Non-Circular Signal DOA Estimation with Nested Array via Off-Grid Sparse Bayesian Learning
<p>The nested array model.</p> "> Figure 2
<p>Difference and sum co-arrays, where <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Amplitude with different methods, <span class="html-italic">T</span> = 200, SNR = 0 dB, (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>11</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>RMSEs between the DOA estimation and different SNRs, <span class="html-italic">T</span> = 200, MC = 200.</p> "> Figure 5
<p>RMSEs with different snapshots, SNR = 0 dB, MC = 200.</p> "> Figure 6
<p>RMSEs for different SNRs, the snapshots <span class="html-italic">T</span> = 200, MC = 200.</p> "> Figure 7
<p>RMSEs vs. different snapshots, SNR = 0 dB, MC = 200.</p> ">
Abstract
:1. Introduction
- We combine virtual difference co-arrays and sum co-arrays by exploiting the property of NC signals, which extends the array aperture and improves estimation accuracy.
- We take the noise variance as part of the NC signals of interest and then iterate over the internal parameters by the OGSBI method to maintain the standard SBL form after computing the selection matrix and removing redundant information in the nested array.
2. Background
2.1. The Data Model
2.2. Difference and Sum Co-Arrays
3. The Proposed Method
3.1. Data Extension
3.2. Sparse Bayesian Inference for DOA Estimation
3.3. Grid Refining
4. Numerical Simulation
4.1. Computational Complexity
4.2. The Spatial Spectrum with Different DOAs
4.3. The RMSE of Overdetermined DOA Estimation
4.4. The RMSE of Underdetermined DOA Estimation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krim, H.; Mats, V. Two Decades of Array Signal Processing Research: The Parametric Approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Devaney A., J. Time reversal imaging of obscured targets from multistatic data. IEEE Trans. Antennas Propagat. 2005, 53, 1600–1610. [Google Scholar] [CrossRef]
- Ciuonzo, D. On time-reversal imaging by statistical testing. IEEE Signal Process. Lett. 2017, 24, 1024–1028. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple Emitter Location and Signal Parameter Estimation. IEEE Trans. Antennas Propagat. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Viberg, M.; Ottersten, B.; Kailath, T. Detection and Estimation in Sensor Arrays using Weighted Subspace Fitting. IEEE Trans. Signal Process. 1991, 39, 2436–2449. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, Y.; Wang, W.Q.; So, H.C. Augmented covariance matrix reconstruction for DOA estimation using difference coarray. IEEE Trans. Signal Process. 2021, 69, 5345–5358. [Google Scholar] [CrossRef]
- Moffet, A. Minimum-Redundancy Linear Arrays. IEEE Trans. Antennas Propagat. 1968, 16, 172–175. [Google Scholar] [CrossRef]
- Vaidyanathan, P.P.; Pal, P. Sparse Sensing with Co-prime Samplers and Arrays. IEEE Trans. Signal Process. 2011, 59, 573–586. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, Y.D.; Amin, M.G. Generalized Coprime Array Configurations for Direction-of-arrival Estimation. IEEE Trans. Signal Process. 2015, 63, 1377–1390. [Google Scholar] [CrossRef]
- Fu, Z.; Chargé, P.; Wang, Y. Rearranged Coprime Array to Increase Degrees of Freedom and Reduce Mutual Coupling. Signal Process. 2021, 183, 108038. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P.P. Nested Arrays: A Novel Approach to Array Processing with Enhanced Degrees of Freedom. IEEE Trans. Signal Process. 2010, 58, 4167–4181. [Google Scholar] [CrossRef]
- He, J.; Zhang, Z.; Shu, T.; Yu, W. Sparse Nested Array with Aperture Extension for High Accuracy Angle Estimation. Signal Process. 2020, 176, 107700. [Google Scholar] [CrossRef]
- Shi, J.; Hu, G.; Zhang, X.; Zhou, H. Generalized Nested Array: Optimization for Degrees of Freedom and Mutual Coupling. IEEE Commun. Lett. 2018, 22, 1208–1211. [Google Scholar] [CrossRef]
- Zhao, P.; Wu, Q.; Chen, Z.; Hu, G.; Wang, L.; Wan, L. Generalized Nested Array Configuration Family for Direction-of-Arrival Estimation. IEEE Trans. Veh. Technol. 2023, 72, 10380–10392. [Google Scholar] [CrossRef]
