Adversarial Deep Transfer Learning in Fault Diagnosis: Progress, Challenges, and Future Prospects
<p>Flow chart showing the overall logic of this literature review.</p> "> Figure 2
<p>A graphic illustration of the GAN.</p> "> Figure 3
<p>Categorization of ADTL.</p> "> Figure 4
<p>Visualization explanation of different transfer settings. Different colors represent different domains, and hollow shapes indicate that this domain is not involved in training.</p> "> Figure 5
<p>Schematic diagram of DANN.</p> "> Figure 6
<p>Process diagram for the challenges and prospects of IFD.</p> "> Figure 7
<p>General procedure of DTL-based IFD.</p> ">
Abstract
:1. Introduction
2. Background and Definition
2.1. Brief Description of the DTL
2.2. Theoretical Background of GAN
3. The Research Progress of Adversarial-Based DTL
3.1. Non-Generative Adversarial Adaptation Model
3.1.1. Consistent Label Space
Data Distribution
- (1)
- Domain-Adversarial Neural Network (DANN)
- (a)
- Theoretical Background
- (b)
- Applications to IFD
- (2)
- Joint Distribution Adaptation (JDA)
- (a)
- Theoretical Background
- (b)
- Applications to IFD
- (3)
- Dynamic Adversarial Adaptation Network (DAAN)
- (a)
- Theoretical Background
- (b)
- Applications to IFD
- (4)
- Combined Difference Adversarial Adaptation Network (CDAAN)
- (a)
- Theoretical Background
- (b)
- Applications to IFD
Combined MMD(C-MMD)
Combined-WD(C-WD)
Combined-CORAL (C-CORAL)
Incompletion Sets
Small Sample
Class Imbalance
3.1.2. Inconsistent Label Space
Partial Set
Open Set
Universal
3.1.3. Complex Domain
Single-Source-Multi-Target (SSMT)
Multi-Source–Single-Target (MSST)
- (1)
- Multi-domain adaptation
- (2)
- Domain generalization
3.2. Generative Adversarial Adaptation Model
3.3. Summary
4. Challenges and Prospects of DTL in Industrial Fault Diagnosis
4.1. The Challenges of DTL Methods for Fault Diagnosis
4.1.1. Data
Data Quality
Data Type
Data Privacy
4.1.2. Model
Interpretability and Visualization
Hyperparameters
Optimal Nash Equilibrium Point
4.1.3. Transfer Learning
Identifying Appropriate Source Domain
Negative Transfer and Transferability
Prior Knowledge
Generalization Performance
4.1.4. Application
Motivation
Complex Fault Diagnosis
Prognostic and Health Management
4.2. The prospect of DTL in Fault Diagnosis
4.2.1. Establish a Standard Large Database
4.2.2. Combined with Fault Diagnosis Theory
4.2.3. Multi-Technology Fusion
Reinforcement Learning
Meta-Learning
Graph Convolutional Network
Few-Shot and Zero-Shot
Attention Mechanism
4.2.4. Fault Classification Diagnosis
4.2.5. Online Transfer Learning
4.2.6. Energy Efficiency Ratio
4.2.7. Distributed Fault Diagnosis Model
4.2.8. Auto Machine Learning
4.2.9. Digital Twin
4.2.10. Others
4.3. Summary
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, S.; Shen, C.; Wang, D. Editorial for Special Issue: Machine Health Monitoring and Fault Diagnosis Techniques. Sensors 2023, 23, 3493. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, Q.; Yu, X.; Sun, C.; Wang, S.; Yan, R.; Chen, X. Applications of Unsupervised Deep Transfer Learning to Intelligent Fault Diagnosis: A Survey and Comparative Study. IEEE Trans. Instrum. Meas. 2021, 70, 1–28. [Google Scholar] [CrossRef]
- Li, C.; Zhang, S.; Qin, Y.; Estupinan, E. A Systematic Review of Deep Transfer Learning for Machinery Fault Diagnosis. Neurocomputing 2020, 407, 121–135. [Google Scholar] [CrossRef]
- Qian, C.; Zhu, J.; Shen, Y.; Jiang, Q.; Zhang, Q. Deep Transfer Learning in Mechanical Intelligent Fault Diagnosis: Application and Challenge. Neural Process Lett. 2022, 54, 2509–2531. [Google Scholar] [CrossRef]
- Li, W.; Huang, R.; Li, J.; Liao, Y.; Chen, Z.; He, G.; Yan, R.; Gryllias, K. A Perspective Survey on Deep Transfer Learning for Fault Diagnosis in Industrial Scenarios: Theories, Applications and Challenges. Mech. Syst. Signal Process. 2022, 167, 108487. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning. In Proceedings of the Artificial Neural Networks and Machine Learning—ICANN 2018, Rhodes, Greece, 4–7 October 2018; Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I., Eds.; Springer International Publishing: Cham, Germany, 2018; pp. 270–279. [Google Scholar]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A Survey of Transfer Learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 2, pp. 2672–2680. Available online: https://dl.acm.org/doi/10.5555/2969033.2969125 (accessed on 13 July 2023).
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning—Volume 70, Sydney, Australia, 6–11 August 2017; JMLR.org: Sydney, Australia, 2017; pp. 214–223. [Google Scholar]
- Gao, X.; Deng, F.; Yue, X. Data Augmentation in Fault Diagnosis Based on the Wasserstein Generative Adversarial Network with Gradient Penalty. Neurocomputing 2020, 396, 487–494. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.; Li, F.; Pan, T.; He, S. A Small Sample Focused Intelligent Fault Diagnosis Scheme of Machines via Multimodules Learning With Gradient Penalized Generative Adversarial Networks. IEEE Trans. Ind. Electron. 2021, 68, 10130–10141. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, T.; Wang, Y.; Cao, Z.; Guo, Z.; Fu, H. A Novel Method for Imbalanced Fault Diagnosis of Rotating Machinery Based on Generative Adversarial Networks. IEEE Trans. Instrum. Meas. 2021, 70, 3500417. [Google Scholar] [CrossRef]
- Huang, N.; Chen, Q.; Cai, G.; Xu, D.; Zhang, L.; Zhao, W. Fault Diagnosis of Bearing in Wind Turbine Gearbox Under Actual Operating Conditions Driven by Limited Data With Noise Labels. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Pan, T.; Chen, J.; Xie, J.; Zhou, Z.; He, S. Deep Feature Generating Network: A New Method for Intelligent Fault Detection of Mechanical Systems Under Class Imbalance. IEEE Trans. Ind. Inform. 2021, 17, 6282–6293. [Google Scholar] [CrossRef]
- Guo, J.; Wu, J.; Zhang, S.; Long, J.; Chen, W.; Cabrera, D.; Li, C. Generative Transfer Learning for Intelligent Fault Diagnosis of the Wind Turbine Gearbox. Sensors 2020, 20, 1361. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Deng, C.; Wu, J.; Li, G.; Yang, Z.; Wang, Y. Intelligent Fault Diagnosis via Semisupervised Generative Adversarial Nets and Wavelet Transform. IEEE Trans. Instrum. Meas. 2020, 69, 4659–4671. [Google Scholar] [CrossRef]
- Liang, P.; Deng, C.; Wu, J.; Yang, Z.; Zhu, J.; Zhang, Z. Single and Simultaneous Fault Diagnosis of Gearbox via a Semi-Supervised and High-Accuracy Adversarial Learning Framework. Knowl. Based Syst. 2020, 198, 105895. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, Q.; Chen, J.; He, S.; Li, F.; Zhou, Z. A Multi-Module Generative Adversarial Network Augmented with Adaptive Decoupling Strategy for Intelligent Fault Diagnosis of Machines with Small Sample. Knowl. Based Syst. 2022, 239, 107980. [Google Scholar] [CrossRef]
- Zheng, M.; Chang, Q.; Man, J.; Liu, Y.; Shen, Y. Two-Stage Multi-Scale Fault Diagnosis Method for Rolling Bearings with Imbalanced Data. Machines 2022, 10, 336. [Google Scholar] [CrossRef]
- Wei, D.; Han, T.; Chu, F.; Zuo, M.J. Adversarial Domain Adaptation for Gear Crack Level Classification Under Variable Load. In Proceedings of the 2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM), Vancouver, BC, Cananda, 20–23 August 2020; pp. 1–6. [Google Scholar]
