Hybrid Distributed Optical Fiber Sensor for the Multi-Parameter Measurements
<p>The basic configuration of OTDR. DAQ: data-acquisition card.</p> "> Figure 2
<p>The basic configuration of COTDR.</p> "> Figure 3
<p>The typical configuration of BOTDR with coherent detection. EOM: electro-optic modulator; EDFA: erbium-doped optical fiber amplifier.</p> "> Figure 4
<p>The typical configuration of BOTDA. ISO: isolator.</p> "> Figure 5
<p>The typical configuration of ROTDR. WDM: wavelength-division multiplexer; APD: avalanche photodiode.</p> "> Figure 6
<p>(<b>a</b>) Diagram of the frequency-scanning pump pulses and the probe wave. (<b>b</b>) Frequency relationship between the Rayleigh and the Brillouin scattering signals (reprinted from [<a href="#B199-sensors-23-07116" class="html-bibr">199</a>], under the terms and conditions of the Creative Commons Attribution License).</p> "> Figure 7
<p>Experimental setup of the hybrid Φ-OTDR/BOTDA system (reprinted from [<a href="#B199-sensors-23-07116" class="html-bibr">199</a>], under the terms and conditions of the Creative Commons Attribution License).</p> "> Figure 8
<p>Experimental setup of the hybrid Φ-OTDR/BOTDA system (reprinted from [<a href="#B192-sensors-23-07116" class="html-bibr">192</a>], under the Open Access Publishing Agreement from © 2021 Optical Society of America).</p> "> Figure 9
<p>(<b>a</b>) Experimental setup of the hybrid Φ-OTDR/BOTDR system. (<b>b</b>) Modulated pulse sequences and the corresponding acquired signals (reprinted from [<a href="#B193-sensors-23-07116" class="html-bibr">193</a>], under the Open Access Publishing Agreement from © 2016 Optical Society of America).</p> "> Figure 10
<p>Experimental setup of the hybrid Φ-OTDR/BOTDR system (reprinted from [<a href="#B145-sensors-23-07116" class="html-bibr">145</a>], under the Open Access Publishing Agreement from © 2022 Optica Publishing Group).</p> "> Figure 11
<p>Experimental setup of the hybrid Φ-OTDR/BOTDA system through space-division multiplexing (SDM) based on the multi-core fiber (MCF) (reprinted from [<a href="#B200-sensors-23-07116" class="html-bibr">200</a>], under the Open Access Publishing Agreement from © 2017 Optical Society of America).</p> "> Figure 12
<p>Experimental setup of the hybrid Φ-OTDR/BOTDA system combining multiplexing and distributed amplification techniques (reprinted from [<a href="#B194-sensors-23-07116" class="html-bibr">194</a>], under the terms and conditions of the Creative Commons Attribution License).</p> "> Figure 13
<p>Experimental setup of the hybrid single-end-access BOTDA and COTDR system (reprinted from [<a href="#B195-sensors-23-07116" class="html-bibr">195</a>] with permission, © 2013 IEEE).</p> "> Figure 14
<p>Experimental setup of the hybrid BOTDA/COTDR system (adapted from [<a href="#B197-sensors-23-07116" class="html-bibr">197</a>]).</p> "> Figure 15
<p>Experimental setup of the hybrid Rayleigh and Brillouin system (reprinted from [<a href="#B172-sensors-23-07116" class="html-bibr">172</a>], under the Open Access Publishing Agreement from © 2023 Optica Publishing Group).</p> "> Figure 16
<p>(<b>a</b>) Experimental setup of the hybrid BOTDR/COTDR system; (<b>b</b>) schematic representation of the detecting signal spectrum according to the temperature or strain change (adapted from [<a href="#B198-sensors-23-07116" class="html-bibr">198</a>]).</p> "> Figure 17
<p>Experimental setup of the hybrid Φ-OTDR/ROTDR system using a commercial off-the-shelf DFB laser and direct detection (reprinted from [<a href="#B205-sensors-23-07116" class="html-bibr">205</a>] with permission, © 2016 Optical Society of America).</p> "> Figure 18
<p>Experimental setup of the hybrid Φ-OTDR/ROTDR system (reprinted from [<a href="#B206-sensors-23-07116" class="html-bibr">206</a>] with permission, © 2018 Elsevier).</p> "> Figure 19
<p>Experimental setup of the hybrid Φ-OTDR/ROTDR system based on multi-core fiber (adapted from [<a href="#B208-sensors-23-07116" class="html-bibr">208</a>]).</p> "> Figure 20
<p>Experimental setup of the hybrid BOTDA/ROTDR system using cyclic pulse coding (reprinted from [<a href="#B210-sensors-23-07116" class="html-bibr">210</a>] with permission, © 2013 Optical Society of America).</p> "> Figure 21
<p>Experimental setup of the hybrid BOTDR/ROTDR system based on multi-core fiber (reprinted from [<a href="#B212-sensors-23-07116" class="html-bibr">212</a>], under the Open Access Publishing Agreement from © 2016 Optical Society of America).</p> "> Figure 22
<p>Experimental setup of the hybrid BOTDR/POTDR system (adapted from [<a href="#B213-sensors-23-07116" class="html-bibr">213</a>]).</p> "> Figure 23
<p>Experimental setup of the frequency-scanning Φ-OTDR (reprinted from [<a href="#B214-sensors-23-07116" class="html-bibr">214</a>] with permission, © 2015 IEEE).</p> "> Figure 24
<p>Experimental setup of the single-end hybrid Φ-OTDR/BOTDA system (adapted from [<a href="#B215-sensors-23-07116" class="html-bibr">215</a>]).</p> "> Figure 25
<p>(<b>a</b>) BFS profiles when the fiber end is heated; (<b>b</b>) temperature evolution over the heated section; (<b>c</b>) vibration measured by BOTDA; (<b>d</b>) vibration measured by Φ-OTDR (reprinted from [<a href="#B192-sensors-23-07116" class="html-bibr">192</a>], under the Open Access Publishing Agreement from © 2021 Optical Society of America).</p> "> Figure 26
<p>(<b>a</b>) Fiber arrangement in the test; (<b>b</b>) demodulated phase signal corresponding to an 800 Hz triangular vibration; (<b>c</b>) enlarged view of the hotspot at different heated temperatures (reprinted from [<a href="#B145-sensors-23-07116" class="html-bibr">145</a>], under the Open Access Publishing Agreement from © 2022 Optical Society of America).</p> "> Figure 27
<p>(<b>a</b>) BFS profiles along the whole fiber; (<b>b</b>) BFS profiles around the heated section; (<b>c</b>) demodulated Rayleigh signal along the whole fiber; (<b>d</b>) demodulated Rayleigh signal at the location of perturbation (reprinted from [<a href="#B194-sensors-23-07116" class="html-bibr">194</a>], under the terms and conditions of the Creative Commons Attribution License).</p> "> Figure 28
<p>(<b>a</b>) Total of 885 superposed consecutive differential Φ-OTDR traces with intrusion applied to two fiber segments; (<b>b</b>) resolved temperature distribution with denoising method (adapted from [<a href="#B208-sensors-23-07116" class="html-bibr">208</a>], detailed curves are available in the reference paper).</p> "> Figure 29
<p>(<b>a</b>) Measured Raman Stokes and anti-Stokes traces along the whole fiber under various temperatures; (<b>b</b>) temperature distribution near the heated fiber section (reprinted from [<a href="#B206-sensors-23-07116" class="html-bibr">206</a>] with permission, © 2018 Elsevier).</p> "> Figure 30
<p>(<b>a</b>) Detected vibration waterfall regarding the knock event; (<b>b</b>) demodulated dynamic strain corresponding to the vibration exerting on the PZT; (<b>c</b>) frequency responses of the demodulated dynamic strain with different frequencies (reprinted from [<a href="#B206-sensors-23-07116" class="html-bibr">206</a>] with permission, © 2018 Elsevier).</p> "> Figure 31
<p>(<b>a</b>) Diagram of the test bench for independent measurement of temperature and strain; (<b>b</b>) independent measurement of distributed temperature and strain (adapted from [<a href="#B198-sensors-23-07116" class="html-bibr">198</a>], detailed curves are available in the reference paper).</p> "> Figure 32
<p>(<b>a</b>) Diagram of the good instrumentation for a distributed measurement of temperature and strain; (<b>b</b>) comparative curves of a distributed measurement among BOTDR DSTS (blue curve for temperature and purple curve for strain), standard ROTDR (red curve) and standalone BOTDR (yellow curve) (adapted from [<a href="#B198-sensors-23-07116" class="html-bibr">198</a>], detailed curves are available in the reference paper).</p> "> Figure 33
<p>(<b>a</b>) Recovered temperature variation over time; (<b>b</b>) recovered strain variation over time; (<b>c</b>) amplitude spectral density curve of the recovered temperature; (<b>d</b>) amplitude spectral density curve of the recovered strain (reprinted from [<a href="#B172-sensors-23-07116" class="html-bibr">172</a>], under the Open Access Publishing Agreement from © 2023 Optica Publishing Group).</p> "> Figure 34
<p>(<b>a</b>) Temperature distribution measured by Raman scattering; (<b>b</b>) strain resolution along the sensing fiber (reprinted from [<a href="#B210-sensors-23-07116" class="html-bibr">210</a>] with permission, © 2013 Optical Society of America).</p> "> Figure 35
<p>(<b>a</b>) Absolute temperature distribution measured by BOTDA; (<b>b</b>) relative temperature distribution measured by Φ-OTDR; (<b>c</b>) estimated temperature uncertainty distribution of BOTDA; (<b>d</b>) estimated temperature uncertainty distribution of Φ-OTDR (reprinted from [<a href="#B200-sensors-23-07116" class="html-bibr">200</a>], under the Open Access Publishing Agreement from © 2017 Optical Society of America).</p> "> Figure 36
<p>(<b>a</b>) Absolute strain change measured by BOTDA; (<b>b</b>) relative strain change of group 1 measured by Φ-OTDR; (<b>c</b>) relative strain change of group 2 measured by Φ-OTDR (reprinted from [<a href="#B199-sensors-23-07116" class="html-bibr">199</a>], under the terms and conditions of the Creative Commons Attribution License).</p> ">
Abstract
:1. Introduction
2. DOFSs Based on Light Scattering
2.1. Rayleigh Scattering-Based DOFS
2.2. Brillouin Scattering-Based DOFS
2.3. Raman Scattering-Based DOFS
3. Advances of Hybrid DOFS
3.1. Combination of Rayleigh and Brillouin Scattering Lights
3.2. Combination of Rayleigh and Raman Scattering Lights
3.3. Combination of Brillouin and Raman Scattering Lights
3.4. Others
- (1)
- Measurements of multiple parameters, including temperature, strain, vibration, and acoustic wave;
- (2)
- Discriminating temperature and strain for simultaneous measurements;
- (3)
- Improving the performance of single-parameter (e.g., temperature, strain) measurement based on the simultaneous demodulation of Rayleigh and Brillouin signals.
