Enhancing IoT Network Security: Unveiling the Power of Self-Supervised Learning against DDoS Attacks
<p>Methodology’s three main phases: the creation of synthetic images, the design of different ablation studies to find the optimal training setting, and the models’ training and evaluation.</p> "> Figure 2
<p>Synthetic grayscale images generated from the Bot-IoT dataset. The categories UDP, TCP, and HTTP represent the attack classes.</p> "> Figure 3
<p>Synthetic grayscale images generated from the LATAM-DDoS-IoT dataset. The categories UDP, TCP, and HTTP represent the attack classes.</p> "> Figure 4
<p>Data distribution for the pre-training phase.</p> ">
Abstract
:1. Introduction
- The pioneering of experimentation in IoT networks by leveraging the self-supervised learning paradigm in tandem with synthetic image generation, enabling the application of computer vision (CV) techniques for denial-of-service attack detection;
- The pre-training of self-supervised learning models using MoCo v2 on the Bot-IoT and the LATAM-DDoS-IoT datasets, laying the groundwork for fine-tuning in future specialized research tasks;
- An optimized training framework for future studies focusing on the contrastive learning of visual representations for the detection of denial-of-service attacks within IoT networks.
2. Related Work
3. Methodology
3.1. Synthetic Image Creation
3.2. Model Training and Evaluation
- The SGD optimizer was chosen for MoCo v2, while the Adam optimizer [61] was employed for the supervised learning approach.
- For experiments involving cyclical learning rates, the SGD optimizer was consistently used. Both learning strategies typically employed the cosine annealing learning rate scheduler, except during evaluations of the one-cycle learning rate policy.
- Batch normalization yielded means and standard deviations of 0.4367 and 0.2715, respectively, for the LATAM-DDoS-IoT dataset and 0.3414 and 0.2202 for the Bot-IoT dataset.
- We used a batch size of 32, the Adam optimizer, and the cosine annealing learning rate scheduler.
- Overall, both the pre-training and fine-tuning phases spanned 100 epochs each.
3.3. Downstream Tasks Definition
- Attack detection: determining if an input image represents a DDoS attack;
- Protocol classification: classifying the input image based on its protocol (either UDP, TCP, HTTP, or standard traffic);
- OSI layer identification: recognizing the OSI layer the input image corresponds to, whether it is the transport layer, application layer, or standard traffic.
4. Experimental Results and Discussion
4.1. Ablation Studies to Find the Optimal Training Setting
4.2. Evaluating the Optimal Training Setting
4.3. Comparison with Previous Works
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadhu, P.K.; Yanambaka, V.P.; Abdelgawad, A. Internet of Things: Security and Solutions Survey. Sensors 2022, 22, 7433. [Google Scholar] [CrossRef] [PubMed]
- Chaganti, R.; Bhushan, B.; Ravi, V. A survey on Blockchain solutions in DDoS attacks mitigation: Techniques, open challenges and future directions. Comput. Commun. 2023, 197, 96–112. [Google Scholar] [CrossRef]
- Atlam, H.F.; El-Din Hemdan, E.; Alenezi, A.; Alassafi, M.O.; Wills, G.B. Internet of Things Forensics: A Review. Internet Things 2020, 11, 100220. [Google Scholar] [CrossRef]
- Devi, D.H.; Duraisamy, K.; Armghan, A.; Alsharari, M.; Aliqab, K.; Sorathiya, V.; Das, S.; Rashid, N. 5G Technology in Healthcare and Wearable Devices: A Review. Sensors 2023, 23, 2519. [Google Scholar] [CrossRef] [PubMed]
