurrent neural networks |
DBN | Deep belief network |
LSTM | Long short-term memory |
ROC | Receiver operating characteristics |
AUC | Area under the curve |
References
- Yu, M.; Li, J. Psychosocial safety climate and unsafe behavior among miners in China: The mediating role of work stress and job burnout. Psychol. Health Med. 2020, 25, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qi, H.; Feng, Q. Characteristics of direct causes and human factors in major gas explosion accidents in chinese coal mines: Case study spanning the years 1980–2010. J. Loss Prev. Process. Ind. 2013, 26, 38–44. [Google Scholar] [CrossRef]
- Mabbott, N.; Lydon, M.; Hartley, L.; Arnold, P. Procedures and devices to monitor operator alterness whilst operating machinery in open-cut mines. Res. Rep. 1999, 1–27. Available online: http://worldcat.org/isbn/187659201X (accessed on 4 September 2023).
- Ning, X.; Duan, P.; Li, W.; Zhang, S. Real-time 3D face alignment using an encoder-decoder network with an efficient deconvolution layer. IEEE Signal Process. Lett. 2020, 27, 1944–1948. [Google Scholar] [CrossRef]
- Baccour, M.H.; Driewer, F.; Kasneci, E.; Rosenstiel, W. Camera-based eye blink detection algorithm for assessing driver drowsiness. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 987–993. [Google Scholar]
- Ning, X.; Tian, W.; He, F.; Bai, X.; Sun, L.; Li, W. Hyper-sausage coverage function neuron model and learning algorithm for image classification. Pattern Recognit. 2023, 136, 109216. [Google Scholar] [CrossRef]
- Wu, G.; Ning, X.; Hou, L.; He, F.; Zhang, H.; Shankar, A. Three-dimensional softmax mechanism guided bidirectional gru networks for hyperspectral remote sensing image classification. Signal Process. 2023, 212, 109151. [Google Scholar] [CrossRef]
- Alizadeh, S.M.S.; Bagherzadeh, A.; Bahmani, S.; Nikzad, A.; Aminzadehsarikhanbeglou, E.; Yu, S.T. Retrograde gas condensate reservoirs: Reliable estimation of dew point pressure by the hybrid neuro-fuzzy connectionist paradigm. J. Energy Resour. Technol. 2022, 144, 063007. [Google Scholar] [CrossRef]
- Masjidi, B.H.K.; Bahmani, S.; Sharifi, F.; Peivandi, M.; Khosravani, M.; Mohammed, A.H. Ct-ml: Diagnosis of breast cancer based on ultrasound images and time-dependent feature extraction methods using contourlet transformation and machine learning. Comput. Intell. Neurosci. 2022, 2022, 1493847. [Google Scholar]
- Xu, A.; Qian, F.; Ding, H.; Zhang, X. Digitalization of logistics for transition to a resource-efficient and circular economy. Resour. Policy 2023, 83, 103616. [Google Scholar] [CrossRef]
- Li, C.; Chen, Z.; Jiao, Y. Vibration and bandgap behavior of sandwich pyramid lattice core plate with resonant rings. Materials 2023, 16, 2730. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Gao, Y.; Yee, A.L.; Wang, X. The use of an internet of things data management system using data mining association algorithm in an e-commerce platform. J. Organ. End User Comput. 2023, 35, 1–19. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, K.; Zhang, Y.-H.; Wen, C.; He, J.-B. Fine segmentation on faces with masks based on a multistep iterative segmentation algorithm. IEEE Access 2022, 10, 75742–75753. [Google Scholar] [CrossRef]
- Meng, F.; Jagadeesan, L.; Thottan, M. Model-based reinforcement learning for service mesh fault resiliency in a web application-level. arXiv 2021, arXiv:2110.13621. [Google Scholar]
- Tang, Z. Molecular Fundamentals of Upgrading Biomass-Derived Feedstocks over Platinum-Molybdenum Catalysts. Ph.D. Thesis, Stevens Institute of Technology, Hoboken, NJ, USA, 2022. [Google Scholar]