- Huang, H.; Miao, Y.; Gong, Y.; Liao, B. Toeplitz Matrix Completion for Direction Finding using a Modified Nested Linear Array. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4474–4478. [Google Scholar]
- Yin, J.; Chen, T. Direction-of-arrival Estimation using A Sparse Representation of Array Covariance Vectors. IEEE Trans. Signal Process. 2011, 59, 4489–4493. [Google Scholar] [CrossRef]
- Northardt, E.T.; Bilik, I.; Abramovich, Y.I. Spatial Compressive Sensing for Direction-of-Arrival Estimation with Bias Mitigation via Expected Likelihood. IEEE Trans. Signal Process. 2013, 61, 1183–1195. [Google Scholar] [CrossRef]
- Hawes, M.; Mihaylova, L.; Septier, F.; Godsill, S. Bayesian Compressive Sensing Approaches for Direction of Arrival Estimation with Mutual Coupling Effects. IEEE Trans. Antennas Propagat. 2017, 65, 1357–1368. [Google Scholar] [CrossRef]
- Pote, R.R.; Rao, B.D. Maximum likelihood-based gridless DOA estimation using structured covariance matrix recovery and SBL with grid refinement. IEEE Trans. Signal Process. 2023, 71, 802–815. [Google Scholar] [CrossRef]
- Malioutov, D.; Cetin, M.; Willsky, A.S. A Sparse Signal Reconstruction Perspective for Source Localization with Sensor Arrays. IEEE Trans. Signal Process. 2005, 53, 3010–3022. [Google Scholar] [CrossRef]
- Zhu, H.; Leus, G.; Giannakis, G.B. Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling. IEEE Trans. Signal Process. 2011, 59, 2002–2016. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, C. Off-Grid Direction of Arrival Estimation using Sparse Bayesian Inference. IEEE Trans. Signal Process. 2013, 61, 38–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, Z.; Xu, X.; Hu, N. Off-Grid DOA Estimation using Array Covariance Matrix and Block-Sparse Bayesian Learning. Signal Process. 2013, 98, 197–201. [Google Scholar] [CrossRef]
- Dai, J.; Bao, X.; Xu, W.; Chang, C. Root Sparse Bayesian Learning for Off-Grid DOA Estimation. IEEE Signal Process. Lett. 2017, 24, 46–50. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian learning and the Relevance Vector Machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar]
- Chen, F.; Dai, J.; Hu, N.; Ye, Z. Sparse Bayesian learning for Off-Grid DOA Estimation with Nested Arrays. Digit. Signal Process. 2018, 82, 187–193. [Google Scholar] [CrossRef]
- Yang, J.; Liao, G.; Li, J. An Efficient Off-Grid DOA Estimation Approach for Nested Array Signal Processing by Using Sparse Bayesian Learning Strategies. Signal Process. 2016, 128, 110–122. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Z.; Wang, W.Q.; So, H.C. DOA estimation of mixed circular and noncircular sources using nonuniform linear array. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 5703–5710. [Google Scholar] [CrossRef]
- Mohsen, N.; Hawbani, A.; Wang, X.; Bairrington, B.; Zhao, L.; Alsamhi, S. New Array Designs for DoA Estimation of Non-Circular Signals with Reduced Mutual Coupling. IEEE Trans. Veh. Technol. 2023, 72, 8313–8328. [Google Scholar] [CrossRef]
- Chen, G.; Lu, Y. Multi-Frequency Sequential Sparse Bayesian Learning for DOA Estimation of the Moving Wideband Sound Source. Meas. Sci. Technol. 2022, 33, 055019. [Google Scholar] [CrossRef]
- Wan, L.; Liu, K.; Liang, Y.C.; Zhu, T. DOA and Polarization Estimation for Non-Circular Signals in 3-D Millimeter Wave Polarized Massive MIMO Systems. IEEE Trans. Wireless Commun. 2021, 20, 3152–3167. [Google Scholar]
- Gupta, P.; Agrawal, M. Higher-Order Statistics-based Non-Uniform Linear Array for Underdetermined DoA Estimation of Non-Circular Signals. Circuits Syst. Signal Process. 2022, 41, 2719–2749. [Google Scholar] [CrossRef]
- Zhang, J.; Qiu, T.; Luan, S. An Efficient Real-Valued Sparse Bayesian Learning for Non-Circular Signal’s DOA Estimation in the Presence of Impulsive Noise. Digit. Signal Process. 2020, 106, 102838. [Google Scholar] [CrossRef]
- Zheng, R.; Xu, X.; Ye, Z.; Al Mahmud, T.H.; Dai, J.; Shabir, K. Sparse Bayesian Learning for Off-Grid DOA Estimation With Gaussian Mixture Priors When Both Circular and Non-Circular Sources Coexist. Signal Process. 2019, 161, 124–135. [Google Scholar] [CrossRef]