- Valdovinos, I.A.; Pérez-Díaz, J.A.; Choo, K.K.R.; Botero, J.F. Emerging DDoS attack detection and mitigation strategies in software-defined networks: Taxonomy, challenges and future directions. J. Netw. Comput. Appl. 2021, 187, 103093. [Google Scholar] [CrossRef]
- Chettri, L.; Bera, R. A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet Things J. 2020, 7, 16–32. [Google Scholar] [CrossRef]
- Adnan, A.; Muhammed, A.; Abd Ghani, A.A.; Abdullah, A.; Hakim, F. An Intrusion Detection System for the Internet of Things Based on Machine Learning: Review and Challenges. Symmetry 2021, 13, 1011. [Google Scholar] [CrossRef]
- Kumar, A.; Abhishek, K.; Ghalib, M.; Shankar, A.; Cheng, X. Intrusion detection and prevention system for an IoT environment. Digit. Commun. Netw. 2022, 8, 540–551. [Google Scholar] [CrossRef]
- Aldweesh, A.; Derhab, A.; Emam, A.Z. Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues. Knowl.-Based Syst. 2020, 189, 105124. [Google Scholar] [CrossRef]
- Gümüşbaş, D.; Yıldırım, T.; Genovese, A.; Scotti, F. A Comprehensive Survey of Databases and Deep Learning Methods for Cybersecurity and Intrusion Detection Systems. IEEE Syst. J. 2021, 15, 1717–1731. [Google Scholar] [CrossRef]
- Macas, M.; Wu, C.; Fuertes, W. A survey on deep learning for cybersecurity: Progress, challenges, and opportunities. Comput. Netw. 2022, 212, 109032. [Google Scholar] [CrossRef]
- Chiang, M.; Zhang, T. Fog and IoT: An Overview of Research Opportunities. IEEE Internet Things J. 2016, 3, 854–864. [Google Scholar] [CrossRef]
- Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018), Funchal, Portugal, 22–24 January 2018; INSTICC, SciTePress: Setubal, Portugal, 2018; Volume 1, pp. 108–116. [Google Scholar] [CrossRef]
- Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [Google Scholar] [CrossRef]
- Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.; Anwar, A. TON_IoT Telemetry Dataset: A New Generation Dataset of IoT and IIoT for Data-Driven Intrusion Detection Systems. IEEE Access 2020, 8, 165130–165150. [Google Scholar] [CrossRef]
- Dadkhah, S.; Mahdikhani, H.; Danso, P.K.; Zohourian, A.; Truong, K.A.; Ghorbani, A.A. Towards the Development of a Realistic Multidimensional IoT Profiling Dataset. In Proceedings of the 2022 19th Annual International Conference on Privacy, Security & Trust (PST), Fredericton, NB, Canada, 22–24 August 2022; pp. 1–11. [Google Scholar] [CrossRef]
- Almaraz-Rivera, J.G.; Perez-Diaz, J.A.; Cantoral-Ceballos, J.A.; Botero, J.F.; Trejo, L.A. Toward the Protection of IoT Networks: Introducing the LATAM-DDoS-IoT Dataset. IEEE Access 2022, 10, 106909–106920. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Wang, J.; Li, D. Network Intrusion Detection Model Based on Improved BYOL Self-Supervised Learning. Secur. Commun. Netw. 2021, 2021, 9486949. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, F.; Hou, Z.; Mian, L.; Wang, Z.; Zhang, J.; Tang, J. Self-Supervised Learning: Generative or Contrastive. IEEE Trans. Knowl. Data Eng. 2023, 35, 857–876. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Bai, J.; Al-Sabaawi, A.; Santamaría, J.; Albahri, A.S.; Al-dabbagh, B.S.N.; Fadhel, M.A.; Manoufali, M.; Zhang, J.; Al-Timemy, A.H.; et al. A survey on deep learning tools dealing with data scarcity: Definitions, challenges, solutions, tips, and applications. J. Big Data 2023, 10, 46. [Google Scholar] [CrossRef]