- Jang, G.-B.; Kim, J.-Y.; Cho, S.-B. Cross-Domain Fault Diagnosis of Rotating Machinery Using Discriminative Feature Attention Network. IEEE Access 2021, 9, 99781–99793. [Google Scholar] [CrossRef]
- Deng, M.; Deng, A.; Shi, Y.; Liu, Y.; Xu, M. Intelligent Fault Diagnosis Based on Sample Weighted Joint Adversarial Network. Neurocomputing 2022, 488, 168–182. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, J.; Li, L. Collaborative and Adversarial Deep Transfer Auto-Encoder for Intelligent Fault Diagnosis. Neurocomputing 2022, 486, 1–15. [Google Scholar] [CrossRef]
- Chai, Z.; Zhao, C. A Fine-Grained Adversarial Network Method for Cross-Domain Industrial Fault Diagnosis. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1432–1442. [Google Scholar] [CrossRef]
- She, D.; Jia, M.; Pecht, M.G. Weighted Entropy Minimization Based Deep Conditional Adversarial Diagnosis Approach Under Variable Working Conditions. IEEE/ASME Trans. Mechatron. 2021, 26, 2440–2450. [Google Scholar] [CrossRef]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-Adversarial Training of Neural Networks. arXiv 2016, arXiv:1505.07818. [Google Scholar]
- Ganin, Y.; Lempitsky, V. Unsupervised Domain Adaptation by Backpropagation. arXiv 2015, arXiv:1409.7495 ]. [Google Scholar]
- Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; Vaughan, J.W. A Theory of Learning from Different Domains. Mach. Learn. 2010, 79, 151–175. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial Discriminative Domain Adaptation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Honolulu, HI, USA, 2017; pp. 2962–2971. [Google Scholar]
- Zhao, H.; Tachet des Combes, R.; Zhang, K.; Gordon, G.J. On Learning Invariant Representation for Domain Adaptation. arXiv 2019, arXiv:1901.09453. [Google Scholar]
- Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Conditional Adversarial Domain Adaptation. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 3 December 2018; Curran Associates Inc.: Red Hook, NY, USA, 2018; pp. 1647–1657. [Google Scholar]
- Zhu, Y.; Zhuang, F.; Wang, J.; Ke, G.; Chen, J.; Bian, J.; Xiong, H.; He, Q. Deep Subdomain Adaptation Network for Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1713–1722. [Google Scholar] [CrossRef]
- Jiao, J.; Lin, J.; Zhao, M.; Liang, K. Double-Level Adversarial Domain Adaptation Network for Intelligent Fault Diagnosis. Knowl.-Based Syst. 2020, 205, 106236. [Google Scholar] [CrossRef]
- Jin, Y.; Feng, Q.; Zhang, X.; Lu, P.; Shen, J.; Tu, Y.; Wu, Z. Deep Domain Adversarial Residual Neural Network for Sustainable Wind Turbine Cyber-Physical System Fault Diagnosis. Softw. Pract. Exp. 2021, 51, 2128–2142. [Google Scholar] [CrossRef]
- Mao, W.; Ding, L.; Liu, Y.; Afshari, S.S.; Liang, X. A New Deep Domain Adaptation Method with Joint Adversarial Training for Online Detection of Bearing Early Fault. ISA Trans. 2022, 122, 444–458. [Google Scholar] [CrossRef]
- Mao, W.; Sun, B.; Wang, L. A New Deep Dual Temporal Domain Adaptation Method for Online Detection of Bearings Early Fault. Entropy 2021, 23, 162. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Chen, J.; Chen, Y.; Afshari, S.S.; Liang, X. Construction of Health Indicators for Rotating Machinery Using Deep Transfer Learning With Multiscale Feature Representation. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Ning, D.; Lu, J. A Novel Transfer Capsule Network Based on Domain-Adversarial Training for Fault Diagnosis. Neural Process Lett. 2022, 54, 4171–4188. [Google Scholar] [CrossRef]
- Wang, Q.; Michau, G.; Fink, O. Domain Adaptive Transfer Learning for Fault Diagnosis. In Proceedings of the 2019 Prognostics and System Health Management Conference (PHM-Paris), Paris, France, 2–5 May 2019; pp. 279–285. [Google Scholar]
- Zhu, X.; Chen, K.; Anduv, B.; Jin, X.; Du, Z. Transfer Learning Based Methodology for Migration and Application of Fault Detection and Diagnosis between Building Chillers for Improving Energy Efficiency. Build. Environ. 2021, 200, 107957. [Google Scholar] [CrossRef]
- Mao, W.; Liu, Y.; Ding, L.; Safian, A.; Liang, X. A New Structured Domain Adversarial Neural Network for Transfer Fault Diagnosis of Rolling Bearings Under Different Working Conditions. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Wu, J.; Tang, T.; Chen, M.; Wang, K. The Application of a Lightweight Domain-Adversarial Neural Network in Bearing Fault Diagnosis. In Proceedings of the Advanced Manufacturing and Automation X, Zhanjiang, China, 11–12 October 2021; Wang, Y., Martinsen, K., Yu, T., Wang, K., Eds.; Springer: Singapore, 2021; pp. 312–320. [Google Scholar]
- Di, Y.; Yang, R.; Huang, M. Fault Diagnosis of Rotating Machinery Based on Domain Adversarial Training of Neural Networks. In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, 20–23 June 2021; pp. 1–6. [Google Scholar]
- Long, M.; Wang, J.; Ding, G.; Sun, J.; Yu, P.S. Transfer Feature Learning with Joint Distribution Adaptation. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 2200–2207. [Google Scholar]
- Jiao, J.; Zhao, M.; Lin, J.; Liang, K. Residual Joint Adaptation Adversarial Network for Intelligent Transfer Fault Diagnosis. Mech. Syst. Signal Process. 2020, 145, 106962. [Google Scholar] [CrossRef]
- Zhao, K.; Jiang, H.; Wang, K.; Pei, Z. Joint Distribution Adaptation Network with Adversarial Learning for Rolling Bearing Fault Diagnosis. Knowl. Based Syst. 2021, 222, 106974. [Google Scholar] [CrossRef]
- Li, S.; Yu, J. Deep Transfer Network with Adaptive Joint Distribution Adaptation: A New Process Fault Diagnosis Model. IEEE Trans. Instrum. Meas. 2022, 71, 1–13. [Google Scholar] [CrossRef]
- Yang, X.; Chi, F.; Shao, S.; Zhang, Q. Bearing Fault Diagnosis under Variable Working Conditions Based on Deep Residual Shrinkage Networks and Transfer Learning. J. Sens. 2021, 2021, e5714240. [Google Scholar] [CrossRef]
- Zhang, X.; Han, B.; Wang, J.; Zhang, Z.; Yan, Z. A Novel Transfer-Learning Method Based on Selective Normalization for Fault Diagnosis with Limited Labeled Data. Meas. Sci. Technol. 2021, 32, 105116. [Google Scholar] [CrossRef]
- Wang, J.; Feng, W.; Chen, Y.; Yu, H.; Huang, M.; Yu, P.S. Visual Domain Adaptation with Manifold Embedded Distribution Alignment. arXiv 2018, arXiv:1807.07258. [Google Scholar]
- Wang, J.; Chen, Y.; Feng, W.; Yu, H.; Huang, M.; Yang, Q. Transfer Learning with Dynamic Distribution Adaptation. ACM Trans. Intell. Syst. Technol. 2020, 11, 1–25. [Google Scholar] [CrossRef]
- Yu, C.; Wang, J.; Chen, Y.; Huang, M. Transfer Learning with Dynamic Adversarial Adaptation Network. In Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China, 8–11 November 2019; pp. 778–786. [Google Scholar]
- Jiao, J.; Zhao, M.; Lin, J.; Liang, K.; Ding, C. A Mixed Adversarial Adaptation Network for Intelligent Fault Diagnosis. J. Intell. Manuf. 2021, 33, 2207–2222. [Google Scholar] [CrossRef]
- Tian, J.; Wang, D.; Chen, L.; Zhu, Z.; Shen, C. A Stable Adaptive Adversarial Network With Exponential Adversarial Strategy for Bearing Fault Diagnosis. IEEE Sens. J. 2022, 22, 9754–9762. [Google Scholar] [CrossRef]
- Xu, Y.; Li, S.; Jiang, W.; Liu, W.; Zhao, K. A Progressive Fault Diagnosis Method for Rolling Bearings Based on VMD Energy Entropy and a Deep Adversarial Transfer Network. Meas. Sci. Technol. 2022, 33, 095003. [Google Scholar] [CrossRef]