- (1)
- The direct separation of different scattering lights with FBG or WDM. The Raman frequency shift is large enough to take advantage of the WDM. However, the Brillouin frequency shift is much smaller, so it is rather necessary to use the FBG with ultranarrow bandwidth to separate Brillouin and Rayleigh scattering lights;
- (2)
- Well-designed multiplexing methods incorporating time–division multiplexing, wavelength–division multiplexing, space–division multiplexing, frequency–division multiplexing, or polarization–division multiplexing.
4. Multi-Parameter Measurements
4.1. Temperature/Strain and Vibration
4.2. Temperature and Vibration
4.3. Simultaneous Temperature and Strain
4.4. Comprehensive Temperature Measurement
4.5. Comprehensive Strain Measurement
5. Discussions
5.1. Challenges
- (a)
- Difficulty in separating backscattering lights
- (b)
- Incompatibility in pump power requirements
5.2. Prospects
- (a)
- Integration with frequency domain DOFS
- (b)
- Extended parameters sensing
- (c)
- Potential to multiply overall performance with optimized methods
- (d)
- Merging valuable information for further applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajkumar, N.; Kumar, V.J.; Sankaran, P. Fiber sensor for the simultaneous measurement of current and voltage in a high-voltage system. Appl. Opt. 1993, 32, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.D.; Ranade, J.; Arya, V.; Wang, A.; Claus, R.O. Optical fiber Fabry-Perot interferometric sensor for magnetic field measurement. IEEE Photonics Technol. Lett. 1997, 9, 797–799. [Google Scholar]
- Culshaw, B. Optical fiber sensor technologies: Opportunities and-perhaps-pitfalls. J. Lightwave Technol. 2004, 22, 39–50. [Google Scholar] [CrossRef]
- Pendao, C.; Silva, I. Optical fiber sensors and sensing networks: Overview of the main principles and applications. Sensors 2022, 22, 7554. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.G.; Liu, G.W.; Fu, S.G.; Xing, F. Recent progress of fiber-optic sensors for the structural health monitoring of civil infrastructure. Sensors 2020, 20, 4517. [Google Scholar] [CrossRef]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- López-Higuera, J.M.; Cobo, L.R.; Incera, A.Q.; Cobo, A. Fiber optic sensors in structural health monitoring. J. Lightwave Technol. 2011, 29, 587–608. [Google Scholar] [CrossRef]
- López-Higuera, J.M. Handbook of Optical Fibre Sensing Technology; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Islam, M.R.; Ali, M.M.; Lai, M.H.; Lim, K.S.; Ahmad, H. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: A review. Sensors 2014, 14, 7451–7488. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Chen, W.; Wang, J.; Hu, X.; Chen, M.; Zhang, Y. Recent progress in fiber-optic hydrophones. Photonic Sens. 2021, 11, 109–122. [Google Scholar] [CrossRef]
- Masoudi, A.; Newson, T.P. Contributed review: Distributed optical fibre dynamic strain sensing. Rev. Sci. Instrum. 2016, 87, 011501. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Guan, Z.-G.; Liu, G.; Yan, C.; He, S. Optical low-coherence reflectometry for a distributed sensor array of fiber Bragg gratings. Sens. Actuators A Phys. 2008, 144, 64–68. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, S.; Zhang, L.; Bennion, I. Multiplexing Bragg gratings using combined wavelength and spatial division techniques with digital resolution enhancement. Electron. Lett. 1997, 33, 1973–1975. [Google Scholar] [CrossRef]
- Ding, Z.W.; Zhang, X.P.; Zou, N.M.; Xiong, F.; Song, J.Y.; Fang, X.; Wang, F.; Zhang, Y.X. Phi-OTDR based on-line monitoring of overhead power transmission line. J. Lightwave Technol. 2021, 39, 5163–5169. [Google Scholar] [CrossRef]
- Bao, X.; Chen, L. Recent progress in distributed fiber optic sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Aoyama, K. Optical time domain reflectometry in optical transmission lines containing in-line Er-doped fiber amplifiers. J. Lightwave Technol. 1992, 10, 78–83. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: Boston, MA, USA, 2008. [Google Scholar]
- Juarez, J.C.; Maier, E.W.; Kyoo Nam, C.; Taylor, H.F. Distributed fiber-optic intrusion sensor system. J. Lightwave Technol. 2005, 23, 2081–2087. [Google Scholar] [CrossRef]
- Shao, L.Y.; Liu, S.Q.; Bandyopadhyay, S.; Yu, F.H.; Xu, W.J.; Wang, C.; Li, H.C.; Vai, M.I.; Du, L.L.; Zhang, J.S. Data-driven distributed optical vibration sensors: A review. IEEE Sens. J. 2020, 20, 6224–6239. [Google Scholar] [CrossRef]
- Lu, Y.L.; Zhu, T.; Chen, L.A.; Bao, X.Y. Distributed vibration sensor based on coherent detection of phase-OTDR. J. Lightwave Technol. 2010, 28, 3243–3249. [Google Scholar]
- Juarez, J.C.; Taylor, H.F. Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system. Opt. Lett. 2005, 30, 3284–3286. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.Y.; Dong, J.Y.; Zeng, J.; Fu, S.Y.; Cai, Y.S.; Zhang, Y.X.; Zhang, X.P. A broadband distributed vibration sensing system assisted by a distributed feedback interferometer. IEEE Photon. J. 2018, 10, 6800910. [Google Scholar] [CrossRef]
- Peng, F.; Duan, N.; Rao, Y.J.; Li, J. Real-time position and speed monitoring of trains using phase-sensitive OTDR. IEEE Photon. Technol. Lett. 2014, 26, 2055–2057. [Google Scholar] [CrossRef]
- Liu, S.; Yu, F.; Hong, R.; Xu, W.; Shao, L.; Wang, F. Advances in phase-sensitive optical time-domain reflectometry. Opto Electron. Adv. 2022, 5, 200078. [Google Scholar] [CrossRef]
- He, Z.; Liu, Q. Optical fiber distributed acoustic sensors: A review. J. Lightwave Technol. 2021, 39, 3671–3686. [Google Scholar] [CrossRef]
- Shang, Y.; Sun, M.C.; Wang, C.; Yang, J.; Du, Y.K.; Yi, J.C.; Zhao, W.A.; Wang, Y.Y.; Zhao, Y.J.; Ni, J.S. Research progress in distributed acoustic sensing techniques. Sensors 2022, 22, 6060. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lu, B.; Ye, Q.; Cai, H. Recent progress in distributed fiber acoustic sensing with Φ-OTDR. Sensors 2020, 20, 6594. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.Q.; Peng, Z.Q.; Jian, J.A.; Wang, M.H.; Liu, H.; Mao, Z.H.; Ohodnicki, P.; Chen, K.P. Artificial Intelligent Pattern Recognition for Optical Fiber Distributed Acoustic Sensing Systems Based on Phase-OTDR. In Proceedings of the Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; pp. 1–4. [Google Scholar]
- Gorshkov, B.G.; Yüksel, K.; Fotiadi, A.A.; Wuilpart, M.; Korobko, D.A.; Zhirnov, A.A.; Stepanov, K.V.; Turov, A.T.; Konstantinov, Y.A.; Lobach, I.A. Scientific applications of distributed acoustic sensing: State-of-the-art review and perspective. Sensors 2022, 22, 1033. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.J.; Wang, Z.Y.; Lu, B.; Wang, X.; Li, L.C.; Ye, Q.; Qu, R.H.; Cai, H.W. Distributed acoustic sensing for 2D and 3D acoustic source localization. Opt. Lett. 2019, 44, 1690–1693. [Google Scholar]
- Palmieri, L.; Schenato, L.; Santagiustina, M.; Galtarossa, A. Rayleigh-based distributed optical fiber sensing. Sensors 2022, 22, 6811. [Google Scholar] [CrossRef]
- Tejedor, J.; Macias-Guarasa, J.; Martins, H.F.; Pastor-Graells, J.; Corredera, P.; Martin-Lopez, S. Machine learning methods for pipeline surveillance systems based on distributed acoustic sensing: A review. Appl. Sci. 2017, 7, 841. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Jian, J.; Wen, H.; Gribok, A.; Wang, M.; Liu, H.; Huang, S.; Mao, Z.-H.; Chen, K.P. Distributed fiber sensor and machine learning data analytics for pipeline protection against extrinsic intrusions and intrinsic corrosions. Opt. Express 2020, 28, 27277–27292. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, F.; Wang, H.; Li, S.; Gan, W.; Jiang, R. Lateral positioning of vibration source for underground pipeline monitoring based on ultra-weak fiber Bragg grating sensing array. Measurement 2021, 172, 108892. [Google Scholar] [CrossRef]
- Muggleton, J.M.; Hunt, R.; Rustighi, E.; Lees, G.; Pearce, A. Gas pipeline leak noise measurements using optical fibre distributed acoustic sensing. J. Nat. Gas Sci. Eng. 2020, 78, 103293. [Google Scholar] [CrossRef]
