Industrial Product Quality Analysis Based on Online Machine Learning
<p>The full-text flow chart.</p> "> Figure 2
<p>Flowchart of online machine learning.</p> "> Figure 3
<p>Bearing fault classifications for the CWRU dataset.</p> "> Figure 4
<p>The process of online learning in this paper.</p> "> Figure 5
<p>The structure of modified WDCNN in this paper.</p> "> Figure 6
<p>The test classification results for car evaluation.</p> "> Figure 7
<p>Comparison of confusion matrices for several methods tested on the car evaluation dataset: (<b>a</b>) online learning (ours), (<b>b</b>) support vector, (<b>c</b>) logistic regression, and (<b>d</b>) random forest.</p> "> Figure 8
<p>The test classification results for bearing fault detection.</p> "> Figure 9
<p>Comparison of confusion matrices for several methods tested on the CWRU dataset: (<b>a</b>) online learning (ours), (<b>b</b>) WDCNN, (<b>c</b>) Resnet, (<b>d</b>) AlexNet, (<b>e</b>) Lite CNN, and (<b>f</b>) VGG-16.</p> "> Figure 9 Cont.
<p>Comparison of confusion matrices for several methods tested on the CWRU dataset: (<b>a</b>) online learning (ours), (<b>b</b>) WDCNN, (<b>c</b>) Resnet, (<b>d</b>) AlexNet, (<b>e</b>) Lite CNN, and (<b>f</b>) VGG-16.</p> ">
Abstract
:1. Introduction
- The quality issues of industrial products, such as cars and bearings, are effectively addressed through the implementation of an online machine learning method and are verified on relevant datasets;
- After undergoing data preprocessing and identification analysis, the pertinent datasets are inputted into the network to enhance the comprehensiveness of the extracted features and to improve the accuracy of the prediction results;
- The initial WDCNN model is adapted to better suit the online machine learning requirements;
- Python’s deep river package is utilized to train and predict neural networks in an online learning manner.
2. Methods of Online Machine Learning
2.1. Online Machine Learning
2.2. FTRL Optimizer
2.3. Deep River
2.4. Datasets
2.4.1. Car Evaluation Dataset
2.4.2. Case Western Reserve University Dataset
2.5. Solutions to Different Problems in the Quality of Industrial Products
2.5.1. Solution to Car Evaluation
2.5.2. Solution to Bearing Defect Detection
3. Experiments and Results
3.1. Experimental Environment
3.2. Data Preprocessing
3.2.1. Data Preprocessing Method for Car Evaluation
3.2.2. Data Preprocessing Method for Bearing Fault Detection
3.3. Experimental Processing and Data Comparison
3.3.1. Experimental Results of Car Evaluation
3.3.2. Experimental Results of Bearing Fault Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watanabe, T.; Kuroda, I.; Nakajima, T.; Masuda, M. Relationship between frontal car-to-car test result and vehicle crash compatibility evaluation in mobile progressive deformable barrier test. Traffic Inj. Prev. 2019, 20, S78–S83. [Google Scholar] [CrossRef] [PubMed]
- Li, D.M.; Li, M.G.; Han, G.; Li, T. A combined deep learning method for internet car evaluation. Neural Comput. Appl. 2021, 33, 4623–4637. [Google Scholar] [CrossRef]
- Huang, H.Y.; Zheng, X.J.; Yang, Y.B.; Liu, J.X.; Liu, W.J.; Wang, J.Q. An integrated architecture for intelligence evaluation of automated vehicles. Accid. Anal. Prev. 2020, 145, 105681. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.Y.; Lam, H.; LeBlanc, D.J.; Zhao, D. Accelerated Evaluation of Automated Vehicles Using Piecewise Mixture Models. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2845–2855. [Google Scholar] [CrossRef]