- Wei, Y.; Long, T.; Cai, X.; Zhang, S.; Gjorgjevikj, D.; Li, C. Mechanical Fault Diagnosis by Using Dynamic Transfer Adversarial Learning. Meas. Sci. Technol. 2021, 32, 104005. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Zhan, Z.; Wu, Q. Deep Multi-Scale Adversarial Network with Attention: A Novel Domain Adaptation Method for Intelligent Fault Diagnosis. J. Manuf. Syst. 2021, 59, 565–576. [Google Scholar] [CrossRef]
- Fan, Z.; Xu, Q.; Jiang, C.; Ding, S.X. Weighted Quantile Discrepancy-Based Deep Domain Adaptation Network for Intelligent Fault Diagnosis. Knowl. Based Syst. 2022, 240, 108149. [Google Scholar] [CrossRef]
- Sriperumbudur, B.K.; Gretton, A.; Fukumizu, K.; Schölkopf, B.; Lanckriet, G.R.G. Hilbert Space Embeddings and Metrics on Probability Measures. arXiv 2009, arXiv:0907.5309. [Google Scholar]
- Sugiyama, M.; Suzuki, T.; Nakajima, S.; Kashima, H.; von Bünau, P.; Kawanabe, M. Direct Importance Estimation for Covariate Shift Adaptation. Ann. Inst. Stat. Math. 2008, 60, 699–746. [Google Scholar] [CrossRef]
- Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning Transferable Features with Deep Adaptation Networks. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 June 2015; pp. 97–105. [Google Scholar]
- Sun, B.; Saenko, K. Deep CORAL: Correlation Alignment for Deep Domain Adaptation. In Proceedings of the Computer Vision—ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10 October 2016; Hua, G., Jégou, H., Eds.; Springer International Publishing: Cham, Gemany, 2016; pp. 443–450. [Google Scholar]
- Borgwardt, K.M.; Gretton, A.; Rasch, M.J.; Kriegel, H.-P.; Schölkopf, B.; Smola, A.J. Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy. Bioinformatics 2006, 22, e49–e57. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, M.; Ko, J.U.; Jung, J.H.; Sun, K.H.; Youn, B.D. Asymmetric Inter-Intra Domain Alignments (AIIDA) Method for Intelligent Fault Diagnosis of Rotating Machinery. Reliab. Eng. Syst. Saf. 2022, 218, 108186. [Google Scholar] [CrossRef]
- Shao, J.; Huang, Z.; Zhu, J. Transfer Learning Method Based on Adversarial Domain Adaption for Bearing Fault Diagnosis. IEEE Access 2020, 8, 119421–119430. [Google Scholar] [CrossRef]
- Jia, M.; Wang, J.; Zhang, Z.; Han, B.; Shi, Z.; Guo, L.; Zhao, W. A Novel Method for Diagnosing Bearing Transfer Faults Based on a Maximum Mean Discrepancies Guided Domain-Adversarial Mechanism. Meas. Sci. Technol. 2021, 33, 015109. [Google Scholar] [CrossRef]
- Ruicong, Z.; Yu, B.; Zhongtian, L.; Qinle, W.; Yonggang, L. Unsupervised Adversarial Domain Adaptive for Fault Detection Based on Minimum Domain Spacing. Adv. Mech. Eng. 2022, 14, 16878132221088647. [Google Scholar] [CrossRef]
- Shao, J.; Huang, Z.; Zhu, Y.; Zhu, J.; Fang, D. Rotating Machinery Fault Diagnosis by Deep Adversarial Transfer Learning Based on Subdomain Adaptation. Adv. Mech. Eng. 2021, 13, 168781402110402. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, W.; Zhang, L.; Chen, X.; Wang, S. An Intelligent Hybrid Bearing Fault Diagnosis Method Based on Transformer and Domain Adaptation. In Proceedings of the 2021 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Weihai, China, 13–15 August 2021; pp. 304–310. [Google Scholar]
- Li, Y.; Song, Y.; Jia, L.; Gao, S.; Li, Q.; Qiu, M. Intelligent Fault Diagnosis by Fusing Domain Adversarial Training and Maximum Mean Discrepancy via Ensemble Learning. IEEE Trans. Ind. Inform. 2021, 17, 2833–2841. [Google Scholar] [CrossRef]
- Li, R.; Li, S.; Zeng, M.; Xiang, J.; Chang, J.; Wu, Q. Adversarial Domain Adaptation for Transfer Fault Diagnosis of Roller Bearings Based on Multi-MMD Alignment. In Proceedings of the 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), Nanjing, China, 15–17 October 2021; pp. 1–5. [Google Scholar]
- Li, R.; Li, S.; Xu, K.; Li, X.; Lu, J.; Zeng, M. A Novel Symmetric Stacked Autoencoder for Adversarial Domain Adaptation under Variable Speed. IEEE Access 2022, 10, 24678–24689. [Google Scholar] [CrossRef]
- Zhou, X.; Fu, X.; Zhao, M.; Zhong, S. Regression Model for Civil Aero-Engine Gas Path Parameter Deviation Based on Deep Domain-Adaptation with Res-BP Neural Network. Chin. J. Aeronaut. 2021, 34, 79–90. [Google Scholar] [CrossRef]
- Wan, L.; Li, Y.; Chen, K.; Gong, K.; Li, C. A Novel Deep Convolution Multi-Adversarial Domain Adaptation Model for Rolling Bearing Fault Diagnosis. Measurement 2022, 191, 110752. [Google Scholar] [CrossRef]
- Liao, Y.; Huang, R.; Li, J.; Chen, Z.; Li, W. Deep Semisupervised Domain Generalization Network for Rotary Machinery Fault Diagnosis Under Variable Speed. IEEE Trans. Instrum. Meas. 2020, 69, 8064–8075. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Zi, Y.; Sun, X.; Yang, Y. A Current Signal-Based Adaptive Semisupervised Framework for Bearing Faults Diagnosis in Drivetrains. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- He, J.; Ouyang, M.; Chen, Z.; Chen, D.; Liu, S. A Deep Transfer Learning Fault Diagnosis Method Based on WGAN and Minimum Singular Value for Non-Homologous Bearing. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Deep Learning-Based Adversarial Multi-Classifier Optimization for Cross-Domain Machinery Fault Diagnostics. J. Manuf. Syst. 2020, 55, 334–347. [Google Scholar] [CrossRef]
- Xiang, G.; Tian, K. Spacecraft Intelligent Fault Diagnosis under Variable Working Conditions via Wasserstein Distance-Based Deep Adversarial Transfer Learning. Int. J. Aerosp. Eng. 2021, 2021, 6099818. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, W.; Yang, J.; Wang, D.; Bin, L. Domain Adaptation with Multilayer Adversarial Learning for Fault Diagnosis of Gearbox under Multiple Operating Conditions. In Proceedings of the 2019 Prognostics and System Health Management Conference (PHM-Qingdao), Qingdao, China, 15–27 October 2019; pp. 1–6. [Google Scholar]
- Bao, H.; Yan, Z.; Ji, S.; Wang, J.; Jia, S.; Zhang, G.; Han, B. An Enhanced Sparse Filtering Method for Transfer Fault Diagnosis Using Maximum Classifier Discrepancy. Meas. Sci. Technol. 2021, 32, 085105. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, D.; Lu, W.; Yang, J.; Li, Z.; Liang, B. A Deep Transfer Model With Wasserstein Distance Guided Multi-Adversarial Networks for Bearing Fault Diagnosis Under Different Working Conditions. IEEE Access 2019, 7, 65303–65318. [Google Scholar] [CrossRef]
- Cheng, C.; Zhou, B.; Ma, G.; Wu, D.; Yuan, Y. Wasserstein Distance Based Deep Adversarial Transfer Learning for Intelligent Fault Diagnosis with Unlabeled or Insufficient Labeled Data. Neurocomputing 2020, 409, 35–45. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F. Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis. Sensors 2020, 20, 320. [Google Scholar] [CrossRef]
- She, D.; Peng, N.; Jia, M.; Pecht, M.G. Wasserstein Distance Based Deep Multi-Feature Adversarial Transfer Diagnosis Approach under Variable Working Conditions. J. Inst. 2020, 15, P06002. [Google Scholar] [CrossRef]
- Wang, J.; Ji, S.; Han, B.; Bao, H.; Jiang, X. Deep Adaptive Adversarial Network-Based Method for Mechanical Fault Diagnosis under Different Working Conditions. Complexity 2020, 2020, 6946702. [Google Scholar] [CrossRef]
- Zou, Y.; Shi, K.; Liu, Y.; Ding, G.; Ding, K. Rolling Bearing Transfer Fault Diagnosis Method Based on Adversarial Variational Autoencoder Network. Meas. Sci. Technol. 2021, 32, 115017. [Google Scholar] [CrossRef]