- Albelwi, S. Survey on Self-Supervised Learning: Auxiliary Pretext Tasks and Contrastive Learning Methods in Imaging. Entropy 2022, 24, 551. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a Few Examples: A Survey on Few-Shot Learning. ACM Comput. Surv. 2020, 53, 1–34. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, Z.; Wu, H.; Xing, M. A Novel Self-supervised Few-shot Network Intrusion Detection Method. In Wireless Algorithms, Systems, and Applications; Wang, L., Segal, M., Chen, J., Qiu, T., Eds.; Springer: Cham, Switzerland, 2022; pp. 513–525. [Google Scholar]
- Balestriero, R.; Ibrahim, M.; Sobal, V.; Morcos, A.; Shekhar, S.; Goldstein, T.; Bordes, F.; Bardes, A.; Mialon, G.; Tian, Y.; et al. A Cookbook of Self-Supervised Learning. arXiv 2023, arXiv:2304.12210. [Google Scholar]
- Zbontar, J.; Jing, L.; Misra, I.; LeCun, Y.; Deny, S. Barlow Twins: Self-Supervised Learning via Redundancy Reduction. In Proceedings of the 38th International Conference on Machine Learning, Virtual Event, 18–24 July 2021; Volume 139, pp. 12310–12320. [Google Scholar]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A Simple Framework for Contrastive Learning of Visual Representations. In Proceedings of the 37th International Conference on Machine Learning, ICML’20, Virtual Event, 13–18 July 2020. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar] [CrossRef]
- Grill, J.B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P.; Buchatskaya, E.; Doersch, C.; Avila Pires, B.; Guo, Z.; Gheshlaghi Azar, M.; et al. Bootstrap Your Own Latent—A New Approach to Self-Supervised Learning. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 21271–21284. [Google Scholar]
- He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum Contrast for Unsupervised Visual Representation Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Schiappa, M.C.; Rawat, Y.S.; Shah, M. Self-Supervised Learning for Videos: A Survey. ACM Comput. Surv. 2022, 55, 1–37. [Google Scholar] [CrossRef]
- Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A Survey on Contrastive Self-Supervised Learning. Technologies 2021, 9, 2. [Google Scholar] [CrossRef]
- Kolesnikov, A.; Zhai, X.; Beyer, L. Revisiting Self-Supervised Visual Representation Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Chen, X.; Fan, H.; Girshick, R.; He, K. Improved Baselines with Momentum Contrastive Learning. arXiv 2020, arXiv:2003.04297. [Google Scholar]
- Chen, T.; Kornblith, S.; Swersky, K.; Norouzi, M.; Hinton, G.E. Big Self-Supervised Models are Strong Semi-Supervised Learners. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 22243–22255. [Google Scholar]
- Ahmad, R.; Alsmadi, I. Machine learning approaches to IoT security: A systematic literature review. Internet Things 2021, 14, 100365. [Google Scholar] [CrossRef]
- Gyamfi, E.; Jurcut, A. Intrusion Detection in Internet of Things Systems: A Review on Design Approaches Leveraging Multi-Access Edge Computing, Machine Learning, and Datasets. Sensors 2022, 22, 3744. [Google Scholar] [CrossRef]
- Thakkar, A.; Lohiya, R. A Review on Machine Learning and Deep Learning Perspectives of IDS for IoT: Recent Updates, Security Issues, and Challenges. Arch. Comput. Methods Eng. 2021, 28, 3211–3243. [Google Scholar] [CrossRef]
- Krupski, J.; Graniszewski, W.; Iwanowski, M. Data Transformation Schemes for CNN-Based Network Traffic Analysis: A Survey. Electronics 2021, 10, 2042. [Google Scholar] [CrossRef]
- Golubev, S.; Novikova, E.; Fedorchenko, E. Image-Based Approach to Intrusion Detection in Cyber-Physical Objects. Information 2022, 13, 553. [Google Scholar] [CrossRef]