- Tejedor, J.; Martins, H.F.; Piote, D.; Macias-Guarasa, J.; Pastor-Graells, J.; Martin-Lopez, S.; Guillén, P.C.; Smet, F.D.; Postvoll, W.; González-Herráez, M. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system. J. Lightwave Technol. 2016, 34, 4445–4453. [Google Scholar] [CrossRef] [Green Version]
- Tejedor, J.; Macias-Guarasa, J.; Martins, H.F.; Martin-Lopez, S.; Gonzalez-Herraez, M. A multi-position approach in a smart fiber-optic surveillance system for pipeline integrity threat detection. Electronics 2021, 10, 712. [Google Scholar] [CrossRef]
- Tejedor, J.; Macias-Guarasa, J.; Martins, H.F.; Martin-Lopez, S.; Gonzalez-Herraez, M. A contextual GMM-HMM smart fiber optic surveillance system for pipeline integrity threat detection. J. Lightwave Technol. 2019, 37, 4514–4522. [Google Scholar] [CrossRef]
- Hussels, M.-T.; Chruscicki, S.; Arndt, D.; Scheider, S.; Prager, J.; Homann, T.; Habib, A.K. Localization of transient events threatening pipeline integrity by fiber-optic distributed acoustic sensing. Sensors 2019, 19, 3322. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, J.; Wang, M.; Zhong, Y.; Peng, F. Fiber distributed acoustic sensing using convolutional long short-term memory network: A field test on high-speed railway intrusion detection. Opt. Express 2020, 28, 2925–2938. [Google Scholar] [CrossRef]
- Vidovic, I.; Marschnig, S. Optical fibres for condition monitoring of railway infrastructure—Encouraging data source or errant effort? Appl. Sci. 2020, 10, 6016. [Google Scholar] [CrossRef]
- Hall, A.; Minto, C. Using Fibre Optic Cables to Deliver Intelligent Traffic Management in Smart Cities. In Proceedings of the International Conference on Smart Infrastructure and Construction 2019 (ICSIC), Cambridge, UK, 8–10 July 2019; pp. 125–131. [Google Scholar]
- Liu, H.; Ma, J.; Xu, T.; Yan, W.; Ma, L.; Zhang, X. Vehicle detection and classification using distributed fiber optic acoustic sensing. IEEE Trans. Veh. Technol. 2020, 69, 1363–1374. [Google Scholar] [CrossRef]
- Wang, M.; Deng, L.; Zhong, Y.; Zhang, J.; Peng, F. Rapid response DAS denoising method based on deep learning. J. Lightwave Technol. 2021, 39, 2583–2593. [Google Scholar] [CrossRef]
- Liu, H.; Ma, J.; Yan, W.; Liu, W.; Zhang, X.; Li, C. Traffic flow detection using distributed fiber optic acoustic sensing. IEEE Access 2018, 6, 68968–68980. [Google Scholar] [CrossRef]
- Catalano, E.; Coscetta, A.; Cerri, E.; Cennamo, N.; Zeni, L.; Minardo, A. Automatic traffic monitoring by ϕ-OTDR data and Hough transform in a real-field environment. Appl. Opt. 2021, 60, 3579–3584. [Google Scholar] [CrossRef] [PubMed]
- Bakhoum, E.G.; Zhang, C.; Cheng, M.H. Real time measurement of airplane flutter via distributed acoustic sensing. Aerospace 2020, 7, 125. [Google Scholar] [CrossRef]
- Cai, Y.; Ma, J.; Yan, W.; Zhang, W.; An, Y. Aircraft detection using phase-sensitive optical-fiber OTDR. Sensors 2021, 21, 5094. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, Y.; Chen, S.; Zhang, Q.; Song, Y.; Zhang, J.; Wang, M. Building safety monitoring based on extreme gradient boosting in distributed optical fiber sensing. Opt. Fiber Technol. 2020, 55, 102149. [Google Scholar] [CrossRef]
- Hubbard, P.G.; Xu, J.; Zhang, S.; Dejong, M.; Luo, L.; Soga, K.; Papa, C.; Zulberti, C.; Malara, D.; Fugazzotto, F. Dynamic structural health monitoring of a model wind turbine tower using distributed acoustic sensing (DAS). J. Civ. Struct. Health Monit. 2021, 11, 833–849. [Google Scholar] [CrossRef]
- Juarez, J.C.; Taylor, H.F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters. Appl. Opt. 2007, 46, 1968–1971. [Google Scholar] [CrossRef]
- Jiang, F.; Li, H.; Zhang, Z.; Zhang, Y.; Zhang, X. Localization and discrimination of the perturbation signals in fiber distributed acoustic sensing systems using spatial average kurtosis. Sensors 2018, 18, 2839. [Google Scholar] [CrossRef] [Green Version]
- Xin, L.; Li, Z.; Gui, X.; Fu, X.; Fan, M.; Wang, J.; Wang, H. Surface intrusion event identification for subway tunnels using ultra-weak FBG array based fiber sensing. Opt. Express 2020, 28, 6794–6805. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Zhang, Y.; Zhuang, Z.; Jiang, T. An easy access method for event recognition of Φ-OTDR sensing system based on transfer learning. J. Lightwave Technol. 2021, 39, 4548–4555. [Google Scholar] [CrossRef]
- Yan, S.; Shang, Y.; Wang, C.; Zhao, W.; Ni, J. Mixed intrusion events recognition based on group convolutional neural networks in DAS system. IEEE Sens. J. 2022, 22, 678–684. [Google Scholar] [CrossRef]
- Hartog, A.; Frignet, B.; Mackie, D.; Clark, M. Vertical seismic optical profiling on wireline logging cable. Geophys. Prospect. 2014, 62, 693–701. [Google Scholar] [CrossRef]
- Ajo-Franklin, J.B.; Dou, S.; Lindsey, N.J.; Monga, I.; Tracy, C.; Robertson, M.; Rodriguez Tribaldos, V.; Ulrich, C.; Freifeld, B.; Daley, T. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Sci. Rep. 2019, 9, 1328. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Ruiz, M.R.; Soto, M.A.; Williams, E.F.; Martin-Lopez, S.; Zhan, Z.; Gonzalez-Herraez, M.; Martins, H.F. Distributed acoustic sensing for seismic activity monitoring. APL Photonics 2020, 5, 030901. [Google Scholar] [CrossRef]
- Jousset, P.; Reinsch, T.; Ryberg, T.; Blanck, H.; Clarke, A.; Aghayev, R.; Hersir, G.P.; Henninges, J.; Weber, M.; Krawczyk, C.M. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 2018, 9, 2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sladen, A.; Rivet, D.; Ampuero, J.P.; De Barros, L.; Hello, Y.; Calbris, G.; Lamare, P. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 2019, 10, 5777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, E.F.; Fernández-Ruiz, M.R.; Magalhaes, R.; Vanthillo, R.; Zhan, Z.; González-Herráez, M.; Martins, H.F. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun. 2019, 10, 5778. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, N.J.; Dawe, T.C.; Ajo-Franklin, J.B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science 2019, 366, 1103–1107. [Google Scholar] [CrossRef]
- Nishimura, T.; Emoto, K.; Nakahara, H.; Miura, S.; Yamamoto, M.; Sugimura, S.; Ishikawa, A.; Kimura, T. Source location of volcanic earthquakes and subsurface characterization using fiber-optic cable and distributed acoustic sensing system. Sci. Rep. 2021, 11, 6319. [Google Scholar] [CrossRef]
- Walter, F.; Gräff, D.; Lindner, F.; Paitz, P.; Köpfli, M.; Chmiel, M.; Fichtner, A. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Commun. 2020, 11, 2436. [Google Scholar] [CrossRef]
- Jousset, P.; Currenti, G.; Schwarz, B.; Chalari, A.; Tilmann, F.; Reinsch, T.; Zuccarello, L.; Privitera, E.; Krawczyk, C.M. Fibre optic distributed acoustic sensing of volcanic events. Nat. Commun. 2022, 13, 1753. [Google Scholar] [CrossRef] [PubMed]
- Currenti, G.; Allegra, M.; Cannavò, F.; Jousset, P.; Prestifilippo, M.; Napoli, R.; Sciotto, M.; Di Grazia, G.; Privitera, E.; Palazzo, S. Distributed dynamic strain sensing of very long period and long period events on telecom fiber-optic cables at Vulcano, Italy. Sci. Rep. 2023, 13, 4641. [Google Scholar] [CrossRef] [PubMed]
- Atterholt, J.; Zhan, Z.; Yang, Y. Fault zone imaging with distributed acoustic sensing: Body-to-surface wave scattering. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024329. [Google Scholar] [CrossRef]
- Hernández, P.D.; Ramírez, J.A.; Soto, M.A. Deep-learning-based earthquake detection for fiber-optic distributed acoustic sensing. J. Lightwave Technol. 2022, 40, 2639–2650. [Google Scholar] [CrossRef]
- Wang, B.; Mao, Y.; Ashry, I.; Al-Fehaid, Y.; Al-Shawaf, A.; Ng, T.K.; Yu, C.; Ooi, B.S. Towards detecting red palm weevil using machine learning and fiber optic distributed acoustic sensing. Sensors 2021, 21, 1592. [Google Scholar] [CrossRef]
- Juanes, F. Visual and acoustic sensors for early detection of biological invasions: Current uses and future potential. J. Nat. Conserv. 2018, 42, 7–11. [Google Scholar] [CrossRef]