- Jia, S.; Wang, J.; Han, B.; Zhang, G.; Wang, X.; He, J. A Novel Transfer Learning Method for Fault Diagnosis Using Maximum Classifier Discrepancy With Marginal Probability Distribution Adaptation. IEEE Access 2020, 8, 71475–71485. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, Y.; Deng, J.; Jiang, Y.; Zhang, W. A Novel Transfer Learning Method for Bearing Fault Diagnosis under Different Working Conditions. Measurement 2021, 171, 108767. [Google Scholar] [CrossRef]
- Han, B.; Zhang, X.; Wang, J.; An, Z.; Jia, S.; Zhang, G. Hybrid Distance-Guided Adversarial Network for Intelligent Fault Diagnosis under Different Working Conditions. Measurement 2021, 176, 109197. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Shi, K.M.; Li, Z.X.; Ding, G.F.; Zou, Y.S. Transfer Learning Method for Bearing Fault Diagnosis Based on Fully Convolutional Conditional Wasserstein Adversarial Networks. Measurement 2021, 180, 109553. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Li, J.; Yang, Y. Intelligent Fault Diagnosis With Deep Adversarial Domain Adaptation. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Xu, K.; Li, S.; Li, R.; Lu, J.; Li, X.; Zeng, M. Domain Adaptation Network with Double Adversarial Mechanism for Intelligent Fault Diagnosis. Appl. Sci. 2021, 11, 7983. [Google Scholar] [CrossRef]
- Ying, Y.; Jun, Z.; Tang, T.; Jingwei, W.; Ming, C.; Jie, W.; Liang, W. Wasserstein Distance Based Asymmetric Adversarial Domain Adaptation in Intelligent Bearing Fault Diagnosis. Meas. Sci. Technol. 2021, 32, 115019. [Google Scholar] [CrossRef]
- Qin, Y.; Yao, Q.; Wang, Y.; Mao, Y. Parameter Sharing Adversarial Domain Adaptation Networks for Fault Transfer Diagnosis of Planetary Gearboxes. Mech. Syst. Signal Process. 2021, 160, 107936. [Google Scholar] [CrossRef]
- Li, R.; Li, S.; Xu, K.; Lu, J.; Teng, G.; Du, J. Deep Domain Adaptation with Adversarial Idea and Coral Alignment for Transfer Fault Diagnosis of Rolling Bearing. Complexity 2021, 32, 094009. [Google Scholar] [CrossRef]
- Li, R.; Li, S.; Xu, K.; Li, X.; Lu, J.; Zeng, M.; Li, M.; Du, J. Adversarial Domain Adaptation of Asymmetric Mapping with Coral Alignment for Intelligent Fault Diagnosis. Meas. Sci. Technol. 2021, 33, 055101. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, M.; Ma, C.; Lv, Z.; Zhou, J. An Enhanced Domain-Adversarial Neural Networks for Intelligent Cross-Domain Fault Diagnosis of Rotating Machinery. Nonlinear Dyn. 2022, 108, 2385–2404. [Google Scholar] [CrossRef]
- Han, T.; Liu, C.; Yang, W.; Jiang, D. A Novel Adversarial Learning Framework in Deep Convolutional Neural Network for Intelligent Diagnosis of Mechanical Faults. Knowl. Based Syst. 2019, 165, 474–487. [Google Scholar] [CrossRef]
- Li, Z.; Cao, Z.; Luo, K.; Fu, H. A Novel Method for Fault Diagnosis of Rolling Bearings Based on Domain-Adversarial Partial Transfer Learning. In Proceedings of the 2020 11th International Conference on Prognostics and System Health Management (PHM-2020 Jinan), Jinan, China, 23–25 October 2020; pp. 414–419. [Google Scholar]
- Wu, Z.; Jiang, H.; Lu, T.; Zhao, K. A Deep Transfer Maximum Classifier Discrepancy Method for Rolling Bearing Fault Diagnosis under Few Labeled Data. Knowl. Based Syst. 2020, 196, 105814. [Google Scholar] [CrossRef]
- Xu, J.; Shi, Y.; Yuan, X.; Lu, S. Cross-Category Mechanical Fault Diagnosis Based on Deep Few-Shot Learning. IEEE Sens. J. 2021, 21, 27698–27709. [Google Scholar] [CrossRef]
- Li, C.; Yang, K.; Tang, H.; Wang, P.; Li, J.; He, Q. Fault Diagnosis for Rolling Bearings of a Freight Train under Limited Fault Data: Few-Shot Learning Method. J. Transp. Eng. Part. A: Syst. 2021, 147, 04021041. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, J.; Jing, Q.; Qi, Z.; Wang, J.; Geng, Y. A Novel Adversarial Transfer Learning in Deep Convolutional Neural Network for Intelligent Diagnosis of Gas-Insulated Switchgear Insulation Defect. IET Gener. Transm. Distrib. 2021, 15, 3229–3241. [Google Scholar] [CrossRef]
- Han, T.; Liu, C.; Wu, R.; Jiang, D. Deep Transfer Learning with Limited Data for Machinery Fault Diagnosis. Appl. Soft Comput. 2021, 103, 107150. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Wu, Z. Decoupling Deep Domain Adaptation Method for Class-Imbalanced Learning with Domain Discrepancy. In Proceedings of the 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC), Beijing, China, 17–19 November 2021; pp. 76–80. [Google Scholar]
- Yang, B.; Lee, C.-G.; Lei, Y.; Li, N.; Lu, N. Deep Partial Transfer Learning Network: A Method to Selectively Transfer Diagnostic Knowledge across Related Machines. Mech. Syst. Signal Process. 2021, 156, 107618. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Guo, J.; Ji, Y.; Pecht, M. Imbalanced Bearing Fault Diagnosis under Variant Working Conditions Using Cost-Sensitive Deep Domain Adaptation Network. Expert. Syst. Appl. 2022, 193, 116459. [Google Scholar] [CrossRef]
- Kuang, J.; Xu, G.; Tao, T.; Wu, Q. Class-Imbalance Adversarial Transfer Learning Network for Cross-Domain Fault Diagnosis With Imbalanced Data. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Tan, Y.; Guo, L.; Gao, H.; Lin, Z.; Liu, Y. MiDAN: A Framework for Cross-Domain Intelligent Fault Diagnosis with Imbalanced Datasets. Measurement 2021, 183, 109834. [Google Scholar] [CrossRef]
- Xia, B.; Wang, K.; Xu, A.; Zeng, P.; Yang, N.; Li, B. Intelligent Fault Diagnosis for Bearings of Industrial Robot Joints Under Varying Working Conditions Based on Deep Adversarial Domain Adaptation. IEEE Trans. Instrum. Meas. 2022, 71, 1–13. [Google Scholar] [CrossRef]
- Wang, Q.; Michau, G.; Fink, O. Missing-Class-Robust Domain Adaptation by Unilateral Alignment. IEEE Trans. Ind. Electron. 2021, 68, 663–671. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Lu, B.-L.; Wei, H.-L.; Chen, L.; Li, X.-H.; Wang, C.-T. A Stacked Auto-Encoder Based Partial Adversarial Domain Adaptation Model for Intelligent Fault Diagnosis of Rotating Machines. IEEE Trans. Ind. Inform. 2021, 17, 6798–6809. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Partial Transfer Learning in Machinery Cross-Domain Fault Diagnostics Using Class-Weighted Adversarial Networks. Neural Netw. 2020, 129, 313–322. [Google Scholar] [CrossRef]
- Jiao, J.; Zhao, M.; Lin, J. Multi-Weight Domain Adversarial Network for Partial-Set Transfer Diagnosis. IEEE Trans. Ind. Electron. 2022, 69, 4275–4284. [Google Scholar] [CrossRef]
- Li, W.; Chen, Z.; He, G. A Novel Weighted Adversarial Transfer Network for Partial Domain Fault Diagnosis of Machinery. IEEE Trans. Ind. Inform. 2021, 17, 1753–1762. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, G.; Shen, W. A Balanced and Weighted Alignment Network for Partial Transfer Fault Diagnosis. ISA Trans. 2022, 130, 449–462. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, J.; Cai, W.; Li, Y. Partial Transfer Learning of Multidiscriminator Deep Weighted Adversarial Network in Cross-Machine Fault Diagnosis. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Hao, D.; Gao, X. Multi-Weighted Partial Domain Adaptation for Sucker Rod Pump Fault Diagnosis Using Motor Power Data. Mathematics 2022, 10, 1519. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, D.; Du, S.; Li, G.; Zhao, C.; Lv, J. A Double-Layer Attention Based Adversarial Network for Partial Transfer Learning in Machinery Fault Diagnosis. Comput. Ind. 2021, 127, 103399. [Google Scholar] [CrossRef]
