User Pairing for Delay-Limited NOMA-Based Satellite Networks with Deep Reinforcement Learning
<p>Normalized effective capacity versus delay exponent <math display="inline"><semantics><msub><mi>θ</mi><mi>j</mi></msub></semantics></math> for various SNR <math display="inline"><semantics><mi>γ</mi></semantics></math>, fading severity, and location information <math display="inline"><semantics><msub><mi>d</mi><mi>j</mi></msub></semantics></math>, when <math display="inline"><semantics><mrow><msubsup><mi>α</mi><mi>j</mi><mi>p</mi></msubsup><mo>=</mo><mn>1</mn></mrow></semantics></math>.</p> "> Figure 2
<p>DQN-based NOMA user pairing model.</p> "> Figure 3
<p>Effective capacity of User <span class="html-italic">c</span> achieved with TDMA and NOMA schemes versus <math display="inline"><semantics><msubsup><mi>α</mi><mi>c</mi><mi>p</mi></msubsup></semantics></math> under various system parameters.</p> "> Figure 4
<p>Effective capacity of User <span class="html-italic">t</span> for two access schemes versus <math display="inline"><semantics><msub><mi>θ</mi><mi>t</mi></msub></semantics></math> with various <math display="inline"><semantics><mi>γ</mi></semantics></math>, <math display="inline"><semantics><msub><mi>d</mi><mi>t</mi></msub></semantics></math>, and fading severities, when <math display="inline"><semantics><mrow><msub><mi>d</mi><mi>c</mi></msub><mo>∈</mo><mrow><mo>[</mo><mn>0.6</mn><mi>R</mi><mo>,</mo><mi>R</mi><mo>]</mo></mrow></mrow></semantics></math> and <math display="inline"><semantics><mrow><msubsup><mi>α</mi><mi>t</mi><mi>p</mi></msubsup><mo>=</mo><mn>1</mn><mo>−</mo><msubsup><mi>α</mi><mi>c</mi><mi>p</mi></msubsup></mrow></semantics></math>.</p> "> Figure 5
<p>Convergences of the proposed DQN user selection algorithm with different learning rates.</p> "> Figure 6
<p>Effective capacity of selected user achieved with two access schemes under the proposed strategy and random selection strategy.</p> ">
Abstract
:1. Introduction
- The concept of effective capacity is employed to measure the rate achieved with a given delay QoS constraint, based on which, a power allocation coefficient is firstly obtained by ensuring the achieved capacity of users with sensitive delay QoS requirements is not less than that achieved with an OMA scheme, and then, the user pairing problem is formulated with the aim of maximizing the sum effective capacity of the considered system;
- Because various delay QoS requirements have varying negative impacts on users’ capacity, user pairing in a NOMA-based network with various delay QoS constraints is different from that in traditional NOMA-based delay-insensitive system. In this condition, to maximize system capacity with the obtained power allocation factor, when the delay-critical user is fixed, a DRL approach is introduced to select one user who has relatively insensitive delay requirement and good link condition, compared to the other users, to optimize NOMA user pairing with low complexity;
- The proposed DRL-based NOMA user pairing strategy is compared to an OMA scheme and NOMA with a random user-selecting scheme, which reveal the superiority of introducing the NOMA scheme and DRL algorithm in the satellite networks from the perspective of performance enhancement. Specifically, the advantage of the proposed approach is achieved by selecting the most suitable delay tolerant user to pair with the delay-sensitive user and form a NOMA user group in each time slot.
