Quantifying the Effects of Network Latency for a Teleoperated Robot
<p>(<b>a</b>) MSK robot manipulator, and (<b>b</b>) Experimental setup.</p> "> Figure 2
<p>Experimental predefined path which goes through points A, B, C and D.</p> "> Figure 3
<p>Delay per control input.</p> "> Figure 4
<p>Position error calculation for each section for a path through points A, B, C, D, and E. B’, C’, D’, and E’ are the experimentally measured coordinates while U1, U2, U3 and U4 are the respective position errors.</p> "> Figure 5
<p>Delay time verses displacement error for five independent measurements.</p> "> Figure 6
<p>Position error with delay time using the (<b>a</b>) WLAN configuration, and (<b>b</b>) VLAN configuration.</p> "> Figure A1
<p>(<b>a</b>) Frames of the MSK manipulator, (<b>b</b>) Mass and position vector of the MSK manipulator.</p> "> Figure A2
<p>MSK robot; analytical vs. simulated joint forces; top- in the forward−backward (<span class="html-italic">y</span>-axis), middle- up−down (<span class="html-italic">z</span>-axis), and bottom- is left−right directions (<span class="html-italic">x</span>-axis) respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. MSK Robotic System
2.2. Time Delay Measurement
2.3. Position Error Measurement
2.4. VLAN Experiments
3. Results
3.1. WLAN Time Delay
3.2. WLAN Position Error
3.3. VLAN Experiment Results
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. DH Parameters
- αi, the measured angle between Zi and Zi+1 (about axis Xi)
- ai, the measured distance between Zi and Zi+1 (along axis Xi)
- di, the measured distance between Xi−1 and Xi (along axis Zi)
- θi, the measured angle between Xi−1 and Xi (about axis Zi)
Frame {i} | αi−1 | ai−1 | θi | di |
---|---|---|---|---|
1 | −90° | 0 | 0 | d1 |
2 | 90° | 0 | 90° | d2 |
3 | 90° | 0 | 0 | d3 |
4 | −90° | −a3 | θ4 | −d4 |
Appendix B. Kinematic Analysis
- The transformations from frame {0} to frame {4} are:
- Thus, the total transformation matrix is:
Appendix C. Dynamic Analysis
References
- Barattini, P.; Vicentini, F.; Virk, G.S.; Haidegger, T. (Eds.) Human-Robot Interaction: Safety, Standardization, and Benchmarking; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2019. [Google Scholar]
- Hua, C.; Yang, Y.; Yang, X.; Guan, X. Analysis and Design for Networked Teleoperation System; Springer: Singapore, 2019; Available online: http://link.springer.com/book/10.1007/978-981-13-7936-9 (accessed on 11 August 2022).
- Cui, J.; Tosunoglu, S.; Roberts, R.; Moore, C.; Repperger, D.W. A Review of Teleoperation System Control. In Proceedings of the Florida Conference on Recent Advances in Robotics, Boca Raton, FL, USA, 8–9 May 2003; p. 12. [Google Scholar]
- Zhang, D.; Wei, B. (Eds.) Human-Robot Interaction: Control, Analysis, and Design; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2020. [Google Scholar]
- Obaid, M.; Zhang, Q.; Adams, S.J.; Fotouhi, R.; Obaid, H. Development and assessment of a telesonography system for musculoskeletal imaging. Eur. Radiol. Exp. 2021, 5, 29. [Google Scholar] [CrossRef]
- Su, H.; Yang, C.; Ferrigno, G.; De Momi, E. Improved Human–Robot Collaborative Control of Redundant Robot for Teleoperated Minimally Invasive Surgery. IEEE Robot. Autom. Lett. 2019, 4, 1447–1453. [Google Scholar] [CrossRef]
- Alafaleq, M. Robotics and cybersurgery in ophthalmology: A current perspective. J. Robot. Surg. 2023, 17, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Khong, M.-H. Adaptive Control for Nonlinear Teleoperators with Uncertain Kinematics and Dynamics. IEEEASME Trans. Mechatron. 2015, 20, 2550–2562. [Google Scholar] [CrossRef]
- Legeza, P.; Britz, G.W.; Shah, A.; Sconzert, K.; Sungur, J.M.; Chinnadurai, P.; Sinha, K.; Lumsden, A.B. Impact of network performance on remote robotic-assisted endovascular interventions in porcine model. J. Robot. Surg. 2022, 16, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Perez, M.; Yang, K.; Perrenot, C.; Felblinger, J.; Hubert, J. Determination of the latency effects on surgical performance and the acceptable latency levels in telesurgery using the dV-Trainer® simulator. Surg. Endosc. 2014, 28, 2569–2576. [Google Scholar] [CrossRef] [PubMed]