- Wu, J.; Tao, R.; Zhao, P.; Martin, N.F.; Hovakimyan, N. Optimizing nitrogen management with deep reinforcement learning and crop simulations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 1712–1720. [Google Scholar]
- Yang, Z.; Sun, L.; Sun, Y.; Dong, Y.; Wang, A. A conceptual model of home-based cardiac rehabilitation exercise adherence in patients with chronic heart failure: A constructivist grounded theory study. Patient Prefer. Adher. 2023, 17, 851–860. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, S.; Zhang, X.; Meng, L. The impact of improving employee psychological empowerment and job performance based on deep learning and artificial intelligence. J. Organ. End User Comput. 2023, 35, 1–14. [Google Scholar] [CrossRef]
- Liu, K.; Chen, T.; He, S.; Robbins, J.P.; Podkolzin, S.G.; Tian, F. Observation and identification of an atomic oxygen structure on catalytic gold nanoparticles. Angew. Chem. 2017, 129, 13132–13137. [Google Scholar] [CrossRef]
- Meng, Y.C.F.; Zhang, L. Fedemb: An efficient vertical and hybrid federated learning algorithm using partial network embedding. anonymous preprint under review. 2023. [Google Scholar]
- He, S.; Wu, D.; Chen, S.; Liu, K.; Yang, E.-H.; Tian, F.; Du, H. Au-on-ag nanostructure for in situ sers monitoring of catalytic reactions. Nanotechnology 2022, 33, 155701. [Google Scholar] [CrossRef]
- Shen, G.; Zeng, W.; Han, C.; Liu, P.; Zhang, Y. Determination of the average maintenance time of cnc machine tools based on type ii failure correlation. Eksploat. Niezawodn. 2017, 19, 604–614. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, L.; Shen, G.; Yu, Y.; Han, C. Fault diagnosis strategy of cnc machine tools based on cascading failure. J. Intell. Manuf. 2019, 30, 2193–2202. [Google Scholar] [CrossRef]
- Abhang, P.A.; Gawali, B.W.; Mehrotra, S.C. Technical aspects of brain rhythms and speech parameters. In Introduction to EEG-and Speech-Based Emotion Recognition; Academic Press: Cambridge, MA, USA, 2016; pp. 51–79. [Google Scholar]
- Tran, Y.; Craig, A.; Craig, R.; Chai, R.; Nguyen, H. The influence of mental fatigue on brain activity: Evidence from a systematic review with meta-analyses. Psychophysiology 2020, 57, e13554. [Google Scholar] [CrossRef]
- Wang, F.; Wu, S.; Ping, J.; Xu, Z.; Chu, H. Eeg driving fatigue detection with pdc-based brain functional network. IEEE Sens. J. 2021, 21, 10811–10823. [Google Scholar] [CrossRef]
- Risqiwati, D.; Wibawa, A.D.; Pane, E.S.; Islamiyah, W.R.; Tyas, A.E.; Purnomo, M.H. Feature selection for EEG-based fatigue analysis using pearson correlation. In Proceedings of the 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 22–23 July 2020; pp. 164–169. [Google Scholar]
- Manshouri, N.; Maleki, M.; Kayikcioglu, T. An EEG-based stereoscopic research of the psd differences in pre and post 2D&3D movies watching. Biomed. Signal Process. Control 2020, 55, 101642. [Google Scholar]
- Zhang, Y.-H.; Wen, C.; Zhang, M.; Xie, K.; He, J.-B. Fast 3D visualization of massive geological data based on clustering index fusion. IEEE Access 2022, 10, 28821–28831. [Google Scholar] [CrossRef]
- Tian, S.; Li, W.; Ning, X.; Ran, H.; Qin, H.; Tiwari, P. Continuous transfer of neural network representational similarity for incremental learning. Neurocomputing 2023, 545, 126300. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Zhang, J.; Zhang, L.; Bai, X.; Ning, X.; Zhou, J.; Hancock, E. Uncertainty estimation for stereo matching based on evidential deep learning. Pattern Recognit. 2022, 124, 108498. [Google Scholar] [CrossRef]
- Ma, J.; Tang, H.; Zheng, W.-L.; Lu, B.-L. Emotion recognition using multimodal residual lstm network. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 176–183. [Google Scholar]