- Luan, S.; Li, J.; Gao, Y.; Zhang, J.; Qiu, T. Generalized Covariance-based ESPRIT-Llike Solution to Direction of Arrival Estimation for Strictly Non-Circular Signals Under Alpha-Stable Distributed Noise. Digit. Signal Process. 2021, 118, 103214. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, X.; Zhao, J.; Sun, M. Non-Circular Sources DOA Estimation for Coprime Array With Impulsive Noise: A Novel Augmented Phased Fractional Low-Order Moment. IEEE Trans. Veh. Technol. 2022, 71, 10559–10569. [Google Scholar] [CrossRef]
- Ottersten, B.; Stoica, P.; Roy, R. Covariance Matching Estimation Techniques for Array Signal Processing Applications. Digit. Signal Process. 1998, 8, 185–210. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Z.; Zhou, Y. Sparsity-Inducing Direction Finding for Narrowband and Wideband Signals Based on Array Covariance Vectors. IEEE Trans. Wireless Commun. 2013, 12, 1–12. [Google Scholar]
- Wang, Y.; Shen, J.; Zhang, X.; He, Y.; Dai, X. Non-Circular Signals for Nested Array: Sum-Difference Co-array and Direction of Arrival Estimation Algorithm. IET Radar Sonar Navig. 2020, 14, 27–35. [Google Scholar]
- Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Bayesian Compressive Sensing Using Laplace Priors. IEEE Trans. Image Process. 2010, 19, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.L.; Vaidyanathan, P.P. Cramér-Rao Bounds for Coprime and Other Sparse Arrays, Which Find More Sources Than Sensors. Digit. Signal Process. 2016, 61, 43–61. [Google Scholar] [CrossRef]
Acronyms | Full Name |
---|---|
DOA | direction of arrival |
ULA | uniform linear array |
SBL | sparse Bayesian learning |
MUSIC | multiple signal classification |
ESPRIT | estimation of signal parameters via rotational invariance techniques |
WSF | weighted subspace fitting |
CA | co-prime array |
NA | nested array |
MRA | minimum redundant array |
DOFs | degrees of freedom |
SS-MUSIC | spatial smoothing MUSIC |
CS | compressive sensing |
SR | sparse representation |
SSR | sparse signal representation |
OGSBI | off-grid sparse Bayesian inference |
EM | expectation–maximization |
NC | non-circular |
PAM | pulse amplitude modulation |
BPSK | binary phase shift keying |
ASK | amplitude shift keying |
CRB | Cramér–Rao bound |
RMSE | root mean square error |
Input: , and . |
---|
Output: Parameter estimator: , and . |
1: Initialization: Set , and . |
2: Calculate the covariance matrix: . |
3: Vectorize , obtain according to Equation (10). Then, multiply the row |
exchange matrix to obtain Equation (19). |
4: Construct the over-complete information according to Equation (22). |
5: Remove the redundancy items according to Equation (25), we can obtain . |
6: Calculate the weight matrix , use it to normalize the vectorized covariance matrix, and then go through the remove redundancy matrix to obtain Equation (27). |
7: Build and based on the current values of and separately. |
8: While, do |
Calculate the mean and covariance according to Equation (31) and Equation (32), respectively. |
Update the according to Equation (35), respectively. |
Calculate the and . |
Update the according to Equation (42). |
Update the grid according to Equation (43). |
Update . |
9: end |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Zhao, J.; Sun, M.; Zhang, X. Non-Circular Signal DOA Estimation with Nested Array via Off-Grid Sparse Bayesian Learning. Sensors 2023, 23, 8907. https://doi.org/10.3390/s23218907
Dong X, Zhao J, Sun M, Zhang X. Non-Circular Signal DOA Estimation with Nested Array via Off-Grid Sparse Bayesian Learning. Sensors. 2023; 23(21):8907. https://doi.org/10.3390/s23218907
Chicago/Turabian StyleDong, Xudong, Jun Zhao, Meng Sun, and Xiaofei Zhang. 2023. "Non-Circular Signal DOA Estimation with Nested Array via Off-Grid Sparse Bayesian Learning" Sensors 23, no. 21: 8907. https://doi.org/10.3390/s23218907
APA StyleDong, X., Zhao, J., Sun, M., & Zhang, X. (2023). Non-Circular Signal DOA Estimation with Nested Array via Off-Grid Sparse Bayesian Learning. Sensors, 23(21), 8907. https://doi.org/10.3390/s23218907