- Hussain, F.; Abbas, S.G.; Husnain, M.; Fayyaz, U.U.; Shahzad, F.; Shah, G.A. IoT DoS and DDoS Attack Detection using ResNet. In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India, 1–3 October 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Kayode Saheed, Y.; Idris Abiodun, A.; Misra, S.; Kristiansen Holone, M.; Colomo-Palacios, R. A machine learning-based intrusion detection for detecting internet of things network attacks. Alex. Eng. J. 2022, 61, 9395–9409. [Google Scholar] [CrossRef]
- Bottou, L.; Curtis, F.E.; Nocedal, J. Optimization Methods for Large-Scale Machine Learning. SIAM Rev. 2018, 60, 223–311. [Google Scholar] [CrossRef]
- Shaikh, A.; Gupta, P. Real-time intrusion detection based on residual learning through ResNet algorithm. Int. J. Syst. Assur. Eng. Manag. 2022. [Google Scholar] [CrossRef]
- Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT, Australia, 10–12 November 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Srinivas, A.; Lin, T.; Parmar, N.; Shlens, J.; Abbeel, P.; Vaswani, A. Bottleneck Transformers for Visual Recognition. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 16514–16524. [Google Scholar] [CrossRef]
- Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Ring, M.; Wunderlich, S.; Grüdl, D.; Landes, D.; Hotho, A. Flow-based benchmark data sets for intrusion detection. In Proceedings of the 16th European Conference on Cyber Warfare and Security (ECCWS), Dublin, Ireland, 29–30 June 2017; pp. 361–369. [Google Scholar]
- Lotfi, S.; Modirrousta, M.; Shashaani, S.; Amini, S.; Shoorehdeli, M.A. Network Intrusion Detection with Limited Labeled Data. arXiv 2022, arXiv:2209.03147. [Google Scholar] [CrossRef]
- Deng, L.; Zhao, Y.; Bao, H. A Self-supervised Adversarial Learning Approach for Network Intrusion Detection System. In Cyber Security; Lu, W., Zhang, Y., Wen, W., Yan, H., Li, C., Eds.; Springer: Singapore, 2022; pp. 73–85. [Google Scholar]
- Ho, C.H.; Vasconcelos, N. Contrastive Learning with Adversarial Examples. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 17081–17093. [Google Scholar]
- Almaraz-Rivera, J.G.; Perez-Diaz, J.A.; Cantoral-Ceballos, J.A. Transport and Application Layer DDoS Attacks Detection to IoT Devices by Using Machine Learning and Deep Learning Models. Sensors 2022, 22, 3367. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Yao, H.; Li, D.; Li, G.; Shi, H. GLAGC: Adaptive Dual-Gamma Function for Image Illumination Perception and Correction in the Wavelet Domain. Sensors 2021, 21, 845. [Google Scholar] [CrossRef]
- Pattanayak, A.; Acharya, A.; Panda, N.R. Dark image enhancement using adaptive piece-wise sigmoid gamma correction (APSGC) in presence of optical sources. Multimed. Tools Appl. 2023. [Google Scholar] [CrossRef]
- Shi, L.; Liao, T.; He, J. Defending Adversarial Attacks against DNN Image Classification Models by a Noise-Fusion Method. Electronics 2022, 11, 1814. [Google Scholar] [CrossRef]
- Chen, X.; Xie, S.; He, K. An Empirical Study of Training Self-Supervised Vision Transformers. arXiv 2021, arXiv:2104.02057. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef]
- Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472. [Google Scholar] [CrossRef]
- Smith, L.N.; Topin, N. Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates. arXiv 2018, arXiv:1708.07120. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32. [Google Scholar]
- Kulkarni, A.; Chong, D.; Batarseh, F.A. 5—Foundations of data imbalance and solutions for a data democracy. In Data Democracy; Batarseh, F.A., Yang, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 83–106. [Google Scholar] [CrossRef]
- Sullivan, S.; Brighente, A.; Kumar, S.A.P.; Conti, M. 5G Security Challenges and Solutions: A Review by OSI Layers. IEEE Access 2021, 9, 116294–116314. [Google Scholar] [CrossRef]