- Mao, G.; Zhang, Z.; Jia, S.; Noman, K.; Li, Y. Partial Transfer Ensemble Learning Framework: A Method for Intelligent Diagnosis of Rotating Machinery Based on an Incomplete Source Domain. Sensors 2022, 22, 2579. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Qin, Y.; Luo, J.; Wang, S. Partial Transfer Fault Diagnosis by Multiscale Weight-Selection Adversarial Network. IEEE/ASME Trans. Mechatron. 2022, 27, 4798–4806. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J. Fault Diagnosis of Marine Diesel Engines under Partial Set and Cross Working Conditions Based on Transfer Learning. J. Mar. Sci. Eng. 2023, 11, 1527. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Ma, H.; Luo, Z.; Li, X. Open-Set Domain Adaptation in Machinery Fault Diagnostics Using Instance-Level Weighted Adversarial Learning. IEEE Trans. Ind. Inform. 2021, 17, 7445–7455. [Google Scholar] [CrossRef]
- Zhao, C.; Shen, W. Dual Adversarial Network for Cross-Domain Open Set Fault Diagnosis. Reliab. Eng. Syst. Saf. 2022, 221, 108358. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, C.; Shen, C.; Shen, Y. Cross-Domain Open Set Machinery Fault Diagnosis Based on Adversarial Network with Multiple Auxiliary Classifiers. IEEE Trans. Ind. Inform. 2021, 18, 8077–8086. [Google Scholar] [CrossRef]
- Li, J.; Huang, R.; Xia, J.; Chen, Z.; Li, W. A Global-Local Dynamic Adversarial Network for Intelligent Fault Diagnosis of Spindle Bearing. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021; pp. 1–6. [Google Scholar]
- Li, J.; Huang, R.; Li, W. Intelligent Fault Diagnosis for Bearing Dataset Using Adversarial Transfer Learning Based on Stacked Auto-Encoder. Procedia Manuf. 2020, 49, 75–80. [Google Scholar] [CrossRef]
- Li, J.; Huang, R.; He, G.; Wang, S.; Li, G.; Li, W. A Deep Adversarial Transfer Learning Network for Machinery Emerging Fault Detection. IEEE Sens. J. 2020, 20, 8413–8422. [Google Scholar] [CrossRef]
- Li, J.; Huang, R.; He, G.; Liao, Y.; Wang, Z.; Li, W. A Two-Stage Transfer Adversarial Network for Intelligent Fault Diagnosis of Rotating Machinery With Multiple New Faults. IEEE/ASME Trans. Mechatron. 2021, 26, 1591–1601. [Google Scholar] [CrossRef]
- Chen, C.; Han, G.; Liu, L.; Wang, Z. Sample Weight-Based Domain Adaptation Network for General Fault Diagnosis. In Proceedings of the 2021 Computing, Communications and IoT Applications (ComComAp), Shenzhen, China, 26–28 November 2021; pp. 199–203. [Google Scholar]
- Yu, X.; Zhao, Z.; Zhang, X.; Zhang, Q.; Liu, Y.; Sun, C.; Chen, X. Deep-Learning-Based Open Set Fault Diagnosis by Extreme Value Theory. IEEE Trans. Ind. Inform. 2022, 18, 185–196. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Ma, H.; Luo, Z.; Li, X. Universal Domain Adaptation in Fault Diagnostics With Hybrid Weighted Deep Adversarial Learning. IEEE Trans. Ind. Inform. 2021, 17, 7957–7967. [Google Scholar] [CrossRef]
- Li, J.; Shen, C.; Kong, L.; Wang, D.; Xia, M.; Zhu, Z. A New Adversarial Domain Generalization Network Based on Class Boundary Feature Detection for Bearing Fault Diagnosis. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Li, Q.; Liu, S.; Yang, B.; Xu, Y.; Chen, L.; Shen, C. Adversarial Multi-Domain Adaptation for Machine Fault Diagnosis with Variable Working Conditions. In Proceedings of the 2020 IEEE 18th International Conference on Industrial Informatics (INDIN), Warwick, UK, 20–23 July 2020; Volume 1, pp. 737–741. [Google Scholar]
- Deng, M.; Deng, A.-D.; Shi, Y.; Xu, M. Correlation Regularized Conditional Adversarial Adaptation for Multi-Target-Domain Fault Diagnosis. IEEE Trans. Ind. Inform. 2022, 18, 8692–8702. [Google Scholar] [CrossRef]
- Ragab, M.; Chen, Z.; Wu, M.; Li, H.; Kwoh, C.; Yan, R.; Li, X. Adversarial Multiple-Target Domain Adaptation for Fault Classification. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, S.; Wu, G.; Moura, J.M.F.; Costeira, J.P.; Gordon, G.J. Adversarial Multiple Source Domain Adaptation. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–12 December 2018; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31. [Google Scholar]
- Wei, D.; Han, T.; Chu, F.; Zuo, M.J. Weighted Domain Adaptation Networks for Machinery Fault Diagnosis. Mech. Syst. Signal Process. 2021, 158, 107744. [Google Scholar] [CrossRef]
- Xu, D.; Li, Y.; Song, Y.; Jia, L.; Liu, Y. IFDS: An Intelligent Fault Diagnosis System With Multisource Unsupervised Domain Adaptation for Different Working Conditions. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Si, J.; Shi, H.; Han, T.; Chen, J.; Zheng, C. Learn Generalized Features Via Multi-Source Domain Adaptation: Intelligent Diagnosis Under Variable/Constant Machine Conditions. IEEE Sens. J. 2022, 22, 510–519. [Google Scholar] [CrossRef]
- Chai, Z.; Zhao, C. Deep Transfer Learning Based Multisource Adaptation Fault Diagnosis Network for Industrial Processes. IFAC-Pap. 2021, 54, 49–54. [Google Scholar] [CrossRef]
- Rezaeianjouybari, B.; Shang, Y. A Novel Deep Multi-Source Domain Adaptation Framework for Bearing Fault Diagnosis Based on Feature-Level and Task-Specific Distribution Alignment. Measurement 2021, 178, 109359. [Google Scholar] [CrossRef]
- Huang, Z.; Lei, Z.; Wen, G.; Huang, X.; Zhou, H.; Yan, R.; Chen, X. A Multi-Source Dense Adaptation Adversarial Network for Fault Diagnosis of Machinery. IEEE Trans. Ind. Electron. 2021, 69, 6298–6307. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, N.; Shen, C. A New Multiple Source Domain Adaptation Fault Diagnosis Method Between Different Rotating Machines. IEEE Trans. Ind. Inform. 2021, 17, 4788–4797. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, Z.; Zhou, S.; Yu, T. Adversarial Domain Adaptation with Classifier Alignment for Cross-Domain Intelligent Fault Diagnosis of Multiple Source Domains. Meas. Sci. Technol. 2021, 32, 035102. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, J.; He, S.; Pan, T.; Zhou, Z. Globally Localized Multisource Domain Adaptation for Cross-Domain Fault Diagnosis With Category Shift. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 3082–3096. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ding, Q.; Li, X. Diagnosing Rotating Machines With Weakly Supervised Data Using Deep Transfer Learning. IEEE Trans. Ind. Inform. 2020, 16, 1688–1697. [Google Scholar] [CrossRef]
- Chai, Z.; Zhao, C.; Huang, B. Multisource-Refined Transfer Network for Industrial Fault Diagnosis Under Domain and Category Inconsistencies. IEEE Trans. Cybern. 2021, 52, 9784–9796. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Domain Generalization in Rotating Machinery Fault Diagnostics Using Deep Neural Networks. Neurocomputing 2020, 403, 409–420. [Google Scholar] [CrossRef]
- Chen, L.; Li, Q.; Shen, C.; Zhu, J.; Wang, D.; Xia, M. Adversarial Domain-Invariant Generalization: A Generic Domain-Regressive Framework for Bearing Fault Diagnosis Under Unseen Conditions. IEEE Trans. Ind. Inform. 2022, 18, 1790–1800. [Google Scholar] [CrossRef]
- Han, T.; Li, Y.-F.; Qian, M. A Hybrid Generalization Network for Intelligent Fault Diagnosis of Rotating Machinery Under Unseen Working Conditions. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Z.; Zhang, X.; Liu, Y.; Sun, C.; Li, M.; Wang, S.; Chen, X. Conditional Adversarial Domain Generalization With a Single Discriminator for Bearing Fault Diagnosis. IEEE Trans. Instrum. Meas. 2021, 70, 3514515. [Google Scholar] [CrossRef]