- Glaser, D.R.; Costley, R.D.; Courville, Z. Distributed acoustic sensing of polar bear intrusion at Arctic Research Camps: A laboratory feasibility study. FastTimes 2021, 26, 1–15. [Google Scholar]
- Zhou, D.-P.; Li, W.; Chen, L.; Bao, X. Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber. Sensors 2013, 13, 1836–1845. [Google Scholar] [CrossRef] [Green Version]
- Horiguchi, T.; Shimizu, K.; Kurashima, T.; Tateda, M.; Koyamada, Y. Development of a distributed sensing technique using Brillouin scattering. J. Lightwave Technol. 1995, 13, 1296–1302. [Google Scholar] [CrossRef]
- Parker, T.R.; Farhadiroushan, M.; Handerek, V.A.; Roger, A.J. A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter. IEEE Photon. Technol. Lett. 1997, 9, 979–981. [Google Scholar] [CrossRef]
- Kurashima, T.; Horiguchi, T.; Tateda, M. Thermal effects of Brillouin gain spectra in single-mode fibers. IEEE Photon. Technol. Lett. 1990, 2, 718–720. [Google Scholar] [CrossRef]
- Kurashima, T.; Horiguchi, T.; Tateda, M. Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers. Appl. Opt. 1990, 29, 2219–2222. [Google Scholar] [CrossRef]
- Horiguchi, T.; Kurashima, T.; Tateda, M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers. IEEE Photon. Technol. Lett. 1989, 1, 107–108. [Google Scholar] [CrossRef]
- Inaudi, D.; Glisic, B. Long-range pipeline monitoring by distributed fiber optic sensing. J. Press. Vessel Technol. 2009, 132, 011701. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Liu, B.; He, J. Pipeline deformation monitoring using distributed fiber optical sensor. Measurement 2019, 133, 208–213. [Google Scholar] [CrossRef]
- Yan, S.Z.; Chyan, L.S. Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline monitoring. Opt. Fiber Technol. 2010, 16, 100–109. [Google Scholar] [CrossRef]
- Barrias, A.; Casas, J.R.; Villalba, S. A review of distributed optical fiber sensors for civil engineering applications. Sensors 2016, 16, 748. [Google Scholar] [CrossRef] [Green Version]
- Rajeev, P.; Kodikara, J.; Chiu, W.K.; Kuen, T. Distributed optical fibre sensors and their applications in pipeline monitoring. Key Eng. Mater. 2013, 558, 424–434. [Google Scholar] [CrossRef]
- Maraval, D.; Gabet, R.; Jaouen, Y.; Lamour, V. Dynamic optical fiber sensing with Brillouin optical time domain reflectometry: Application to pipeline vibration monitoring. J. Lightwave Technol. 2017, 35, 3296–3302. [Google Scholar] [CrossRef]
- Biondi, A.M.; Zhou, J.; Guo, X.; Wu, R.; Tang, Q.; Gandhi, H.; Yu, T.; Gopalan, B.; Hanna, T.; Ivey, J. Pipeline structural health monitoring using distributed fiber optic sensing textile. Opt. Fiber Technol. 2022, 70, 102876. [Google Scholar] [CrossRef]
- Lu, L.D.; Liang, Y.; Li, B.L.; Guo, J.H.; Zhang, H.; Zhang, X.P. Health Monitoring of Electric Power Communication Line Using a Distributed Optical Fiber Sensor. In Proceedings of the Conference on Advanced Sensor Systems and Applications VI, Beijing, China, 9–11 October 2014. [Google Scholar]
- Xia, M.; Tang, X.; Wang, Y.; Li, C.; Wei, Y.; Zhang, J.; Jiang, T.; Dong, Y. OPGW positioning and early warning method based on a Brillouin distributed optical fiber sensor and machine learning. Appl. Opt. 2023, 62, 1557–1566. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Xu, Z.; Yang, Z.; Lü, A. On-line monitoring system of 110kV submarine cable based on BOTDR. Sens. Actuators A Phys. 2014, 216, 28–35. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, N.; Kun, Y.; Zhai, F.; Yang, P. Online ice-coating monitoring research on overhead transmission lines with Brillouin optical time domain reflectometry. Opt. Fiber Technol. 2020, 60, 102339. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z.; Li, Y.; Yan, Z.; Zhai, T.; Li, L.; Xiao, Z. Distributed transmission line ice-coating recognition system based on BOTDR temperature monitoring. J. Lightwave Technol. 2021, 39, 3967–3973. [Google Scholar] [CrossRef]
- Hao, Y.; Cao, Y.; Ye, Q.; Cai, H.; Qu, R. On-line temperature monitoring in power transmission lines based on Brillouin optical time domain reflectometry. Optik 2015, 126, 2180–2183. [Google Scholar] [CrossRef]
- Lanticq, V.; Bourgeois, E.; Magnien, P.; Dieleman, L.; Vinceslas, G.; Sang, A.; Delepine-Lesoille, S. Soil-embedded optical fiber sensing cable interrogated by Brillouin optical time-domain reflectometry (B-OTDR) and optical frequency-domain reflectometry (OFDR) for embedded cavity detection and sinkhole warning system. Meas. Sci. Technol. 2009, 20, 034018. [Google Scholar] [CrossRef]
- Bai, Q.; Wang, Q.; Wang, D.; Wang, Y.; Gao, Y.; Zhang, H.; Zhang, M.; Jin, B. Recent advances in Brillouin optical time domain reflectometry. Sensors 2019, 19, 1862. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.-Y.; Zhang, Y.-F.; Li, G.-W.; Zhang, M.-X.; Liu, Z.-X. Recent progress of using Brillouin distributed fiber optic sensors for geotechnical health monitoring. Sens. Actuators A Phys. 2017, 258, 131–145. [Google Scholar] [CrossRef]
- Webb, G.T.; Vardanega, P.J.; Hoult, N.A.; Fidler, P.R.A.; Bennett, P.J.; Middleton, C.R. Analysis of fiber-optic strain-monitoring data from a prestressed concrete bridge. J. Bridge Eng. 2017, 22, 05017002. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Chen, G. Spiral deployment of optical fiber sensors for distributed strain measurement in seven-wire twisted steel cables, post-tensioned against precast concrete bars. Sensors 2022, 22, 7636. [Google Scholar] [CrossRef]
- Wijaya, H.; Rajeev, P.; Gad, E. Distributed optical fibre sensor for infrastructure monitoring: Field applications. Opt. Fiber Technol. 2021, 64, 102577. [Google Scholar] [CrossRef]
- Ye, C.; Butler, L.J.; Elshafie, M.Z.E.B.; Middleton, C.R. Evaluating prestress losses in a prestressed concrete girder railway bridge using distributed and discrete fibre optic sensors. Constr. Build. Mater. 2020, 247, 118518. [Google Scholar] [CrossRef]
- Wang, B.-j.; Li, K.; Shi, B.; Wei, G.-q. Test on application of distributed fiber optic sensing technique into soil slope monitoring. Landslides 2009, 6, 61–68. [Google Scholar] [CrossRef]
- Gu, K.; Xiang, F.; Liu, C.; Shi, B.; Zheng, X. Insight into the mechanical coupling behavior of loose sediment and embedded fiber-optic cable using discrete element method. Eng. Geol. 2023, 312, 106948. [Google Scholar] [CrossRef]
- Gu, K.; Shi, B.; Liu, C.; Jiang, H.; Li, T.; Wu, J. Investigation of land subsidence with the combination of distributed fiber optic sensing techniques and microstructure analysis of soils. Eng. Geol. 2018, 240, 34–47. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, G.; Wu, J.; Minardo, A.; Song, Z. Study on slope failure evolution under surcharge loading and toe cutting with BOTDA technology. Opt. Fiber Technol. 2021, 66, 102644. [Google Scholar] [CrossRef]
- Shirzaei, M.; Freymueller, J.; Törnqvist, T.E.; Galloway, D.L.; Dura, T.; Minderhoud, P.S.J. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2021, 2, 85. [Google Scholar] [CrossRef]
- Minardo, A.; Zeni, L.; Coscetta, A.; Catalano, E.; Zeni, G.; Damiano, E.; De Cristofaro, M.; Olivares, L. Distributed optical fiber sensor applications in geotechnical monitoring. Sensors 2021, 21, 7514. [Google Scholar] [CrossRef] [PubMed]
- Van Der Horst, J.; den Boer, H.; Kusters, R.; Roy, D.; Ridge, A.; Godfrey, A. Fiber Optic Sensing for Improved Wellbore Surveillance. In Proceedings of the IPTC 2013: International Petroleum Technology Conference, Beijing, China, 26–28 March 2013. [Google Scholar]
- Schenato, L. A review of distributed fibre optic sensors for geo-hydrological applications. Appl. Sci. 2017, 7, 896. [Google Scholar] [CrossRef] [Green Version]
- Höbel, M.; Ricka, J.; Wüthrich, M.; Binkert, T. High-resolution distributed temperature sensing with the multiphoton-timing technique. Appl. Opt. 1995, 34, 2955–2967. [Google Scholar] [CrossRef]
- Hartog, A.H.; Leach, A.P.; Gold, M.P. Distributed temperature sensing in solid-core fibres. Electron. Lett. 1985, 21, 1061–1062. [Google Scholar] [CrossRef] [Green Version]
- Dakin, J.P.; Pratt, D.J.; Bibby, G.W.; Ross, J.N. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electron. Lett. 1985, 21, 569–570. [Google Scholar] [CrossRef]