- Boke, T.A.; Albak, E.I.; Kaya, N.; Bozkurt, R.; Ergul, M.; Ozturk, D.; Emiroglu, S.; Ozturk, F. Correlation between objective and subjective tests for vehicle ride comfort evaluations. Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. 2023, 237, 706–721. [Google Scholar] [CrossRef]
- Tong, Q.H.; Yang, Z.L.; Chai, G.O.; Wang, Y.J.; Qi, Z.H.; Wang, F.; Yin, K.C. Driving state evaluation of intelligent connected vehicles based on centralized multi-source vehicle road collaborative information fusion. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, Z.; Yang, B.; Li, L.; Nakano, K. Quantitative Evaluation Methodology for Chassis-Domain Dynamics Performance of Automated Vehicles. IEEE Trans. Cybern. 2022, 53, 5938–5948. [Google Scholar] [CrossRef]
- Zhu, S.J.; Ni, Z.T.; Rahimi, A.; He, Y.P. On dynamic stability evaluation methods for long combination vehicles. Veh. Syst. Dyn. 2022, 60, 3999–4034. [Google Scholar] [CrossRef]
- Martin, I.; Heras, I.; Aguirrebeitia, J.; Abasolo, M.; Coria, I. Static structural behaviour of wire bearings under axial load: Comparison with conventional bearings and study of design and operational parameters. Mech. Mach. Theory 2019, 132, 98–107. [Google Scholar] [CrossRef]
- Wang, M.K.; Yan, K.; Zhang, X.H.; Zhu, Y.S.; Hong, J. A comprehensive study on dynamic performance of ball bearing considering bearing deformations and ball-inner raceway separation. Mech. Syst. Signal Process. 2023, 185, 109826. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, G.L.; Li, C.H.; Chen, Y.H.; Zhang, Z.J. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals. Sensors 2017, 17, 425. [Google Scholar] [CrossRef]
- Yoo, Y.; Jo, H.; Ban, S.W. Lite and Efficient Deep Learning Model for Bearing Fault Diagnosis Using the CWRU Dataset. Sensors 2023, 23, 3157. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Li, X.Y.; Gao, L. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput. Appl. 2020, 32, 6111–6124. [Google Scholar] [CrossRef]
- Lu, T.; Yu, F.Q.H.; Han, B.K.; Wang, J.R. A Generic Intelligent Bearing Fault Diagnosis System Using Convolutional Neural Networks with Transfer Learning. IEEE Access 2020, 8, 164807–164814. [Google Scholar] [CrossRef]
- Ullah, Z.; Lodhi, B.A.; Hur, J. Detection and Identification of Demagnetization and Bearing Faults in PMSM Using Transfer Learning-Based VGG. Energies 2020, 13, 3834. [Google Scholar] [CrossRef]
- Zhang, W.; Li, C.H.; Peng, G.L.; Chen, Y.H.; Zhang, Z.J. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [Google Scholar] [CrossRef]
- Ma, L.; Wang, X.; Wang, X.; Wang, L.; Shi, Y.; Huang, M. TCDA: Truthful Combinatorial Double Auctions for Mobile Edge Computing in Industrial Internet of Things. IEEE Trans. Mob. Comput. 2022, 21, 4125–4138. [Google Scholar] [CrossRef]
- Ma, L.; Huang, M.; Yang, S.; Wang, R.; Wang, X. An Adaptive Localized Decision Variable Analysis Approach to Large-Scale Multiobjective and Many-Objective Optimization. IEEE Trans. Cybern. 2022, 52, 6684–6696. [Google Scholar] [CrossRef]
- McMahan, H.B. A Survey of Algorithms and Analysis for Adaptive Online Learning. J. Mach. Learn. Res. 2017, 18, 3117–3166. [Google Scholar]
- Luo, X.; Yang, X.N.; Jiang, C.W.; Ban, X.J. Timeliness online regularized extreme learning machine. Int. J. Mach. Learn. Cybern. 2018, 9, 465–476. [Google Scholar] [CrossRef]