- Huang, R.; Li, J.; Liao, Y.; Chen, J.; Wang, Z.; Li, W. Deep Adversarial Capsule Network for Compound Fault Diagnosis of Machinery Toward Multidomain Generalization Task. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ding, Q. Cross-Domain Fault Diagnosis of Rolling Element Bearings Using Deep Generative Neural Networks. IEEE Trans. Ind. Electron. 2019, 66, 5525–5534. [Google Scholar] [CrossRef]
- Zheng, T.; Song, L.; Wang, J.; Teng, W.; Xu, X.; Ma, C. Data Synthesis Using Dual Discriminator Conditional Generative Adversarial Networks for Imbalanced Fault Diagnosis of Rolling Bearings. Measurement 2020, 158, 107741. [Google Scholar] [CrossRef]
- Liang, P.; Deng, C.; Wu, J.; Yang, Z. Intelligent Fault Diagnosis of Rotating Machinery via Wavelet Transform, Generative Adversarial Nets and Convolutional Neural Network. Measurement 2020, 159, 107768. [Google Scholar] [CrossRef]
- Tao, H.; Wang, P.; Chen, Y.; Stojanovic, V.; Yang, H. An Unsupervised Fault Diagnosis Method for Rolling Bearing Using STFT and Generative Neural Networks. J. Frankl. Inst. 2020, 357, 7286–7307. [Google Scholar] [CrossRef]
- Shao, S.; Wang, P.; Yan, R. Generative Adversarial Networks for Data Augmentation in Machine Fault Diagnosis. Comput. Ind. 2019, 106, 85–93. [Google Scholar] [CrossRef]
- Guo, Q.; Li, Y.; Song, Y.; Wang, D.; Chen, W. Intelligent Fault Diagnosis Method Based on Full 1-D Convolutional Generative Adversarial Network. IEEE Trans. Ind. Inform. 2020, 16, 2044–2053. [Google Scholar] [CrossRef]
- Shi, Z.; Chen, J.; Zi, Y.; Zhou, Z. A Novel Multitask Adversarial Network via Redundant Lifting for Multicomponent Intelligent Fault Detection Under Sharp Speed Variation. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Wu, C.; Zeng, Z. A Fault Diagnosis Method Based on Auxiliary Classifier Generative Adversarial Network for Rolling Bearing. PLoS ONE 2021, 16, e0246905. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Li, L.; Chen, Q.; Tang, Z.; Gui, W.; He, J. A Fault Diagnosis Method for Rolling Bearings Based on Parameter Transfer Learning under Imbalance Data Sets. Energies 2021, 14, 944. [Google Scholar] [CrossRef]
- Li, C.; Cabrera, D.; Sancho, F.; Sánchez, R.-V.; Cerrada, M.; Long, J.; Valente de Oliveira, J. Fusing Convolutional Generative Adversarial Encoders for 3D Printer Fault Detection with Only Normal Condition Signals. Mech. Syst. Signal Process. 2021, 147, 107108. [Google Scholar] [CrossRef]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar]
- Xie, Y.; Zhang, T. A Transfer Learning Strategy for Rotation Machinery Fault Diagnosis Based on Cycle-Consistent Generative Adversarial Networks. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 2–30 November 2018; pp. 1309–1313. [Google Scholar]
- Wang, Y.; Zeng, L.; Ding, X.; Wang, L.; Shao, Y. Incremental Learning of Bearing Fault Diagnosis Via Style-Based Generative Adversarial Network. In Proceedings of the 2020 International Conference on Sensing, Measurement Data Analytics in the era of Artificial Intelligence (ICSMD), Xi’an, China, 15–17 October 2020; pp. 512–517. [Google Scholar]
- Jiao, J.; Lin, J.; Zhao, M.; Liang, K.; Ding, C. Cycle-Consistent Adversarial Adaptation Network and Its Application to Machine Fault Diagnosis. Neural Netw. 2022, 145, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Huang, W. Transfer Learning Method for Rolling Bearing Fault Diagnosis under Different Working Conditions Based on CycleGAN. Meas. Sci. Technol. 2021, 33, 025003. [Google Scholar] [CrossRef]
- Liu, X.; Ma, H.; Liu, Y. A Novel Transfer Learning Method Based on Conditional Variational Generative Adversarial Networks for Fault Diagnosis of Wind Turbine Gearboxes under Variable Working Conditions. Sustainability 2022, 14, 5441. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, Z.; Lu, B.; Cheng, F.; Zhou, C. Imbalance Domain Adaptation Network with Adversarial Learning for Fault Diagnosis of Rolling Bearing. Signal Image Video Process. 2022, 16, 2249–2257. [Google Scholar] [CrossRef]
- Li, Q.; Shen, C.; Chen, L.; Zhu, Z. Knowledge Mapping-Based Adversarial Domain Adaptation: A Novel Fault Diagnosis Method with High Generalizability under Variable Working Conditions. Mech. Syst. Signal Process. 2021, 147, 107095. [Google Scholar] [CrossRef]
- Sankaranarayanan, S.; Balaji, Y.; Castillo, C.D.; Chellappa, R. Generate to Adapt: Aligning Domains Using Generative Adversarial Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8503–8512. [Google Scholar]
- Xu, M.; Zhang, J.; Ni, B.; Li, T.; Wang, C.; Tian, Q.; Zhang, W. Adversarial Domain Adaptation with Domain Mixup. AAAI 2020, 34, 6502–6509. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Popova, Y.; Kuchin, Y.; Zaitseva, E.; Kalimoldayev, A.; Symagulov, A.; Levashenko, V.; Abdoldina, F.; Gopejenko, V.; Yakunin, K.; et al. Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions, Opportunities and Challenges. Mathematics 2022, 10, 2552. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, Z.; Zhang, X.; Sun, C.; Gong, B.; Yan, R.; Chen, X. Conditional Adversarial Domain Adaptation With Discrimination Embedding for Locomotive Fault Diagnosis. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Qian, Q.; Qin, Y.; Wang, Y.; Liu, F. A New Deep Transfer Learning Network Based on Convolutional Auto-Encoder for Mechanical Fault Diagnosis. Measurement 2021, 178, 109352. [Google Scholar] [CrossRef]
- Wu, H.; Li, J.; Zhang, Q.; Tao, J.; Meng, Z. Intelligent Fault Diagnosis of Rolling Bearings under Varying Operating Conditions Based on Domain-Adversarial Neural Network and Attention Mechanism. ISA Trans. 2022, 130, 477–489. [Google Scholar] [CrossRef]
- Gu, Y.; Mao, Z.; Yan, X.; Liang, H.; Liu, W.; Liu, C. Fault Diagnosis of Satellites under Variable Conditions Based on Domain Adaptive Adversarial Deep Neural Network. In Proceedings of the 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), Suzhou, China, 14–16 May 2021; pp. 1492–1497. [Google Scholar]
- Liu, C.; Gryllias, K. Simulation-Driven Domain Adaptation for Rolling Element Bearing Fault Diagnosis. IEEE Trans. Ind. Inform. 2021, 18, 5760–5770. [Google Scholar] [CrossRef]
- Zhu, P.; Dong, S.; Pan, X.; Hu, X.; Zhu, S. A Simulation-Data-Driven Subdomain Adaptation Adversarial Transfer Learning Network for Rolling Element Bearing Fault Diagnosis. Meas. Sci. Technol. 2022, 33, 075101. [Google Scholar] [CrossRef]
- Yu, K.; Fu, Q.; Ma, H.; Lin, T.R.; Li, X. Simulation Data Driven Weakly Supervised Adversarial Domain Adaptation Approach for Intelligent Cross-Machine Fault Diagnosis. Struct. Health Monit. 2021, 20, 2182–2198. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Zhao, D. Deep Transfer Fault Diagnosis Using Digital Twin and Generative Adversarial Network. In Proceedings of the 2021 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Weihai, China, 13–15 August 2021; pp. 186–193. [Google Scholar]
- Mao, G.; Zhang, Z.; Qiao, B.; Li, Y. Fusion Domain-Adaptation CNN Driven by Images and Vibration Signals for Fault Diagnosis of Gearbox Cross-Working Conditions. Entropy 2022, 24, 119. [Google Scholar] [CrossRef]
- He, Y.; Tang, H.; Ren, Y.; Kumar, A. A Deep Multi-Signal Fusion Adversarial Model Based Transfer Learning and Residual Network for Axial Piston Pump Fault Diagnosis. Measurement 2022, 192, 110889. [Google Scholar] [CrossRef]
- Yu, J.; Shen, Z.; Zheng, X. Joint Feature and Label Adversarial Network for Wafer Map Defect Recognition. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1341–1353. [Google Scholar] [CrossRef]