- Li, X.; Sun, Z.; Xue, J.H.; Ma, Z. A concise review of recent few-shot meta-learning methods. Neurocomputing 2021, 456, 463–468. [Google Scholar] [CrossRef]
- Soto-Ayala, L.C.; Cantoral-Ceballos, J.A. Automatic Blood-Cell Classification via Convolutional Neural Networks and Transfer Learning. IEEE Lat. Am. Trans. 2021, 19, 2028–2036. [Google Scholar] [CrossRef]
- Lomelin-Ibarra, V.A.; Gutierrez-Rodriguez, A.E.; Cantoral-Ceballos, J.A. Motor Imagery Analysis from Extensive EEG Data Representations Using Convolutional Neural Networks. Sensors 2022, 22, 6093. [Google Scholar] [CrossRef]
- Diaz-Gomez, L.; Gutierrez-Rodriguez, A.E.; Martinez-Maldonado, A.; Luna-Muñoz, J.; Cantoral-Ceballos, J.A.; Ontiveros-Torres, M.A. Interpretable Classification of Tauopathies with a Convolutional Neural Network Pipeline Using Transfer Learning and Validation against Post-Mortem Clinical Cases of Alzheimer’s Disease and Progressive Supranuclear Palsy. Curr. Issues Mol. Biol. 2022, 44, 5963–5985. [Google Scholar] [CrossRef]
- Hojjati, H.; Ho, T.K.K.; Armanfard, N. Self-Supervised Anomaly Detection: A Survey and Outlook. arXiv 2023, arXiv:2205.05173. [Google Scholar]
- Rani, V.; Nabi, S.T.; Kumar, M.; Mittal, A.; Kumar, K. Self-supervised Learning: A Succinct Review. Arch. Comput. Methods Eng. 2023, 30, 2761–2775. [Google Scholar] [CrossRef]
- Ohri, K.; Kumar, M. Review on self-supervised image recognition using deep neural networks. Knowl.-Based Syst. 2021, 224, 107090. [Google Scholar] [CrossRef]
- Fatani, A.; Abd Elaziz, M.; Dahou, A.; Al-Qaness, M.A.A.; Lu, S. IoT Intrusion Detection System Using Deep Learning and Enhanced Transient Search Optimization. IEEE Access 2021, 9, 123448–123464. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Herzalla, D.; Lunardi, W.T.; Andreoni, M. TII-SSRC-23 Dataset: Typological Exploration of Diverse Traffic Patterns for Intrusion Detection. IEEE Access, 2023; early access. [Google Scholar] [CrossRef]
DoS/DDoS Attacks Traffic | Self-Supervised Learning | Contrastive Learning | IoT Pre-Training | |
---|---|---|---|---|
Hussain et al. [41] | ✔ | ✗ | ✗ | ✗ |
Shaikh and Gupta [45] | ✔ | ✗ | ✗ | ✗ |
Wang et al. [18] | ✔ | ✔ | ✔ | ✗ |
Lotfi et al. [50] | ✔ | ✔ | ✔ | ✗ |
Deng et al. [51] | ✔ | ✔ | ✔ | ✗ |
Our work | ✔ | ✔ | ✔ | ✔ |
Feature | Description |
---|---|
TotPkts | Total number of packets in the transaction. |
TotBytes | Total number of bytes in the transaction. |
Dur | Record total duration. |
Mean | Average duration at records aggregate level. |
StdDev | Standard deviation of the duration at records aggregate level. |
Sum | Total duration at records aggregate level. |
Min | Minimum duration at records aggregate level. |
Max | Maximum duration at records aggregate level. |
SrcPkts | Source to destination packets count. |
DstPkts | Destination to source packets count. |
SrcBytes | Source to destination bytes count. |
DstBytes | Destination to source bytes count. |
Rate | Total packets per second in the transaction. |
SrcRate | Source to destination packets per second. |
DstRate | Destination to source packets per second. |
Downstream Task | Learning Paradigm | Augmentation Policy | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|
Attack detection | Supervised Learning | with noise | 85.29% | 82.61% | 52.12% | 61.97% |
w/o noise | 84.90% | 79.69% | 52.55% | 61.52% | ||
S-SL | with noise | 84.53% | 78.88% | 51.51% | 60.36% | |
w/o noise | 86.11% | 81.38% | 56.96% | 65.26% | ||
Protocol classification | Supervised Learning | with noise | 65.26% | 70.81% | 65.26% | 64.12% |
w/o noise | 65.69% | 70.79% | 65.69% | 64.79% | ||