- Wang, B.T.; Huang, S.; Qiu, J.H.; Liu, Y.; Wang, G.R. Parallel online sequential extreme learning machine based on MapReduce. Neurocomputing 2015, 149, 224–232. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, H.; Lv, H.; Zhang, H.S. Augmented Online Sequential Quaternion Extreme Learning Machine. Neural Process. Lett. 2021, 53, 1161–1186. [Google Scholar] [CrossRef]
- Ma, L.; Li, N.; Guo, Y.; Wang, X.; Yang, S.; Huang, M.; Zhang, H. Learning to Optimize: Reference Vector Reinforcement Learning Adaption to Constrained Many-Objective Optimization of Industrial Copper Burdening System. IEEE Trans. Cybern. 2022, 52, 12698–12711. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Cheng, S.; Shi, Y. Enhancing Learning Efficiency of Brain Storm Optimization via Orthogonal Learning Design. IEEE Trans. Syst. Man Cybern.-Syst. 2021, 51, 6723–6742. [Google Scholar] [CrossRef]
- Huang, D.J.; Yu, S.C.; Li, B.; Hoi, S.C.H.; Zhou, S.G. Combination Forecasting Reversion Strategy for Online Portfolio Selection. ACM Trans. Intell. Syst. Technol. 2018, 9, 58. [Google Scholar] [CrossRef]
- Alahyari, A.; Pozo, D.; Farrokhifar, M. Online Learning Algorithms for the Real-Time Set-Point Tracking Problem. Appl. Sci. 2021, 11, 6620. [Google Scholar] [CrossRef]
- Dixit, R.; Bedi, U.S.; Tripathi, R.; Rajawat, K. Online Learning with Inexact Proximal Online Gradient Descent Algorithms. IEEE Trans. Signal Process. 2019, 67, 1338–1352. [Google Scholar] [CrossRef]
- Jian, L.; Gao, F.H.; Ren, P.; Song, Y.Q.; Luo, S.H. A Noise-Resilient Online Learning Algorithm for Scene Classification. Remote Sens. 2018, 10, 1836. [Google Scholar] [CrossRef]
- Lyu, X.C.; Ren, C.S.; Ni, W.; Tian, H.; Liu, R.P.; Tao, X.F. Distributed Online Learning of Cooperative Caching in Edge Cloud. IEEE Trans. Mob. Comput. 2021, 20, 2550–2562. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Zhang, M.C.; Zhu, J.L.; Zheng, R.J.; Wu, Q.T. A Randomized Block-Coordinate Adam online learning optimization algorithm. Neural Comput. Appl. 2020, 32, 12671–12684. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, S.S. Adaptive proximal SGD based on new estimating sequences for sparser ERM. Inf. Sci. 2023, 638, 118965. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Ma, M.L.; Bennis, M.; Zheng, F.C.; You, X.H. User Preference Learning-Based Edge Caching for Fog Radio Access Network. IEEE Trans. Commun. 2019, 67, 1268–1283. [Google Scholar] [CrossRef]
- Gao, X.; Deng, F.; Zheng, H.; Ding, N.; Ye, Z.M.; Cai, Y.Y.; Wang, X.Y. Followed the Regularized Leader (FTRL) prediction model based photovoltaic array reconfiguration for mitigation of mismatch losses in partial shading condition. IET Renew. Power Gener. 2022, 16, 159–176. [Google Scholar] [CrossRef]
- Orabona, F.; Pal, D. Scale-free online learning. Theor. Comput. Sci. 2018, 716, 50–69. [Google Scholar] [CrossRef]
- Wu, K.; Hao, X.X.; Liu, J.; Liu, P.H.; Shen, F. Online Reconstruction of Complex Networks from Streaming Data. IEEE Trans. Cybern. 2022, 52, 5136–5147. [Google Scholar] [CrossRef] [PubMed]
- Montiel, J.; Halford, M.; Mastelini, S.M.; Bolmier, G.; Sourty, R.; Vaysse, R.; Zouitine, A.; Gomes, H.M.; Read, J.; Abdessalem, T.; et al. River: Machine learning for streaming data in Python. J. Mach. Learn. Res. 2021, 22, 4945–4952. [Google Scholar]
- Bohanec, M. Car Evaluation. UCI Machine Learning Repository. 1997. Available online: https://archive.ics.uci.edu/dataset/19/car+evaluation (accessed on 20 October 2022).