- Zaitseva, E.; Levashenko, V. Construction of a Reliability Structure Function Based on Uncertain Data. IEEE Trans. Reliab. 2016, 65, 1710–1723. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Lu, B.-L.; Wei, H.-L.; Chen, L.; Li, X.-H.; Rätsch, M. Deep Adversarial Domain Adaptation Model for Bearing Fault Diagnosis. IEEE Trans. Syst. Man. Cybern. Syst. 2021, 51, 4217–4226. [Google Scholar] [CrossRef]
- Yu, K.; Han, H.; Fu, Q.; Ma, H.; Zeng, J. Symmetric Co-Training Based Unsupervised Domain Adaptation Approach for Intelligent Fault Diagnosis of Rolling Bearing. Meas. Sci. Technol. 2020, 31, 115008. [Google Scholar] [CrossRef]
- Li, F.; Tang, T.; Tang, B.; He, Q. Deep Convolution Domain-Adversarial Transfer Learning for Fault Diagnosis of Rolling Bearings. Measurement 2021, 169, 108339. [Google Scholar] [CrossRef]
- Jiao, J.; Zhao, M.; Lin, J. Unsupervised Adversarial Adaptation Network for Intelligent Fault Diagnosis. IEEE Trans. Ind. Electron. 2020, 67, 9904–9913. [Google Scholar] [CrossRef]
- Wang, Q.; Taal, C.; Fink, O. Integrating Expert Knowledge with Domain Adaptation for Unsupervised Fault Diagnosis. IEEE Trans. Instrum. Meas. 2021, 71, 1–12. [Google Scholar] [CrossRef]
- Xu, J.; Huang, J.; Zhao, Y.; Zhou, L. Intelligent Fault Diagnosis with a Deep Transfer Network Based on Wasserstein Distance. Procedia Comput. Sci. 2020, 174, 406–411. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.; Pan, R.; Pan, H. Singular Value Penalization Based Adversarial Domain Adaptation for Fault Diagnosis of Rolling Bearings. Meas. Sci. Technol. 2021, 32, 115020. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X. Federated Transfer Learning for Intelligent Fault Diagnostics Using Deep Adversarial Networks with Data Privacy. IEEE/ASME Trans. Mechatron. 2021, 27, 430–439. [Google Scholar] [CrossRef]
- Sun, S.; Huang, H.; Peng, T.; Shen, C.; Wang, D. A Data Privacy Protection Diagnosis Framework for Multiple Machines Vibration Signals Based on a Swarm Learning Algorithm. IEEE Trans. Instrum. Meas. 2023, 72, 1–9. [Google Scholar] [CrossRef]
- Zhao, K.; Hu, J.; Shao, H.; Hu, J. Federated Multi-Source Domain Adversarial Adaptation Framework for Machinery Fault Diagnosis with Data Privacy. Reliab. Eng. Syst. Saf. 2023, 236, 109246. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X. Data Privacy Preserving Federated Transfer Learning in Machinery Fault Diagnostics Using Prior Distributions. Struct. Health Monit. 2021, 21, 1329–1344. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Yosinski, J.; Clune, J.; Nguyen, A.; Fuchs, T.; Lipson, H. Understanding Neural Networks Through Deep Visualization. arXiv 2015, arXiv:1506.06579. [Google Scholar] [CrossRef]
- Chen, Z.; Bei, Y.; Rudin, C. Concept Whitening for Interpretable Image Recognition. Nat. Mach. Intell. 2020, 2, 772–782. [Google Scholar] [CrossRef]
- Shao, H.; Jiang, H.; Li, X.; Liang, T. Rolling Bearing Fault Detection Using Continuous Deep Belief Network with Locally Linear Embedding. Comput. Ind. 2018, 96, 27–39. [Google Scholar] [CrossRef]
- Klein, A.; Falkner, S.; Bartels, S.; Hennig, P.; Hutter, F. Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets. arXiv 2016, arXiv:1605.07079. [Google Scholar]
- Zhou, Z.; Li, T.; Zhang, Z.; Zhao, Z.; Sun, C.; Yan, R.; Chen, X. Bayesian Differentiable Architecture Search for Efficient Domain Matching Fault Diagnosis. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Fedus, W.; Rosca, M.; Lakshminarayanan, B.; Dai, A.M.; Mohamed, S.; Goodfellow, I. Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At Every Step. arXiv 2017, arXiv:1710.08446. [Google Scholar] [CrossRef]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable Are Features in Deep Neural Networks? In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–12 December 2014; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27. [Google Scholar]
- Glorot, X.; Bordes, A.; Bengio, Y. Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning. In Proceedings of the 28th International Conference on International Conference on Machine Learning, Bellevue, WA, USA, 28 June–2 July 2011; Omnipress: Madison, WI, USA, 2011; pp. 513–520. Available online: https://dl.acm.org/doi/10.5555/3104482.3104547 (accessed on 13 July 2023).
- Li, X.; Zhang, W.; Xu, N.-X.; Ding, Q. Deep Learning-Based Machinery Fault Diagnostics With Domain Adaptation Across Sensors at Different Places. IEEE Trans. Ind. Electron. 2020, 67, 6785–6794. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, M.; Tang, L.; Xuan, J. An Uncertainty Correlation Metric in Gradual Inference to Improve Domain Adaptation for Cross-Location Fault Diagnosis. In Proceedings of the 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), Nanjing, China, 15–17 October 2021; pp. 1–7. [Google Scholar]
- Meng, Y.; Xuan, J.; Xu, L.; Liu, J. Dynamic Reweighted Domain Adaption for Cross-Domain Bearing Fault Diagnosis. Machines 2022, 10, 245. [Google Scholar] [CrossRef]
- Guo, L.; Lei, Y.; Xing, S.; Yan, T.; Li, N. Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data. IEEE Trans. Ind. Electron. 2019, 66, 7316–7325. [Google Scholar] [CrossRef]
- Xiang, S.; Zhang, J.; Gao, H.; Shi, D.; Chen, L. A Deep Transfer Learning Method for Bearing Fault Diagnosis Based on Domain Separation and Adversarial Learning. Shock. Vib. 2021, 2021, 119421–119430. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Chow, T.W.; Li, B. Deep Adversarial Subdomain Adaptation Network for Intelligent Fault Diagnosis. IEEE Trans. Ind. Inform. 2022, 18, 6038–6046. [Google Scholar] [CrossRef]
- Jin, G.; Xu, K.; Chen, H.; Jin, Y.; Zhu, C. A Novel Multi-Adversarial Cross-Domain Neural Network for Bearing Fault Diagnosis. Meas. Sci. Technol. 2021, 32, 055102. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Zhao, D. Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation. Sensors 2020, 20, 3753. [Google Scholar] [CrossRef]
- Huang, R.; Wang, Z.; Li, J.; Chen, J.; Li, W. A Transferable Capsule Network for Decoupling Compound Fault of Machinery. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Chen, Z.; He, G.; Li, J.; Liao, Y.; Gryllias, K.; Li, W. Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery. IEEE Trans. Instrum. Meas. 2020, 69, 8702–8712. [Google Scholar] [CrossRef]
- Wen, B.C.; Xiao, M.Q.; Wang, X.Q.; Zhao, X.; Li, J.F.; Chen, X. Data-Driven Remaining Useful Life Prediction Based on Domain Adaptation. PeerJ Comput. Sci. 2021, 7, e690. [Google Scholar] [CrossRef]
- de Oliveira da Costa, P.R.; Akçay, A.; Zhang, Y.; Kaymak, U. Remaining Useful Lifetime Prediction via Deep Domain Adaptation. Reliab. Eng. Syst. Saf. 2020, 195, 106682. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, Y.; Lin, L.; Zhao, M.; Zhong, S. Deep Residual LSTM with Domain-Invariance for Remaining Useful Life Prediction across Domains. Reliab. Eng. Syst. Saf. 2021, 216, 108012. [Google Scholar] [CrossRef]
- Li, J.; Zi, Y.; Wang, Y.; Yang, Y. Health Indicator Construction Method of Bearings Based on Wasserstein Dual-Domain Adversarial Networks Under Normal Data Only. IEEE Trans. Ind. Electron. 2022, 69, 10615–10624. [Google Scholar] [CrossRef]