2. System Model
3. Effective Capacity and Power Allocation
3.1. Effective Capacity
3.2. Power Allocation Strategy
3.3. Problem Formulation
4. DRL for Delay-Constrained User Pairing
- State S: At time slot l, a tuple denoted by , is used to describe the system state, where are transmission power, antenna gains, location information, fading severity, and delay QoS exponent of User j, as analyzed in Section 2 and Section 3, respectively. Since varies in different time slots, the agent is required to adjust its action in each slot accordingly;
- Action A: NOMA user pairing is important for NOMA-aided satellite networks with delay QoS constraints because it directly impacts the resource utilization efficiency. Thus, user selection should be designed based on current state; here, we set the action space as , and then means the user is selected to be the User t;
- Reward design: Equation (11) must be satisfied to ensure that User c’s performance achieved with the NOMA scheme is not less than that achieved with the TDMA scheme. Based on this, our objective is to select a user to be User t who, with the remaining power resource, can achieve the largest effective capacity. Thus, if User j is selected at time slot l, the reward is assigned as
Algorithm 1: DQN Algorithm-based NOMA User Pairing in Satellite Networks. |
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.-X.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the road to 6G: Visions, requirements, key technologies and testbeds. IEEE Commun. Surv. Tutor. 2023, in press. [CrossRef]
- Kodheli, O.; Lagunas, E.; Maturo, N.; Sharma, S.K.; Shankar, B.; Montoya, J.F.M.; Duncan, J.C.M.; Spano, D.; Chatzinotas, S.; Kisseleff, S.; et al. Satellite communications in the new space era: A survey and future challenges. IEEE Commun. Surv. Tut. 2021, 23, 70–109. [Google Scholar] [CrossRef]
- Tang, J.; Bian, D.; Li, G.; Hu, J.; Cheng, J. Resource allocation for LEO beam-hopping satellites in a spectrum sharing scenario. IEEE Access 2021, 9, 56468–56478. [Google Scholar] [CrossRef]
- Guo, K.; Dong, C.; An, K. NOMA-based cognitive satellite terrestrial relay network: Secrecy performance under channel estimation errors and hardware impairments. IEEE Internet Things J. 2022, 9, 17334–17347. [Google Scholar] [CrossRef]
- Yan, X.; Xiao, H.; An, K.; Zheng, G.; Chatzinotas, S. Ergodic capacity of NOMA-based uplink satellite networks with randomly deployed users. IEEE Syst. J. 2020, 14, 3343–3350. [Google Scholar] [CrossRef]
- Jiao, J.; Sun, Y.; Wu, S.; Wang, Y.; Zhang, Q. Network utility maximization resource allocation for NOMA in satellite-based internet of things. IEEE Internet Things J. 2020, 7, 3230–3242. [Google Scholar] [CrossRef]
- Toka, M.; Vaezi, M.; Shin, W. Outage analysis of alamouti-NOMA scheme for hybrid satellite–terrestrial relay networks. IEEE Internet Things J. 2023, 10, 5293–5303. [Google Scholar] [CrossRef]
- Jiao, J.; Hong, H.; Wang, Y.; Wu, S.; Lu, R.; Zhang, Q. Age-optimal downlink NOMA resource allocation for satellite-based IoT network. IEEE Trans. Veh. Technol. 2023, in press. [CrossRef]
- Liu, R.; Guo, K.; An, K.; Zhou, F.; Wu, Y.; Huang, Y.; Zheng, G. Resource allocation for NOMA-enabled cognitive satellite-UAV-terrestrial networks with imperfect CSI. IEEE Trans. Cogn. Commun. Netw. 2023, in press. [CrossRef]
- Wu, D.; Negi, R. Effective capacity: A wireless link model for support of quality of service. IEEE Trans. Wireless Commun. 2003, 2, 630–643. [Google Scholar]
- Ji, Z.; Cao, S.; Wu, S.; Wang, W. Delay-aware satellite-terrestrial backhauling for heterogeneous small cell networks. IEEE Access 2020, 8, 112190–112202. [Google Scholar] [CrossRef]
- Ruan, Y.; Li, Y.; Wang, C.-X.; Zhang, R.; Zhang, H. Effective capacity analysis for underlay cognitive satellite-terrestrial networks. In Proceedings of the 2017 IEEE International Conference on Communications, Paris, France, 21–25 May 2017. [Google Scholar]
- Ruan, Y.; Li, Y.; Wang, C.-X.; Zhang, R.; Zhang, H. Energy efficient power allocation for delay constrained cognitive satellite terrestrial networks under interference constraints. IEEE Trans. Wireless Commun. 2019, 18, 4957–4969. [Google Scholar] [CrossRef]
- Yan, X.; An, K.; Li, D.; Xi, H.; Wang, Y.; Li, X.; Chen, H. Delay-limited performance analysis of NOMA-enabled satellite internet of things. In Proceedings of the 2021 IEEE/CIC International Conference on Communications in China, Xiamen, China, 28–30 July 2021. [Google Scholar]