- Wang, X.; Ren, Y.; Luo, Z.; He, W.; Hong, J.; Huang, Y. Deep learning-based EEG emotion recognition: Current trends and future perspectives. Front. Psychol. 2023, 14, 213. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, X.; Yang, Y.; Mu, C.; Cai, Q.; Dang, W.; Zuo, S. Eeg-based spatio–temporal convolutional neural network for driver fatigue evaluation. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2755–2763. [Google Scholar] [CrossRef]
- Khurana, D.; Koli, A.; Khatter, K.; Singh, S. Natural language processing: State of the art, current trends and challenges. Multimed. Tools Appl. 2023, 82, 3713–3744. [Google Scholar] [CrossRef]
- Gao, Z.-K.; Li, Y.-L.; Yang, Y.-X.; Ma, C. A recurrence network-based convolutional neural network for fatigue driving detection from EEG. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 113126. [Google Scholar] [CrossRef]
- Gupta, V.; Chopda, M.D.; Pachori, R.B. Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals. IEEE Sens. J. 2018, 19, 2266–2274. [Google Scholar] [CrossRef]
- Sheykhivand, S.; Rezaii, T.Y.; Mousavi, Z.; Meshgini, S.; Makouei, S.; Farzamnia, A.; Danishvar, S.; Kin, K.T.T. Automatic detection of driver fatigue based on EEG signals using a developed deep neural network. Electronics 2022, 11, 2169. [Google Scholar] [CrossRef]
- Hajinoroozi, M.; Zhang, J.M.; Huang, Y. Driver’s fatigue prediction by deep covariance learning from EEG. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 240–245. [Google Scholar]
- Karuppusamy, N.S.; Kang, B.-Y. Multimodal system to detect driver fatigue using EEG, gyroscope, and image processing. IEEE Access 2020, 8, 129645–129667. [Google Scholar] [CrossRef]
- Rahman, M.A.; Anjum, A.; Milu, M.M.H.; Khanam, F.; Uddin, M.S.; Mollah, M.N. Emotion recognition from EEG-based relative power spectral topography using convolutional neural network. Array 2021, 11, 100072. [Google Scholar] [CrossRef]
- Lin, Z.; Qiu, T.; Liu, P.; Zhang, L.; Zhang, S.; Mu, Z. Fatigue driving recognition based on deep learning and graph neural network. Biomed. Signal Process. Control 2021, 68, 102598. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, Y.; Wang, M.; Chen, J.; Gao, D. Ta-mffnet: Multi-feature fusion network for EEG analysis and driving fatigue detection based on time domain network and attention network. Comput. Biol. Chem. 2023, 104, 107863. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, Y.; Gu, B.; Cao, S.; Fang, D. Identifying mental fatigue of construction workers using EEG and deep learning. Autom. Constr. 2023, 151, 104887. [Google Scholar] [CrossRef]
- Gao, D.; Tang, X.; Wan, M.; Huang, G.; Zhang, Y. Eeg driving fatigue detection based on log-mel spectrogram and convolutional recurrent neural networks. Front. Neurosci. 2023, 17, 1136609. [Google Scholar] [CrossRef]
- He, F.; Ye, Q. A bearing fault diagnosis method based on wavelet packet transform and convolutional neural network optimized by simulated annealing algorithm. Sensors 2022, 22, 1410. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, N.; Zhang, L.; Yan, H.; Xu, Y.; Zhang, Z. Driver fatigue detection based on convolutional neural networks using em-cnn. Comput. Intell. Neurosci. 2020, 2020, 7251280. [Google Scholar] [CrossRef]
- Yang, H.; Han, J.; Min, K. A multi-column cnn model for emotion recognition from EEG signals. Sensors 2019, 19, 4736. [Google Scholar] [CrossRef]