S-SL | with noise | 55.39% | 59.56% | 55.39% | 55.11% | |
w/o noise | 75.85% | 79.42% | 75.85% | 75.41% | ||
OSI layer identification | Supervised Learning | with noise | 86.18% | 89.73% | 86.18% | 85.26% |
w/o noise | 86.06% | 89.88% | 86.06% | 85.1% | ||
S-SL | with noise | 79.59% | 80.42% | 79.59% | 78.36% | |
w/o noise | 86.29% | 88.58% | 86.29% | 85.91% |
Downstream Task | Learning Paradigm | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
Attack detection | Supervised Learning | 85.47% ↑0.57% | 84.67% ↑4.98% | 50.12% | 61.02% |
S-SL | 85.66% | 77.85% | 59.79% ↑2.83% | 65.85% ↑0.59% | |
Protocol classification | Supervised Learning | 64.81% | 70.62% | 64.81% | 63.79% |
S-SL | 79.42% ↑3.57% | 81.85% ↑2.43% | 79.42% ↑3.57% | 79.23% ↑3.82% | |
OSI layer identification | Supervised Learning | 86.21% ↑0.15% | 90.4% ↑0.52% | 86.21% ↑0.15% | 85.14% ↑0.04% |
S-SL | 85.24% | 86.82% | 85.24% | 85.11% |
Downstream Task | Learning Paradigm | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
Attack detection | Supervised Learning | 86.47% ↑1.0% | 81.47% | 59.26% ↑9.14% | 66.81% ↑5.79% |
S-SL | 85.99% ↑0.33% | 80.92% ↑3.07% | 56.8% | 64.99% | |
Protocol classification | Supervised Learning | 82.23% ↑17.42% | 85.02% ↑14.40% | 82.23% ↑17.42% | 81.84% ↑18.05% |
S-SL | 80.55% ↑1.13% | 82.61% ↑0.76% | 80.55% ↑1.13% | 80.44% ↑1.21% | |
OSI layer identification | Supervised Learning | 86.86% ↑0.65% | 88.83% | 86.86% ↑0.65% | 86.55% ↑1.41% |
S-SL | 85.31% ↑0.07% | 86.85% ↑0.03% | 85.31% ↑0.07% | 85.22% ↑0.11% |
Downstream Task | Learning Paradigm | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
Attack detection | Supervised Learning | 99.98% | 87.51% | 87.32% | 87.39% |
S-SL | 99.96% ↓0.02% | 86.24% ↓1.27% | 86.11% ↓1.21% | 86.14% ↓1.25% | |
Protocol classification | Supervised Learning | 99.90% | 99.90% | 99.90% | 99.90% |
S-SL | 99.85% ↓0.05% | 99.86% ↓0.04% | 99.85% ↓0.05% | 99.84% ↓0.06% | |
OSI layer identification | Supervised Learning | 99.97% | 99.97% | 99.97% | 99.97% |
S-SL | 99.95% ↓0.02% | 99.95% ↓0.02% | 99.95% ↓0.02% | 99.95% ↓0.02% |
Downstream Task | Learning Paradigm | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
Attack detection | Supervised Learning | 84.95% | 78.51% | 54.87% | 62.64% |
S-SL | 85.45% ↑0.50% | 84.18% ↑5.67% | 51.85% | 62.23% | |
Protocol classification | Supervised Learning | 66.31% | 70.26% | 66.31% | 65.85% |
S-SL | 67.39% ↑1.08% | 71.51% ↑1.25% | 67.39% ↑1.08% | 66.77% ↑0.92% | |
OSI layer identification | Supervised Learning | 85.55% | 87.92% | 85.55% | 85.06% |
S-SL | 85.41% | 88.02% ↑0.10% | 85.41% | 84.74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaraz-Rivera, J.G.; Cantoral-Ceballos, J.A.; Botero, J.F. Enhancing IoT Network Security: Unveiling the Power of Self-Supervised Learning against DDoS Attacks. Sensors 2023, 23, 8701. https://doi.org/10.3390/s23218701
Almaraz-Rivera JG, Cantoral-Ceballos JA, Botero JF. Enhancing IoT Network Security: Unveiling the Power of Self-Supervised Learning against DDoS Attacks. Sensors. 2023; 23(21):8701. https://doi.org/10.3390/s23218701
Chicago/Turabian StyleAlmaraz-Rivera, Josue Genaro, Jose Antonio Cantoral-Ceballos, and Juan Felipe Botero. 2023. "Enhancing IoT Network Security: Unveiling the Power of Self-Supervised Learning against DDoS Attacks" Sensors 23, no. 21: 8701. https://doi.org/10.3390/s23218701
APA StyleAlmaraz-Rivera, J. G., Cantoral-Ceballos, J. A., & Botero, J. F. (2023). Enhancing IoT Network Security: Unveiling the Power of Self-Supervised Learning against DDoS Attacks. Sensors, 23(21), 8701. https://doi.org/10.3390/s23218701