- Farahani, M.A.; Gogolla, T. Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing. J. Lightwave Technol. 1999, 17, 1379–1391. [Google Scholar] [CrossRef]
- Stierlin, R.; Ricka, J.; Zysset, B.; Bättig, R.; Weber, H.P.; Binkert, T.; Borer, W.J. Distributed fiber-optic temperature sensor using single photon counting detection. Appl. Opt. 1987, 26, 1368–1370. [Google Scholar] [CrossRef]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Yan, B.; Li, J.; Zhang, M.; Zhang, J.; Qiao, L.; Wang, T. Raman distributed temperature sensor with optical dynamic difference compensation and visual localization technology for tunnel fire detection. Sensors 2019, 19, 2320. [Google Scholar] [CrossRef] [Green Version]
- Antonio-Lopez, J.E.; Eznaveh, Z.S.; LiKamWa, P.; Schülzgen, A.; Amezcua-Correa, R. Multicore fiber sensor for high-temperature applications up to 1000 °C. Opt. Lett. 2014, 39, 4309–4312. [Google Scholar] [CrossRef]
- Sun, M.; Tang, Y.; Yang, S.; Li, J.; Sigrist, M.W.; Dong, F. Fire source localization based on distributed temperature sensing by a dual-line optical fiber system. Sensors 2016, 16, 829. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Tang, Y.; Yang, S.; Sigrist, M.W.; Li, J.; Dong, F. Fiber optic distributed temperature sensing for fire source localization. Meas. Sci. Technol. 2017, 28, 085102. [Google Scholar] [CrossRef]
- Li, J.; Yan, B.; Zhang, M.; Zhang, J.; Jin, B.; Wang, Y.; Wang, D. Long-range Raman distributed fiber temperature sensor with early warning model for fire detection and prevention. IEEE Sens. J. 2019, 19, 3711–3717. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Zheng, Q.; Qian, Z. Leakage localization for long distance pipeline based on compressive sensing. IEEE Sens. J. 2019, 19, 6795–6801. [Google Scholar] [CrossRef]
- Nakstad, H.; Kringlebotn, J.T. Probing oil fields. Nat. Photonics 2008, 2, 147–149. [Google Scholar] [CrossRef]
- Sharma, J.; Santos, O.L.A.; Feo, G.; Ogunsanwo, O.; Williams, W. Well-scale multiphase flow characterization and validation using distributed fiber-optic sensors for gas kick monitoring. Opt. Express 2020, 28, 38773–38787. [Google Scholar] [CrossRef] [PubMed]
- Yamate, T.; Fujisawa, G.; Ikegami, T. Optical sensors for the exploration of oil and gas. J. Lightwave Technol. 2017, 35, 3538–3545. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Zhang, M.; Yu, T.; Yan, B.; Zhou, X.; Yu, F.; Zhang, J.; Qiao, L.; Wang, T.; et al. Pipeline leak detection using Raman distributed fiber sensor with dynamic threshold identification method. IEEE Sens. J. 2020, 20, 7870–7877. [Google Scholar] [CrossRef]
- Silva, L.C.B.; Segatto, M.E.V.; Castellani, C.E.S. Raman scattering-based distributed temperature sensors: A comprehensive literature review over the past 37 years and towards new avenues. Opt. Fiber Technol. 2022, 74, 103091. [Google Scholar] [CrossRef]
- Lowry, C.S.; Walker, J.F.; Hunt, R.J.; Anderson, M.P. Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Water Resour. Res. 2007, 43, 1–9. [Google Scholar] [CrossRef]
- Gaona, J.; Meinikmann, K.; Lewandowski, J. Identification of groundwater exfiltration, interflow discharge, and hyporheic exchange flows by fibre optic distributed temperature sensing supported by electromagnetic induction geophysics. Hydrol. Process. 2019, 33, 1390–1402. [Google Scholar] [CrossRef] [Green Version]
- Hausner, M.B.; Wilson, K.P.; Gaines, D.B.; Tyler, S.W. Interpreting seasonal convective mixing in Devils Hole, Death Valley National Park, from temperature profiles observed by fiber-optic distributed temperature sensing. Water Resour. Res. 2012, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Del Val, L.; Carrera, J.; Pool, M.; Martínez, L.; Casanovas, C.; Bour, O.; Folch, A. Heat dissipation test with fiber-optic distributed temperature sensing to estimate groundwater flux. Water Resour. Res. 2021, 57, e2020WR027228. [Google Scholar] [CrossRef]
- Godinaud, J.; Klepikova, M.; Larroque, F.; Guihéneuf, N.; Dupuy, A.; Bour, O. Clogging detection and productive layers identification along boreholes using active distributed temperature sensing. J. Hydrol. 2023, 617, 129113. [Google Scholar] [CrossRef]
- Pelegrin, J.d.; Bazzo, J.P.; Dreyer, U.J.; Martelli, C.; Pipa, D.R.; Silva, E.V.d.; Cardozo da Silva, J.C. Raman distributed temperature sensing for end winding of high-power generator. IET Optoelectron. 2020, 14, 343–349. [Google Scholar] [CrossRef]
- Datta, A.; Mamidala, H.; Venkitesh, D.; Srinivasan, B. Reference-free real-time power line monitoring using distributed anti-Stokes Raman thermometry for smart power grids. IEEE Sens. J. 2020, 20, 7044–7052. [Google Scholar] [CrossRef]
- Chen, K.; Yue, Y.; Tang, Y. Research on temperature monitoring method of cable on 10 kV railway power transmission lines based on distributed temperature sensor. Energies 2021, 14, 3705. [Google Scholar] [CrossRef]
- Tabari, M.M.R.; Azadani, M.N.; Kamgar, R. Development of operation multi-objective model of dam reservoir under conditions of temperature variation and loading using NSGA-II and DANN models: A case study of Karaj/Amir Kabir dam. Soft Comput. 2020, 24, 12469–12499. [Google Scholar] [CrossRef]
- Liang, Z.; Zhao, C.; Zhou, H.; Liu, Q.; Zhou, Y. Error correction of temperature measurement data obtained from an embedded bifilar optical fiber network in concrete dams. Measurement 2019, 148, 106903. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, B.; Jin, B.; Wang, Y.; Zhang, M.; Liu, X.; Bai, Q. Remote simultaneous measurement of liquid temperature and refractive index using fiber-optic spontaneous Raman scattering. IEEE Sens. J. 2019, 19, 10513–10518. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, C.; Wang, F.; Zhao, C.; Zhang, A.; Tan, T.; Gong, P. Field test and numerical simulation of the thermal insulation effect of concrete pouring block surface based on DTS. Constr. Build. Mater. 2022, 343, 128022. [Google Scholar] [CrossRef]
- Brüne, M.; Furian, W.; Hill, W.; Pflitsch, A. Temperature sensing in underground facilities by Raman optical frequency domain reflectometry using fiber-optic communication cables. J. Sens. Sens. Syst. 2018, 7, 85–90. [Google Scholar] [CrossRef]
- Zhong, Y.P.; Zhang, Q.; Zhou, D. Distributed optical fiber Raman signal noise cancellation based on empirical mode decomposition. Appl. Mech. Mater. 2012, 198–199, 1621–1626. [Google Scholar] [CrossRef]
- Malka, D.; Berkovic, G.; Hammer, Y.; Zalevsky, Z. Super-resolved Raman spectroscopy. Spectrosc. Lett. 2013, 46, 307–313. [Google Scholar] [CrossRef]
- Malka, D.; Berkovic, G.; Tischler, Y.; Zalevsky, Z. Super-resolved Raman spectra of toluene and toluene–chlorobenzene mixture. Spectrosc. Lett. 2015, 48, 431–435. [Google Scholar] [CrossRef]
- Malka, D.; Adler Berke, B.; Tischler, Y.; Zalevsky, Z. Improving Raman spectra of pure silicon using super-resolved method. J. Opt. 2019, 21, 075801. [Google Scholar] [CrossRef]
- Wu, H.; Liu, X.; Xiao, Y.; Rao, Y. A dynamic time sequence recognition and knowledge mining method based on the hidden Markov models (HMMs) for pipeline safety monitoring with Φ-OTDR. J. Lightwave Technol. 2019, 37, 4991–5000. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Z.; Zhou, X.; Li, S.; Yuan, X.; Zhang, Y.; Shao, L.; Zhang, X. Oil and gas pipeline leakage recognition based on distributed vibration and temperature information fusion. Results Opt. 2021, 5, 100131. [Google Scholar] [CrossRef]
- Li, J.; Yu, T.; Zhang, M.; Zhang, J.; Qiao, L.; Wang, T. Temperature and crack measurement using distributed optic-fiber sensor based on Raman loop configuration and fiber loss. IEEE Photon. J. 2019, 11, 6802113. [Google Scholar] [CrossRef]