- Ed-Doughmi, Y.; Idrissi, N.; Hbali, Y. Real-time system for driver fatigue detection based on a recurrent neuronal network. J. Imaging 2020, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Pachori, R.B.; Sircar, P. Automated emotion recognition based on higher order statistics and deep learning algorithm. Biomed. Signal Process. Control 2020, 58, 101867. [Google Scholar] [CrossRef]
- Wei, C.; Chen, L.; Song, Z.Z.; Lou, X.G.; Li, D.D. Eeg-based emotion recognition using simple recurrent units network and ensemble learning. Biomed. Signal Process. Control 2020, 58, 101756. [Google Scholar] [CrossRef]
- Topic, A.; Russo, M. Emotion recognition based on EEG feature maps through deep learning network. Eng. Sci. Technol. Int. J. 2021, 24, 1442–1454. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, S.; Zhao, C.; Yang, W.; Li, J.; Ma, X.; He, H. EEG-based emotion recognition with prototype-based data representation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 684–689. [Google Scholar]
- Zhibin, Z.; Liping, S.; Xuan, C. Labeled box-particle cphd filter for multiple extended targets tracking. J. Syst. Eng. Electron. 2019, 30, 57–67. [Google Scholar]
- Wu, J.; Hobbs, J.; Hovakimyan, N. Hallucination improves the performance of unsupervised visual representation learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–3 October 2023; pp. 16132–16143. [Google Scholar]
- Wang, L.; Zhang, Y.; Hu, K. Feui: F usion e mbedding for u ser i dentification across social networks. Appl. Intell. 2022, 52, 8209–8225. [Google Scholar] [CrossRef]
- Wang, L.; Hu, K.; Zhang, Y.; Cao, S. Factor graph model based user profile matching across social networks. IEEE Access 2019, 7, 152429–152442. [Google Scholar] [CrossRef]
Author | Year | EEG Signals | Feature Extraction | Classification Methods | Accuracy (%) |
---|---|---|---|---|---|
Gao et al. [34] | 2019 | 30 channels | Spatial-temporal correlations | LSTM | 91.34% |
Gao et al. [36] | 2019 | 30 channels | Recurrence network | CNN | 92.95% |
Sheykhivand et al. [38] | 2022 | 32 channels | CNN | LSTM | 90% |
Hajinoroozi et al. [39] | 2017 | 64 channels | Spatial correlations | CNN | 86.14% |
Karuppusamy et al. [40] | 2020 | 8 channels | Wavelet transform | DNN | 93.91% |
Rahman et al. [41] | 2021 | 62 channels | RPSD | CNN | 94.63% |
Lin et al. [42] | 2021 | 32 channels | Noise distribution | CNN | more than 93% |
Peng et al. [43] | 2023 | 62 channels | Differential entropy | Multi-feature fusion network | 85.65% |
Wang et al. [44] | 2023 | 8 channels | Continuous wavelet transform | CNN | 88.85% |
Gao et al. [45] | 2023 | 21 channels | Log-Mel spectrogram | RNN | 85.65% |
KSS Level | Description | Our Study |
---|---|---|
1 | Extremely alert | Normal state |
2 | Very alert | |
3 | Alert | |
4 | Rather alert | |
5 | Moderate alertness with a balanced level of wakefulness and drowsiness | |
6 | A little sleepy | Critical state |
7 | Sleepy, but can easily stay alert | |
8 | Sleepy, needs to work hard to stay alert | |
9 | Sleepy, struggles hard to stay alert | Fatigue state |
States | Training | Testing | Total |
---|---|---|---|
Normal state | 6660 | 2220 | 8880 |
Critical state | 4122 | 1374 | 5496 |
Fatigue state | 2943 | 981 | 3924 |
Total | 13,725 | 4575 | 18,300 |
Subject | PSD–CNN | RPSD–CNN |
---|---|---|
1 | 82.79 | 96.23 |
2 | 90.91 | 98 |
3 | 86.85 | 92.48 |
4 | 90.85 | 94.68 |
5 | 84.89 | 97 |
6 | 90.91 | 93.4 |
7 | 88.95 | 94.71 |
8 | 87.85 | 96.24 |
9 | 89.82 | 99 |
10 | 95.94 | 92.48 |
11 | 92.91 | 93.74 |
12 | 85.73 | 90 |
13 | 90.88 | 97.48 |
14 | 94.97 | 94.48 |
15 | 97.91 | 98.24 |
Average ± Standard Deviation | 90.14 ± 4.82 | 94.51 ± 3.47 |
Techniques | Accuracy (%) | Precision (%) | Sensitivity (%) | F1 (%) |
---|---|---|---|---|
K-fold cross validation | 95.41 | 96.48 | 94.21 | 96.48 |