- Slama, T.; Trevisani, A.; Aubry, D.; Oboe, R.; Kratz, F. Experimental Analysis of an Internet-Based Bilateral Teleoperation System with Motion and Force Scaling Using a Model Predictive Controller. IEEE Trans. Ind. Electron. 2008, 55, 3290–3299. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Yin, Y.; Zhang, S.; Dong, J. Multiple-Neural-Networks-Based Adaptive Control for Bilateral Teleoperation Systems with Time-Varying Delays. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 543–548. [Google Scholar] [CrossRef]
- Lai, C.-L.; Hsu, P.-L. Design the Remote Control System with the Time-Delay Estimator and the Adaptive Smith Predictor. IEEE Trans. Ind. Inform. 2010, 6, 73–80. [Google Scholar] [CrossRef]
- Aboutalebian, B.; Talebi, H.A.; Etedali, S.; Suratgar, A.A. Adaptive control of teleoperation system based on nonlinear disturbance observer. Eur. J. Control 2020, 53, 109–116. [Google Scholar] [CrossRef]
- Sachdeva, N.; Klopukh, M.; Clair, R.S.; Hahn, W.E. Using conditional generative adversarial networks to reduce the effects of latency in robotic telesurgery. J. Robot. Surg. 2021, 15, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Poberezkin, E.; Roozbahani, H.; Alizadeh, M.; Handroos, H. Development of a robust Wi-Fi/4G-based ROS communication platform for an assembly and repair mobile robot with reliable behavior under unstable network or connection failure. Artif. Life Robot. 2022, 27, 786–795. [Google Scholar] [CrossRef]
- Skorin-Kapov, L.; Matijasevic, M. Analysis of QoS Requirements for e-Health Services and Mapping to Evolved Packet System QoS Classes. Int. J. Telemed. Appl. 2010, 2010, e628086. [Google Scholar] [CrossRef]
- Marescaux, J.; Leroy, J.; Gagner, M.; Rubino, F.; Mutter, D.; Vix, M.; Butner, S.E.; Smith, M.K. Transatlantic robot-assisted telesurgery. Nature 2001, 413, 379–380. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Tang, X.; Cai, Z.; Zuo, Y.; Tang, Y.; Zhao, X. Correlation research of phase angle variation and coating performance by means of Pearson’s correlation coefficient. Prog. Org. Coat. 2020, 139, 105459. [Google Scholar] [CrossRef]
- Cundar, A.P.N.; Fotouhi, R.; Ochitwa, Z. Evaluation of Delay of a Teleultrasound Robotic System for Musculoskeletal Imaging. In Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition, Columbus, OH, USA, 30 October–3 November 2022. [Google Scholar] [CrossRef]
- Craig, J.J. Introduction to Robotics: Mechanics and Control; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Rao, S. Mechanical Vibrations, 6th ed.; Pearson: London, UK, 2016. [Google Scholar]
TDI (mm) | TDE (mm) | ∆ (mm) | W (mm) | DT (ms) | |
---|---|---|---|---|---|
AB | 30 | 30.24 | 0.24 | 1.42 | 206.8 |
BC | 70 | 69.88 | −0.12 | 3.42 | 180.2 |
CD | 50 | 49.24 | −0.76 | 3.34 | 233.2 |
DE | 85 | 87.92 | 2.92 | 4.82 | 313.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noguera Cundar, A.; Fotouhi, R.; Ochitwa, Z.; Obaid, H. Quantifying the Effects of Network Latency for a Teleoperated Robot. Sensors 2023, 23, 8438. https://doi.org/10.3390/s23208438
Noguera Cundar A, Fotouhi R, Ochitwa Z, Obaid H. Quantifying the Effects of Network Latency for a Teleoperated Robot. Sensors. 2023; 23(20):8438. https://doi.org/10.3390/s23208438
Chicago/Turabian StyleNoguera Cundar, Adriana, Reza Fotouhi, Zachary Ochitwa, and Haron Obaid. 2023. "Quantifying the Effects of Network Latency for a Teleoperated Robot" Sensors 23, no. 20: 8438. https://doi.org/10.3390/s23208438
APA StyleNoguera Cundar, A., Fotouhi, R., Ochitwa, Z., & Obaid, H. (2023). Quantifying the Effects of Network Latency for a Teleoperated Robot. Sensors, 23(20), 8438. https://doi.org/10.3390/s23208438