- Ivanitskaya, N.V.; Baybulov, A.K.; Safronchuk, M.V. Modelling of the stress-strain state of a transport tunnel under load as a measure to reduce operational risks to transportation facilities. J. Phys. Conf. Ser. 2020, 1703, 012024. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M. Physics and applications of Raman distributed optical fiber sensing. Light Sci. Appl. 2022, 11, 128. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Liu, Z.; Lu, Y.; Yang, C.; Zhang, Y.; Shao, L.; Zhang, X. Hybrid B-OTDR/Φ-OTDR for multi-parameter measurement from a single end of fiber. Opt. Express 2022, 30, 29117–29127. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhang, J.; Guo, N.; Zhu, T. Distributed optical fiber sensor for dynamic measurement. J. Lightwave Technol. 2021, 39, 3801–3811. [Google Scholar] [CrossRef]
- Aoyama, K.; Nakagawa, K.; Itoh, T. Optical time domain reflectometry in a single-mode fiber. IEEE J. Quantum Electron. 1981, 17, 862–868. [Google Scholar] [CrossRef]
- Sumida, M. OTDR performance enhancement using a quaternary FSK modulated probe and coherent detection. IEEE Photon. Technol. Lett. 1995, 7, 336–338. [Google Scholar] [CrossRef]
- Eickhoff, W.; Ulrich, R. Optical frequency domain reflectometry in single-mode fiber. Appl. Phys. Lett. 1981, 39, 693–695. [Google Scholar] [CrossRef]
- Ghafoori-Shiraz, H.; Okoshi, T. Fault location in optical fibers using optical frequency domain reflectometry. J. Lightwave Technol. 1986, 4, 316–322. [Google Scholar] [CrossRef]
- Ito, F.; Fan, X.; Koshikiya, Y. Long-Range coherent OFDR with light source phase noise compensation. J. Lightwave Technol. 2012, 30, 1015–1024. [Google Scholar] [CrossRef]
- Youngquist, R.C.; Carr, S.; Davies, D.E.N. Optical coherence-domain reflectometry: A new optical evaluation technique. Opt. Lett. 1987, 12, 158–160. [Google Scholar] [CrossRef]
- Hotate, K.; Kamatani, O. Optical coherence domain reflectometry by synthesis of coherence function. J. Lightwave Technol. 1993, 11, 1701–1710. [Google Scholar] [CrossRef]
- Hotate, K.; Zuyuan, H. Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing. J. Lightwave Technol. 2006, 24, 2541–2557. [Google Scholar] [CrossRef]
- Barnoski, M.K.; Jensen, S.M. Fiber waveguides: A novel technique for investigating attenuation characteristics. Appl. Opt. 1976, 15, 2112–2115. [Google Scholar] [CrossRef]
- Healey, P.; Malyon, D.J. OTDR in single-mode fibre at 1.5 μm using heterodyne detection. Electron. Lett. 1982, 18, 862–863. [Google Scholar] [CrossRef]
- Healey, P. Fading in heterodyne OTDR. Electron. Lett. 1984, 20, 30–32. [Google Scholar] [CrossRef]
- Ashry, I.; Mao, Y.; Wang, B.; Hveding, F.; Bukhamsin, A.Y.; Ng, T.K.; Ooi, B.S. A review of distributed fiber-optic sensing in the oil and gas industry. J. Lightwave Technol. 2022, 40, 1407–1431. [Google Scholar] [CrossRef]
- Bao, X.Y.; Zhou, D.P.; Baker, C.; Chen, L. Recent development in the distributed fiber optic acoustic and ultrasonic detection. J. Lightwave Technol. 2017, 35, 3256–3267. [Google Scholar] [CrossRef]
- Alekseev, A.E.; Gorshkov, B.G.; Potapov, V.T.; Taranov, M.A.; Simikin, D.E. Random jumps in the phase-OTDR response. Appl. Opt. 2022, 61, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, A.E.; Gorshkov, B.G.; Potapov, V.T. Fidelity of the dual-pulse phase-OTDR response to spatially distributed external perturbation. Laser Phys. 2019, 29, 055106. [Google Scholar] [CrossRef]
- Tu, G.; Zhang, X.; Zhang, Y.; Zhu, F.; Xia, L.; Nakarmi, B. The development of an Φ-OTDR system for quantitative vibration measurement. IEEE Photon. Technol. Lett. 2015, 27, 1349–1352. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Wang, S.; Xue, N.; Peng, F.; Fan, M.; Sun, W.; Qian, X.; Rao, J.; Rao, Y. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Opt. Express 2016, 24, 853–858. [Google Scholar] [CrossRef]
- Fu, Y.; Xue, N.; Wang, Z.; Zhang, B.; Xiong, J.; Rao, Y. Impact of I/Q amplitude imbalance on coherent Φ-OTDR. J. Lightwave Technol. 2018, 36, 1069–1075. [Google Scholar] [CrossRef]
- Hui, X.; Zheng, S.; Zhou, J.; Chi, H.; Jin, X.; Zhang, X. Hilbert–Huang transform time-frequency analysis in ϕ-OTDR distributed sensor. IEEE Photon. Technol. Lett. 2014, 26, 2403–2406. [Google Scholar] [CrossRef]
- Masoudi, A.; Belal, M.; Newson, T.P. A distributed optical fibre dynamic strain sensor based on phase-OTDR. Meas. Sci. Technol. 2013, 24, 085204. [Google Scholar] [CrossRef]
- Fang, G.; Xu, T.; Feng, S.; Li, F. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm. J. Lightwave Technol. 2015, 33, 2811–2816. [Google Scholar] [CrossRef]
- Qian, H.; Luo, B.; He, H.; Zhang, X.; Zou, X.; Pan, W.; Yan, L. Phase demodulation based on DCM algorithm in Φ-OTDR with self-interference balance detection. IEEE Photon. Technol. Lett. 2020, 32, 473–476. [Google Scholar] [CrossRef]
- Alekseev, A.E.; Vdovenko, V.S.; Gorshkov, B.G.; Potapov, V.T.; Sergachev, I.A.; Simikin, D.E. Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses. Quantum Electron. 2014, 44, 965. [Google Scholar] [CrossRef]
- He, X.; Xie, S.; Liu, F.; Cao, S.; Gu, L.; Zheng, X.; Zhang, M. Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR. Opt. Lett. 2017, 42, 442–445. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.R.; Martins, H.F.; Costa, L.; Martin-Lopez, S.; Gonzalez-Herraez, M. Statistical Analysis of SNR in Chirped-pulse ΦOTDR. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018. [Google Scholar]
- Murray, M.J.; Murray, J.B.; Ogden, H.M.; Redding, B. Dynamic temperature-strain discrimination using a hybrid distributed fiber sensor based on Brillouin and Rayleigh scattering. Opt. Express 2023, 31, 287–300. [Google Scholar] [CrossRef]
- Koyamada, Y.; Imahama, M.; Kubota, K.; Hogari, K. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR. J. Lightwave Technol. 2009, 27, 1142–1146. [Google Scholar] [CrossRef]
- Lu, X.; Soto, M.A.; Thévenaz, L. Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry. Opt. Express 2017, 25, 16059–16071. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Costa, L.D.; Yang, Z.; Soto, M.A.; Gonzalez-Herráez, M.; Thévenaz, L. Analysis and reduction of large errors in Rayleigh-based distributed sensor. J. Lightwave Technol. 2019, 37, 4710–4719. [Google Scholar] [CrossRef]
- Pastor-Graells, J.; Martins, H.F.; Garcia-Ruiz, A.; Martin-Lopez, S.; Gonzalez-Herraez, M. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses. Opt. Express 2016, 24, 13121–13133. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Liu, Q.; Wang, Y.; Li, H.; He, Z. Fiber-optic distributed acoustic sensor based on a chirped pulse and a non-matched filter. Opt. Express 2019, 27, 29415–29424. [Google Scholar] [CrossRef]
- Parker, T.R.; Farhadiroushan, M.; Handerek, V.A.; Rogers, A.J. Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers. Opt. Lett. 1997, 22, 787–789. [Google Scholar] [CrossRef]
- Alahbabi, M.; Cho, Y.T.; Newson, T.P. Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors. Opt. Lett. 2004, 29, 26–28. [Google Scholar] [CrossRef]
- Ruiz-Lombera, R.; Fuentes, A.; Rodriguez-Cobo, L.; Lopez-Higuera, J.M.; Mirapeix, J. Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks. J. Lightwave Technol. 2018, 36, 2114–2121. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, G.P. Nonlinear Fiber Optics, 4th ed.; Academic Press: New York, NY, USA, 2007. [Google Scholar]
- Shimizu, K.; Horiguchi, T.; Koyamada, Y.; Kurashima, T. Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber. Opt. Lett. 1993, 18, 185–187. [Google Scholar] [CrossRef]
- Kurashima, T.; Horiguchi, T.; Tateda, M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. Opt. Lett. 1990, 15, 1038–1040. [Google Scholar] [CrossRef]
- Brown, A.W.; DeMerchant, M.; Xiaoyi, B.; Bremner, T.W. Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method. J. Lightwave Technol. 1999, 17, 1179–1183. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Fu, X.; Bi, W. An improved Levenberg–Marquardt algorithm for extracting the features of Brillouin scattering spectrum. Meas. Sci. Technol. 2013, 24, 015204. [Google Scholar] [CrossRef]
- Soto, M.A.; Thévenaz, L. Modeling and evaluating the performance of Brillouin distributed optical fiber sensors. Opt. Express 2013, 21, 31347–31366. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Fang, Z.; Wang, Z.; Lu, B.; Cao, Y.; Ye, Q.; Qu, R.; Cai, H. Brillouin frequency shift of fiber distributed sensors extracted from noisy signals by quadratic fitting. Sensors 2018, 18, 409. [Google Scholar] [CrossRef] [Green Version]