L1 regularization | 95.06 | 95.58 | 93.45 | 96.11 |
L2 regularization | 95.12 | 95.98 | 93.65 | 96.24 |
Dropout | 94.18 | 94.55 | 92.22 | 95.15 |
Early stopping | 94.46 | 95.12 | 93.54 | 95.92 |
Folds | CNN | LSTM | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy (%) | Precision (%) | Sensitivity (%) | F1 (%) | Accuracy (%) | Precision (%) | Sensitivity (%) | F1 (%) | |
1 | 94.39 | 96.23 | 93.21 | 96.39 | 93.19 | 94.43 | 92.61 | 91.39 |
2 | 94.69 | 96.58 | 93.45 | 96.11 | 93.49 | 94.23 | 92.85 | 91.61 |
3 | 94.73 | 96.38 | 93.65 | 95.45 | 93.55 | 94.08 | 93.45 | 95.15 |
4 | 95.05 | 97.18 | 94.22 | 97.15 | 93.75 | 94.98 | 92.82 | 95.85 |
5 | 95.45 | 96.98 | 94.54 | 96.92 | 93.85 | 95.32 | 94.14 | 94.62 |
6 | 95.34 | 96.6 | 94.61 | 96.74 | 92.54 | 95.14 | 94.31 | 94.64 |
7 | 95.81 | 96.31 | 95.03 | 96.61 | 94.21 | 94.71 | 94.23 | 95.21 |
8 | 96.73 | 96.24 | 95.24 | 96.73 | 93.63 | 94.84 | 93.54 | 95.23 |
9 | 95.78 | 96.44 | 93.85 | 96.58 | 93.88 | 95.55 | 93.05 | 95.18 |
10 | 96.17 | 95.82 | 94.32 | 96.07 | 94.17 | 94.62 | 92.82 | 94.97 |
Folds | RNN | DBN | ||||||
Accuracy (%) | Precision (%) | Sensitivity (%) | F1 (%) | Accuracy (%) | Precision (%) | Sensitivity (%) | F1 (%) | |
1 | 94.39 | 95.23 | 93.31 | 94.59 | 91.29 | 90.63 | 89.41 | 91.64 |
2 | 94.51 | 95.41 | 93.15 | 94.61 | 91.11 | 90.8 | 89.65 | 91.51 |
3 | 94.65 | 95.78 | 92.85 | 94.85 | 90.85 | 91.48 | 90.45 | 91.25 |
4 | 94.75 | 96.58 | 93.62 | 94.85 | 90.55 | 92.18 | 90.62 | 90.85 |
5 | 95.52 | 96.6 | 94.14 | 96.42 | 91.42 | 92.3 | 91.54 | 92.82 |
6 | 96.04 | 96.66 | 93.61 | 96.14 | 90.54 | 89.1 | 91.21 | 91.64 |
7 | 95.71 | 96.01 | 93.13 | 96.21 | 90.61 | 92.51 | 90.83 | 91.61 |
8 | 95.83 | 95.74 | 94.24 | 96.63 | 90.73 | 92.34 | 90.94 | 92.43 |
9 | 95.68 | 95.65 | 93.55 | 96.18 | 91.38 | 92.15 | 91.35 | 92.18 |
10 | 96.07 | 95.52 | 93.72 | 95.97 | 90.57 | 93.02 | 92.02 | 94.37 |
Studies | Feature Methods | Classification Methods | Results |
---|---|---|---|
Hajinoroozi et al. [39] | Spatial correlations | CNN | 86.14% |
Gao et al. [36] | Recurrence network | CNN | 92.95% |
Lin et al. [42] | Noise distribution | CNN | 93% |
Zhao et al. [47] | The region of interest (ROI) | EM-CNN | 93.62% |
Yang et al. [48] | Multi-column | CNN | 90.65% |
Ed-Doughmi et al. [49] | Multi-layer model | 3D-CNN | 92% |
Our proposed method | RPSD | CNN | 94.51% |
Studies | Feature Extraction | Classification Methods | Results |
---|---|---|---|
Gao et al. [45] | LogMel | CRNN | 85.65% |
Sharma et al. [50] | HOS-LSTM | Softmax | 90.81% |
Wei et al. [51] | DW-CWT | SRU | 80.02% |
Topic and Russo [52] | CNN | SVM | 88.5% |
Wang et al. [53] | Differential Entropy | DNN | 93.28% |
Our proposed method | RPSD | CNN | 94.51% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Li, J.; Feng, D. Miner Fatigue Detection from Electroencephalogram-Based Relative Power Spectral Topography Using Convolutional Neural Network. Sensors 2023, 23, 9055. https://doi.org/10.3390/s23229055
Xu L, Li J, Feng D. Miner Fatigue Detection from Electroencephalogram-Based Relative Power Spectral Topography Using Convolutional Neural Network. Sensors. 2023; 23(22):9055. https://doi.org/10.3390/s23229055
Chicago/Turabian StyleXu, Lili, Jizu Li, and Ding Feng. 2023. "Miner Fatigue Detection from Electroencephalogram-Based Relative Power Spectral Topography Using Convolutional Neural Network" Sensors 23, no. 22: 9055. https://doi.org/10.3390/s23229055
APA StyleXu, L., Li, J., & Feng, D. (2023). Miner Fatigue Detection from Electroencephalogram-Based Relative Power Spectral Topography Using Convolutional Neural Network. Sensors, 23(22), 9055. https://doi.org/10.3390/s23229055