- Wu, K.; Liu, J.; Liu, P.H.; Shen, F. Online Fuzzy Cognitive Map Learning. IEEE Trans. Fuzzy Syst. 2021, 29, 1885–1898. [Google Scholar] [CrossRef]
Label | States |
---|---|
Buying price | Very high, high, medium, low |
Price of maintenance | Very high, high, medium, low |
Number of doors | 2, 3, 4, 5, and more |
Capacity in terms of persons to be carried | 2, 4, and more |
The size of luggage boot | Small, medium, big |
Estimated safety of the car | Low, medium, high |
The results of car evaluation | Acceptable, unacceptable, good, very good |
Fault Type | Inner Raceway | Outer Raceway | Rolling Element | Normal |
---|---|---|---|---|
0 inch | 0 | 0 | 0 | 1000 |
J | ||||
0.007 inch | 1000 | 1000 | 1000 | 0 |
A | B | C | ||
0.014 inch | 1000 | 1000 | 1000 | 0 |
D | E | F | ||
0.021 inch | 1000 | 1000 | 1000 | 0 |
G | H | I |
Layer (Type) | Activation | In_Features | Out_Features |
---|---|---|---|
Linear1 | 21 | 50 | |
Linear2 | 50 | 50 | |
Linear3 | 50 | 4 | |
Linear4 | softmax | 4 | 4 |
Methods | Mean Accuracy (%) |
---|---|
Support Vector Classification | 96.942 |
Random Forest Classification | 91.694 |
Logistic Regression | 89.917 |
Online Learning (ours) | 98.843 |
Dataset | Classification Accuracy (%) | Mean (%) | Standard Deviation (%) | ||||
---|---|---|---|---|---|---|---|
Original dataset | 98.719 | 98.760 | 98.554 | 99.050 | 98.802 | 98.777 | 0.160 |
Enhanced dataset | 98.512 | 98.306 | 98.512 | 98.554 | 98.430 | 98.463 | 0.088 |
Layer (Type) | Activation | Size of Filter and Pooling | Number of Channels |
---|---|---|---|
Conv1 (Conv1D) | 64 × 1 | 16 | |
batch_normalization (BatchNormalization) | |||
Pool1 (MaxPooling1D) | 2 × 1 | ||
Conv2 (Conv1D) | 3 × 1 | 32 | |
batch_normalization (BatchNormalization) | |||
Pool2 (MaxPooling1D) | 2 × 1 | ||
Conv3 (Conv1D) | 3 × 1 | 64 | |
batch_normalization (BatchNormalization) | |||
Pool3 (MaxPooling1D) | 2 × 1 | ||
Conv4 (Conv1D) | 3 × 1 | 16 | |
batch_normalization (BatchNormalization) | |||
Pool4 (MaxPooling1D) | 2 × 1 | ||
Fla1 (Flatten) | |||
FC1 (Fully Connected) | |||
alpha_dropout (AlphaDropout) | |||
FC2 (Fully Connected) | softmax |
Methods | Mean Accuracy (%) |
---|---|
WDCNN [11] | 96.230 |
Lite CNN [12] | 99.560 |
Resnet [13] | 99.170 |
AlexNet [14] | 99.420 |
VGG-16 [15] | 96.620 |
Online Learning (ours) | 99.230 |
Dataset | Classification Accuracy (%) | Mean (%) | Standard Deviation (%) | ||||
---|---|---|---|---|---|---|---|
Original dataset | 99.290 | 99.560 | 99.250 | 99.030 | 98.970 | 99.220 | 0.210 |
Enhanced dataset | 99.180 | 99.420 | 99.140 | 98.850 | 98.810 | 99.080 | 0.226 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Wan, M.; Xu, P.; Zhang, R.; Liu, Y.; Song, Y. Industrial Product Quality Analysis Based on Online Machine Learning. Sensors 2023, 23, 8167. https://doi.org/10.3390/s23198167
Yin Y, Wan M, Xu P, Zhang R, Liu Y, Song Y. Industrial Product Quality Analysis Based on Online Machine Learning. Sensors. 2023; 23(19):8167. https://doi.org/10.3390/s23198167
Chicago/Turabian StyleYin, Yiming, Ming Wan, Panfeng Xu, Rui Zhang, Yang Liu, and Yan Song. 2023. "Industrial Product Quality Analysis Based on Online Machine Learning" Sensors 23, no. 19: 8167. https://doi.org/10.3390/s23198167
APA StyleYin, Y., Wan, M., Xu, P., Zhang, R., Liu, Y., & Song, Y. (2023). Industrial Product Quality Analysis Based on Online Machine Learning. Sensors, 23(19), 8167. https://doi.org/10.3390/s23198167