- Farahani, M.A.; Castillo-Guerra, E.; Colpitts, B.G. Accurate estimation of Brillouin frequency shift in Brillouin optical time domain analysis sensors using cross correlation. Opt. Lett. 2011, 36, 4275–4277. [Google Scholar] [CrossRef]
- Farahani, M.A.; Castillo-Guerra, E.; Colpitts, B.G. A detailed evaluation of the correlation-based method used for estimation of the Brillouin frequency shift in BOTDA sensors. IEEE Sens. J. 2013, 13, 4589–4598. [Google Scholar] [CrossRef]
- Haneef, S.M.; Yang, Z.; Thévenaz, L.; Venkitesh, D.; Srinivasan, B. Performance analysis of frequency shift estimation techniques in Brillouin distributed fiber sensors. Opt. Express 2018, 26, 14661–14677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muanenda, Y.S.; Taki, M.; Nannipieri, T.; Signorini, A.; Oton, C.J.; Zaidi, F.; Toccafondo, I.; Pasquale, F.D. Advanced coding techniques for long-range Raman/BOTDA distributed strain and temperature measurements. J. Lightwave Technol. 2016, 34, 342–350. [Google Scholar] [CrossRef]
- Coscetta, A.; Catalano, E.; Cerri, E.; Cennamo, N.; Zeni, L.; Minardo, A. Hybrid Brillouin/Rayleigh sensor for multiparameter measurements in optical fibers. Opt. Express 2021, 29, 24025–24031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, T.; Zhou, H.; Huang, S.; Liu, M.; Huang, W. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses. Opt. Express 2016, 24, 27482–27493. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Z.; Zhu, R.; Xue, N.; Jiang, J.; Lu, C.; Zhang, B.; Yang, L.; Atubga, D.; Rao, Y. Ultra-long-distance hybrid BOTDA/Φ-OTDR. Sensors 2018, 18, 976. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Hu, J.; Zhang, Y. A hybrid single-end-access BOTDA and COTDR sensing system using heterodyne detection. J. Lightwave Technol. 2013, 31, 1954–1959. [Google Scholar] [CrossRef]
- Peng, F.; Cao, X. A hybrid Φ/B-OTDR for simultaneous vibration and strain measurement. Photonic Sens. 2016, 6, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Kishida, K.; Yamauchi, Y.; Guzik, A. Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh system. Photonic Sens. 2014, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Clément, P.; Gabet, R.; Lanticq, V.; Jaouën, Y. B-OTDR solution for independent temperature and strain measurement in a single acquisition. J. Lightwave Technol. 2021, 39, 6013–6020. [Google Scholar] [CrossRef]
- Wang, B.; Ba, D.; Chu, Q.; Qiu, L.; Zhou, D.; Dong, Y. High-sensitivity distributed dynamic strain sensing by combining Rayleigh and Brillouin scattering. Opto Electron. Adv. 2020, 3, 200013. [Google Scholar] [CrossRef]
- Dang, Y.; Zhao, Z.; Tang, M.; Zhao, C.; Gan, L.; Fu, S.; Liu, T.; Tong, W.; Shum, P.P.; Liu, D. Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber. Opt. Express 2017, 25, 20183–20193. [Google Scholar] [CrossRef]
- Ba, D.; Qiu, L.; Chu, Q.; Pei, Y.; Lin, D.; Dong, Y. High-resolution and large-strain distributed dynamic sensor based on Brillouin and Rayleigh scattering. Opt. Lett. 2022, 47, 5777–5780. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Hua, Z.; Pang, C.; Zhou, D.; Ba, D.; Lin, D.; Dong, Y. Fast Brillouin optical time-domain reflectometry based on the frequency-agile technique. J. Lightwave Technol. 2020, 38, 946–952. [Google Scholar] [CrossRef]
- Bernini, R.; Minardo, A.; Zeni, L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering. Opt. Lett. 2009, 34, 2613–2615. [Google Scholar] [CrossRef]
- Murray, J.B.; Redding, B. Combining Stokes and anti-Stokes interactions to achieve ultra-low noise dynamic Brillouin strain sensing. APL Photonics 2020, 5, 116104. [Google Scholar] [CrossRef]
- Muanenda, Y.; Oton, C.J.; Faralli, S.; Nannipieri, T.; Signorini, A.; Pasquale, F.D. Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection. Opt. Lett. 2016, 41, 587–590. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Y.; Xiong, F.; Zhang, M.; Shan, Y.; Wang, S.; Xu, W.; Zabihi, M.; Wu, J.; Zhang, X. A hybrid distributed optical fibre sensor for acoustic and temperature fields reconstruction. Opt. Commun. 2019, 435, 134–139. [Google Scholar] [CrossRef]
- Zhao, Z.; Tang, M.; Lu, C. Distributed multicore fiber sensors. Opto Electron. Adv. 2020, 3, 190024. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Dang, Y.; Tang, M.; Wang, L.; Gan, L.; Fu, S.; Yang, C.; Tong, W.; Lu, C. Enabling simultaneous DAS and DTS through space-division multiplexing based on multicore fiber. J. Lightwave Technol. 2018, 36, 5707–5713. [Google Scholar] [CrossRef]
- Alahbabi, M.N.; Cho, Y.T.; Newson, T.P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering. Opt. Lett. 2005, 30, 1276–1278. [Google Scholar] [CrossRef] [PubMed]
- Taki, M.; Signorini, A.; Oton, C.J.; Nannipieri, T.; Di Pasquale, F. Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding. Opt. Lett. 2013, 38, 4162–4165. [Google Scholar] [CrossRef]
- Taki, M.; Muanenda, Y.; Oton, C.J.; Nannipieri, T.; Signorini, A.; Di Pasquale, F. Cyclic pulse coding for fast BOTDA fiber sensors. Opt. Lett. 2013, 38, 2877–2880. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Dang, Y.; Tang, M.; Duan, L.; Wang, M.; Wu, H.; Fu, S.; Tong, W.; Shum, P.P.; Liu, D. Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber. Opt. Express 2016, 24, 25111–25118. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, X.; Wang, X.; Chen, H. Distributed fiber strain and vibration sensor based on Brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry. Opt. Lett. 2013, 38, 2437–2439. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, F.; Wang, X.; Pan, Y.; Sun, Z.; Hua, J.; Zhang, X. Distributed strain and vibration sensing system based on phase-sensitive OTDR. IEEE Photon. Technol. Lett. 2015, 27, 1884–1887. [Google Scholar] [CrossRef]
- Huang, L.; He, Z.; Fan, X. Simplified single-end Rayleigh and Brillouin hybrid distributed fiber-optic sensing system. Sci. China Inform. Sci. 2022, 66, 129404. [Google Scholar] [CrossRef]
- Parker, T.R.; Farhadiroushan, M.; Feced, R.; Handerek, V.A.; Rogers, A.J. Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers. IEEE J. Quantum Electron. 1998, 34, 645–659. [Google Scholar] [CrossRef]
- Kee, H.H.; Lees, G.P.; Newson, T.P. All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering. Opt. Lett. 2000, 25, 695–697. [Google Scholar] [CrossRef]
- Liu, X.; Bao, X. Brillouin spectrum in LEAF and simultaneous temperature and strain measurement. J. Lightwave Technol. 2012, 30, 1053–1059. [Google Scholar] [CrossRef]
- Li, A.; Wang, Y.; Fang, J.; Li, M.-J.; Kim, B.Y.; Shieh, W. Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination. Opt. Lett. 2015, 40, 1488–1491. [Google Scholar] [CrossRef]
- Zou, L.; Bao, X.; Afshar, S.; Chen, L. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber. Opt. Lett. 2004, 29, 1485–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, W.; He, Z.; Kishi, M.; Hotate, K. Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding. Opt. Lett. 2007, 32, 600–602. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.; Pedersen, B.K. A Technique for Improving the Accuracy of Wireline Depth Measurements. In Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA, 11–14 November 2007; pp. 1–12. [Google Scholar]
- Taki, M.; Muanenda, Y.S.; Toccafondo, I.; Signorini, A.; Nannipieri, T.; Pasquale, F.D. Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures. IEEE Sens. J. 2014, 14, 4297–4304. [Google Scholar] [CrossRef]
- Mizuno, T.; Kitoh, T.; Oguma, M.; Inoue, Y.; Shibata, T.; Takahashi, H. Mach–Zehnder interferometer with a uniform wavelength period. Opt. Lett. 2004, 29, 454–456. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Kitoh, T.; Oguma, M.; Inoue, Y.; Shibata, T.; Takahashi, H. Uniform wavelength spacing Mach-Zehnder interferometer using phase-generating couplers. J. Lightwave Technol. 2006, 24, 3217–3226. [Google Scholar] [CrossRef]