- Li, X.; Jiang, H.; Xie, M.; Wang, T.; Wang, R.; Wu, Z. A Reinforcement Ensemble Deep Transfer Learning Network for Rolling Bearing Fault Diagnosis with Multi-Source Domains. Adv. Eng. Inform. 2022, 51, 101480. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, J.; Yang, Z.; Song, X.; Chang, Y.; He, S.; Xu, E.; Zhou, Z. Similarity-Based Meta-Learning Network with Adversarial Domain Adaptation for Cross-Domain Fault Identification. Knowl. Based Syst. 2021, 217, 106829. [Google Scholar] [CrossRef]
- Li, T.; Zhao, Z.; Sun, C.; Yan, R.; Chen, X. Domain Adversarial Graph Convolutional Network for Fault Diagnosis Under Variable Working Conditions. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, J.; He, S.; Li, F.; Feng, Y.; Zhou, Z. Triplet Metric Driven Multi-Head GNN Augmented with Decoupling Adversarial Learning for Intelligent Fault Diagnosis of Machines under Varying Working Condition. J. Manuf. Syst. 2022, 62, 1–16. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Ye, W.; Long, M.; Wang, J. Transferable Attention for Domain Adaptation. Proc. AAAI Conf. Artif. Intell. 2019, 33, 5345–5352. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Jia, F.; Shen, J. Multi-Domain Weighted Transfer Adversarial Network for the Cross-Domain Intelligent Fault Diagnosis of Bearings. Machines 2022, 10, 326. [Google Scholar] [CrossRef]
- Xu, K.; Li, S.; Li, R.; Lu, J.; Zeng, M. Deep Domain Adversarial Method with Central Moment Discrepancy for Intelligent Transfer Fault Diagnosis. Meas. Sci. Technol. 2021, 32, 124005. [Google Scholar] [CrossRef]
- Wang, R.; Huang, W.; Shi, J.; Wang, J.; Shen, C.; Zhu, Z. A Higher-Order Moment Matching Based Fine-Grained Adversarial Domain Adaptation Method for Intelligent Bearing Fault Diagnosis. Meas. Sci. Technol. 2021, 33, 055022. [Google Scholar] [CrossRef]
- Kuang, J.; Xu, G.; Tao, T.; Zhang, S. Self-Supervised Bi-Classifier Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotating Machinery. ISA Trans. 2022, 130, 433–448. [Google Scholar] [CrossRef]
- Oh, Y.; Kim, Y.; Na, K.; Youn, B.D. A Deep Transferable Motion-Adaptive Fault Detection Method for Industrial Robots Using a Residual–Convolutional Neural Network. ISA Trans. 2021, 128, 521–534. [Google Scholar] [CrossRef]
- Zhuang, J.; Jia, M.; Ding, Y.; Zhao, X. Health Assessment of Rotating Equipment With Unseen Conditions Using Adversarial Domain Generalization Toward Self-Supervised Regularization Learning. IEEE/ASME Trans. Mechatron. 2022, 27, 4675–4685. [Google Scholar] [CrossRef]
Application Scenarios | Categorization | References | Common Algorithms Used |
---|---|---|---|
Varying Working Conditions | DANN | Jiao et al. [35], Jin et al. [36], Mao et al. [38], Mao et al. [39], Wang et al. [40] | DL-ADAN, DDA-RNN, DTDA, MMD + DANN, DATTCN |
JDA | Jiao et al. [47], Zhao et al. [48] Li et al. [49] | RJAAN, IJMMD + Adversarial domain adaptation, AJDA | |
DAAN | Jiao et al. [55], Tian et al. [56], Xu et al. [57], Wei et al. [58], Zhao et al. [59], | MAAN, SAAN-EAS, VMD-EE + TL, DTAL, MSANA | |
C-MMD | Lee et al. [66], Shao et al. [67], Jia et al. [68], Zhang et al. [69], Shao et al. [70], Liu et al. [71], Li et al. [72], Li et al. [73], Li et al. [74], Wan et al. [76] | AIIDA, MK-MMD, DGDAN, SCDA + LMMD, DCMADA, ADA-MMA | |
C-WD | Liao et al. [77], Li et al. [78], He et al. [79], Li et al. [80], Zhang et al. [82], Bao et al. [83], Zhang et al. [84], Wang et al. [86], She et al. [87], Wang et al. [88], Zou et al. [89], Jia et al. [90], Zou et al. [91], Han et al. [92], Liu et al. [93], Wang et al. [94], Xu et al. [95] | DSDGN, C-ASSF, WGAN + minimum singular value, MAAN, WDMAN, TLADA, WDDMA, WACCVAE, DCWANs, HDAN, FCWAN, DADAN, DAN-DAM | |
C-CORAL | Qin et al. [97], Li et al. [98], Li et al. [99], Zhang et al. [100] | PSADAN, DAACA, ADA-AMCA, eDANN | |
Across Different Machines | DANN | Wang et al. [41], Zhu et al. [42] | DANN, Standardize datasets + DANN |
Others (Insufficient label sample, Noise label, etc.) | DANN | Mao et al. [37], Mao et al. [43], Wu et al. [44], Di et al. [45] | SDANN, LDANN, DANN, Joint training (DANN), |
JDA | Yang et al. [50], Zhang et al. [51] | CDAN + JDA, SNMCAN | |
DAAN | Fan et al. [60] | DWQDAN | |
C-MMD | Zhou et al. [75] | Res-BPNN + MK-MMD, | |
C-WD | Xiang et al. [81], Cheng et al. [85], Ying et al. [96] | WDATL, WD-DTL, WAADA |
Categorization | References | Method |
---|---|---|
Small sample | Han et al. [101], Li et al. [102], Wu et al. [103], Xu et al. [104], Li et al. [105], Wang et al. [106], Han et al. [107], | DACNN, DA-PTL, TMCD, CFDM, DATCNN, C-WGAN |
Class imbalance | Guo et al. [108], Yang et al. [109], Wu et al. [110], Kuang et al. [111], Tan et al. [112], Xia et al. [113] | Two-stage training strategy, DPTL, deep Imba-DA, CIATL, MiDAN, DPADA |
Categorization | References | Method |
---|---|---|
Partial set | Wang et al. [114], Liu et al. [115], Li et al. [116], Jiao et al. [117], Li et al. [118], Zhao et al. [119], Wang et al. [120], Hao et al. [121], Deng et al. [122], Mao et al. [123], Qian et al. [124] | Unilateral alignment, SPADA, Class-weighted, MWDAN, WANT, DA-GAN, MDWAN, DCs + SRPS, Balanced center alignment and weighted adversarial alignment, PT-ELF, MWSAN, |
Open set | Zhang et al. [126], Zhao et al. [127], Zhu et al. [128], Li et al. [129], Li et al. [130], Li et al. [131], Li et al. [132] | Instance-level weighted, Dual adversarial network, ANMAC, Global–local dynamic adversarial network, SAE, DATLN, TSTAN |
Universal | Chen et al. [133], Yu et al. [134], Zhang et al. [135], Li et al. [136] | TWUAN, BWAN, Additional outlier identifier, ADGN |
Categorization | References | Common Algorithms Used | |
---|---|---|---|
SSMT | Li et al. [137], Deng et al. [138], Ragab et al. [139] | AMDA, CRCAA, | |
MSST | Multi-domain adaptation | Wei et al. [141], Xu et al. [142], Si et al. [143], Chai et al. [144], Rezaeianjouybari et al. [145], Huang et al. [146], Zhu et al. [147], Zhang et al. [148], Feng et al. [149], Li et al. [150], Chai et al. [151], Li et al. [152] | IFDS, MSDA, MADN, FTD-MSDA, FTD-MSDA, MDAAN, ADACL, MDA, MRTN |
Domain generalization | Chen et al. [153], Han et al. [154], Zhang et al. [155], Huang et al. [156] | ADIG, IEDGNet, DACN |
Categorization | References |
---|---|
Direct extended data | Li et al. [157], Guo et al. [162], Shi et al. [163], Wu et al. [164], Peng et al. [165], Li et al. [166], Zhu et al. [167], Xie et al. [168], Wang et al. [169], Jiao et al. [170], Zhao et al. [171], Liu et al. [172], Zhu et al. [173], Li et al. [174] |
Combined data extended with transfer learning | Sankaranarayanan et al. [175], Xu et al. [176] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Zhang, J.; Sun, B.; Wang, Y. Adversarial Deep Transfer Learning in Fault Diagnosis: Progress, Challenges, and Future Prospects. Sensors 2023, 23, 7263. https://doi.org/10.3390/s23167263
Guo Y, Zhang J, Sun B, Wang Y. Adversarial Deep Transfer Learning in Fault Diagnosis: Progress, Challenges, and Future Prospects. Sensors. 2023; 23(16):7263. https://doi.org/10.3390/s23167263
Chicago/Turabian StyleGuo, Yu, Jundong Zhang, Bin Sun, and Yongkang Wang. 2023. "Adversarial Deep Transfer Learning in Fault Diagnosis: Progress, Challenges, and Future Prospects" Sensors 23, no. 16: 7263. https://doi.org/10.3390/s23167263
APA StyleGuo, Y., Zhang, J., Sun, B., & Wang, Y. (2023). Adversarial Deep Transfer Learning in Fault Diagnosis: Progress, Challenges, and Future Prospects. Sensors, 23(16), 7263. https://doi.org/10.3390/s23167263