- Zheng, P.; Xu, X.; Hu, G.; Zhang, R.; Yun, B.; Cui, Y. Integrated multi-functional optical filter based on a self-coupled microring resonator assisted MZI structure. J. Lightwave Technol. 2021, 39, 1429–1437. [Google Scholar] [CrossRef]
- Liu, Q.; Fan, X.; He, Z. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range. Opt. Express 2015, 23, 25988–25995. [Google Scholar] [CrossRef]
- Kishida, K.; Guzik, A.; Nishiguchi, K.; Li, C.-H.; Azuma, D.; Liu, Q.; He, Z. Development of real-time time gated digital (TGD) OFDR method and its performance verification. Sensors 2021, 21, 4865. [Google Scholar] [CrossRef]
- Delepine-Lesoille, S.; Bertrand, J.; Lablonde, L.; Pheron, X. Distributed hydrogen sensing with Brillouin scattering in optical fibers. IEEE Photon. Technol. Lett. 2012, 24, 1475–1477. [Google Scholar] [CrossRef]
- Garcia-Ruiz, A.; Morana, A.; Costa, L.; Martins, H.F.; Martin-Lopez, S.; Gonzalez-Herraez, M.; Boukenter, A.; Ouerdane, Y.; Girard, S. Distributed detection of hydrogen and deuterium diffusion into a single-mode optical fiber with chirped-pulse phase-sensitive optical time-domain reflectometry. Opt. Lett. 2019, 44, 5286–5289. [Google Scholar] [CrossRef] [PubMed]
- Szostkiewicz, Ł.; Soto, M.A.; Yang, Z.; Dominguez-Lopez, A.; Parola, I.; Markiewicz, K.; Pytel, A.; Kołakowska, A.; Napierała, M.; Nasiłowski, T.; et al. High-resolution distributed shape sensing using phase-sensitive optical time-domain reflectometry and multicore fibers. Opt. Express 2019, 27, 20763–20773. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Wu, H.; Zhao, C.; Shen, L.; Zhang, R.; Tong, W.; Fu, S.; Tang, M. Distributed curvature sensing based on a bending loss-resistant ring-core fiber. Photonics Res. 2020, 8, 165–174. [Google Scholar] [CrossRef]
- Teng, L.; Dong, Y.K.; Zhou, D.; Jiang, T.; Zhou, D.W. Temperature-compensated distributed hydrostatic pressure Brillouin sensor using a thin-diameter and polarization-maintaining photonics crystal fiber. In Proceedings of the Asia-Pacific Optical Sensors Conference 2016, Shanghai, China, 11–14 October 2016; p. W4A.55. [Google Scholar]
- Hu, D.J.J.; Humbert, G.; Dong, H.; Zhang, H.; Hao, J.; Sun, Q. Review of specialty fiber based Brillouin optical time domain analysis technology. Photonics 2021, 8, 421. [Google Scholar] [CrossRef]
- Mikhailov, S.; Zhang, L.; Geernaert, T.; Berghmans, F.; Thévenaz, L. Distributed hydrostatic pressure measurement using phase-OTDR in a highly birefringent photonic crystal fiber. J. Lightwave Technol. 2019, 37, 4496–4500. [Google Scholar] [CrossRef]
- Minakawa, K.; Koike, K.; Hayashi, N.; Koike, Y.; Mizuno, Y.; Nakamura, K. Dependence of Brillouin frequency shift on water absorption ratio in polymer optical fibers. J. Appl. Phys. 2016, 119, 223102. [Google Scholar] [CrossRef]
- Schreier, A.; Wosniok, A.; Liehr, S.; Krebber, K. Humidity-induced Brillouin frequency shift in perfluorinated polymer optical fibers. Opt. Express 2018, 26, 22307–22314. [Google Scholar] [CrossRef]
- Stajanca, P.; Krebber, K. Radiation-induced attenuation of perfluorinated polymer optical fibers for radiation monitoring. Sensors 2017, 17, 1959. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, Y.; Theodosiou, A.; Kalli, K.; Liehr, S.; Lee, H.; Nakamura, K. Distributed polymer optical fiber sensors: A review and outlook. Photonics Res. 2021, 9, 1719–1733. [Google Scholar] [CrossRef]
- Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol. 2022, 119, 69–89. [Google Scholar] [CrossRef]
- Koczorowski, T.; Cerbin-Koczorowska, M.; Rębiś, T. Azaporphyrins embedded on carbon-based nanomaterials for potential use in electrochemical sensing—A review. Nanomaterials 2021, 11, 2861. [Google Scholar] [CrossRef] [PubMed]
- Sradha S, A.; George, L.; P, K.; Varghese, A. Recent advances in electrochemical and optical sensing of the organophosphate chlorpyrifos: A review. Crit. Rev. Toxicol. 2022, 52, 431–448. [Google Scholar] [PubMed]
- Bhatta, H.D.; Costa, L.; Garcia-Ruiz, A.; Fernandez-Ruiz, M.R.; Martins, H.F.; Tur, M.; Gonzalez-Herraez, M. Dynamic measurements of 1000 microstrains using chirped-pulse phase-sensitive optical time-domain reflectometry. J. Lightwave Technol. 2019, 37, 4888–4895. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Wang, P.; Bai, Q.; Gao, Y.; Zhang, H.; Jin, B. Pattern recognition for distributed optical fiber vibration sensing: A review. IEEE Sens. J. 2021, 21, 11983–11998. [Google Scholar] [CrossRef]
- Marie, T.F.B.; Han, D.; An, B. Pattern recognition algorithm and software design of an optical fiber vibration signal based on 8-optical time-domain reflectometry. Appl. Opt. 2019, 58, 8423–8432. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, H.; Li, L.; Liang, J.; Wang, X.; Lu, B.; Ye, Q.; Qu, R.; Cai, H. Practical multi-class event classification approach for distributed vibration sensing using deep dual path network. Opt. Express 2019, 27, 23682–23692. [Google Scholar]
- Kandamali, D.F.; Cao, X.; Tian, M.; Jin, Z.; Dong, H.; Yu, K. Machine learning methods for identification and classification of events in ϕ-OTDR systems: A review. Appl. Opt. 2022, 61, 2975–2997. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Li, Y. Long-distance pipeline safety early warning: A distributed optical fiber sensing semi-supervised learning method. IEEE Sens. J. 2021, 21, 19453–19461. [Google Scholar] [CrossRef]
Classification | Subsystems Combination | Methods 1 | Sensing Range | Spatial Resolution | Measurement Accuracy/Sensitivity 2 | Ref. |
---|---|---|---|---|---|---|
Temperature/strain and vibration | POTDR/BOTDR | Orthogonal polarization multiplexing | 4 km | 10 m | 0.2 MHz | [213] |
Φ-OTDR/BOTDR | Pulse modulation | 10 km | 80 cm for temperature/strain 3 m for vibration | <±1 MHz | [193] | |
Φ-OTDR/BOTDA | Wavelength division multiplexing and distributed amplification | 150.62 km | 9 m for temperature/strain 30 m for vibration | ±0.82 MHz | [194] | |
Φ-OTDR/BOTDR | Frequency division multiplexing | 49.9 km | 20 m | 0.381 MHz 1.235 nε/√Hz @100 Hz | [145] | |
Simultaneous temperature and strain | BOTDA/ROTDR | Wavelength division multiplexing and cyclic Simplex coding | 10 km | 1 m | 2.6 °C/62 με | [223] |
COTDR/BOTDR | Frequency division multiplexing and coherent fading reduction | 1 km/10 km optional | 2 m | 0.6 °C/20 με @1 km 3 °C/75 με @10 km | [198] | |
FS-OTDR/BOTDA | Wavelength division multiplexing and enhanced slope-assisted method | 500 m | 5 m | 16 m°C/140 nε 4.5 nε/√Hz @50 Hz | [172] | |
Temperature and vibration | Φ-OTDR/ROTDR | Space division multiplexing and wavelet transform denoising | 5.76 km | 8 m | 0.5 °C | [208] |
Φ-OTDR/ROTDR | Wavelength division multiplexing and cyclic Simplex coding | 5 km | 5 m | <0.5 °C | [205] | |
Φ-OTDR/ROTDR | Wavelength division multiplexing and heterodyne detection | 12 km | 10 m | 0.95 °C | [206] | |
Comprehensive temperature measurement | FS-Φ-OTDR/BOTDA | Space division multiplexing | 1.565 km | 2.5 m | 0.001 °C @Φ-OTDR 0.25 °C @BOTDA | [200] |
Comprehensive strain measurement | FS-Φ-OTDR/BOTDA | Frequency-agile pulses | 78 m | 2 m | 6.8 nε relative strain 5.4 με absolute strain | [199] |
FS-Φ-OTDR/BOTDA | Adaptive signal corrector | 65 m | 2 m | 5.5 nε | [201] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Wang, F.; Yang, C.; Zhang, Z.; Zhang, Y.; Zhang, X. Hybrid Distributed Optical Fiber Sensor for the Multi-Parameter Measurements. Sensors 2023, 23, 7116. https://doi.org/10.3390/s23167116
Zhou X, Wang F, Yang C, Zhang Z, Zhang Y, Zhang X. Hybrid Distributed Optical Fiber Sensor for the Multi-Parameter Measurements. Sensors. 2023; 23(16):7116. https://doi.org/10.3390/s23167116
Chicago/Turabian StyleZhou, Xiao, Feng Wang, Chengyu Yang, Zijing Zhang, Yixin Zhang, and Xuping Zhang. 2023. "Hybrid Distributed Optical Fiber Sensor for the Multi-Parameter Measurements" Sensors 23, no. 16: 7116. https://doi.org/10.3390/s23167116
APA StyleZhou, X., Wang, F., Yang, C., Zhang, Z., Zhang, Y., & Zhang, X. (2023). Hybrid Distributed Optical Fiber Sensor for the Multi-Parameter Measurements. Sensors, 23(16), 7116. https://doi.org/10.3390/s23167116