- Yan, X.; An, K.; Wang, C.-X.; Zhu, W.-P.; Li, Y.; Feng, Z. Genetic algorithm optimized support vector machine in NOMA-based satellite networks with imperfect CSI. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 4–8 May 2020. [Google Scholar]
- Lei, L.; Lagunas, E.; Yuan, Y.; Kibria, M.G.; Chatzinotas, S.; Ottersten, B. Deep learning for beam hopping in multibeam satellite systems. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020. [Google Scholar]
- Lei, L.; Lagunas, E.; Yuan, Y.; Kibria, M.G.; Chatzinotas, S.; Ottersten, B. Beam illumination pattern design in satellite networks: Learning and optimization for efficient beam hopping. IEEE Access 2020, 8, 136655–136667. [Google Scholar] [CrossRef]
- Homssi, B.A.; Chan, C.C.; Wang, K.; Rowe, W.; Allen, B.; Moores, B.; Csurgai-Horváth, L.; Fontxaxn, F.P.; Keepan, S.; Al-Hourani, A. Deep learning forecasting and statistical modeling for Q/V-band LEO satellite channels. IEEE Trans. Mach. Learn. Commun. Netw. 2023, in press. [CrossRef]
- Zhao, B.; Dong, X.; Ren, G.; Liu, J. Optimal user pairing and power allocation in 5G satellite random access networks. IEEE Trans. Wireless Commun. 2022, 21, 4085–4097. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Wang, Y. A successive deep Q-learning based distributed handover scheme for large-scale LEO satellite networks. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring), Helsinki, Finland, 19–22 June 2022. [Google Scholar]
- Tubiana, D.A.; Farhat, J.; Brante, G.; Souza, R.D. Q-learning NOMA random access for IoT-satellite terrestrial relay networks. IEEE Trans. Wireless Lett. 2022, 11, 1619–1623. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Chen, W.; Ku, M.-L. Trajectory design and link selection in UAV-assisted hybrid satellite-terrestrial network. IEEE Wireless Commun. Lett. 2022, 26, 1643–1647. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, L.; Cai, K.; Zhu, Y.; Han, Z. RIS-aided ground aerial NOMA communications: A distributionally robust DRL approach. IEEE J. Sel. Areas Commun. 2022, 40, 1287–1301. [Google Scholar] [CrossRef]
- Deng, B.; Jiang, C.; Yao, H.; Guo, S.; Zhao, S. The next generation heterogeneous satellite communication networks: Integration of resource management and deep reinforcement learning. IEEE Wirel. Commun. 2020, 27, 105–111. [Google Scholar] [CrossRef]
- Shao, S.; Hailes, P.; Wang, T.-Y.; Wu, J.-Y.; Maunder, R.G.; Al-Hashimi, B.M.; Hanzo, L. Survey of turbo, LDPC, and polar decoder ASIC implementations. IEEE Commun. Surveys Tuts. 2019, 21, 2309–2333. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.-P.; Al-Dhahir, N. Secrecy-energy efficient hybrid beamforming for satellite-terrestrial integrated networks. IEEE Trans. Commun. 2021, 69, 6345–6360. [Google Scholar] [CrossRef]
- Lin, Z.; An, K.; Niu, H.; Hu, Y.; Chatzinotas, S.; Zheng, G.; Wang, J. SLNR-based secure energy efficient beamforming in multibeam satellite systems. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 2085–2088. [Google Scholar] [CrossRef]
- An, K.; Chatzinotas, S.; Hu, Y.; Lin, Z.; Niu, H.; Wang, Y.; Zheng, G. Refracting RIS aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar]
- Tegos, S.A.; Diamantoulakis, P.D.; Xia, J.; Fan, L.; Karagiannidis, G.K. Outage performance of uplink NOMA in land mobile satellite communications. IEEE IEEE Trans. Wireless Lett. 2020, 7, 1710–1714. [Google Scholar] [CrossRef]
- Chu, J.; Chen, X.; Zhong, C.; Zhang, Z. Robust design for NOMA-based multibeam LEO satellite internet of things. IEEE Internet Things J. 2021, 8, 1959–1970. [Google Scholar] [CrossRef]
- Abdi, A.; Lau, W.; Alouini, M.-S.; Kaveh, M. A new simple model for land mobile satellite channels: First and second order statistics. IEEE Trans. Wireless. Commun. 2003, 2, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Academic Press: New York, NY, USA, 2007. [Google Scholar]
- Zhong, R.; Liu, Y.; Mu, X.; Chen, Y.; Song, L. AI empowered RIS-assisted NOMA networks: Deep learning or reinforcement learning? IEEE J. Sel. Areas Commun. 2021, 40, 182–196. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; An, K.; Yan, X.; Xi, H.; Wang, Y. User Pairing for Delay-Limited NOMA-Based Satellite Networks with Deep Reinforcement Learning. Sensors 2023, 23, 7062. https://doi.org/10.3390/s23167062
Zhang Q, An K, Yan X, Xi H, Wang Y. User Pairing for Delay-Limited NOMA-Based Satellite Networks with Deep Reinforcement Learning. Sensors. 2023; 23(16):7062. https://doi.org/10.3390/s23167062
Chicago/Turabian StyleZhang, Qianfeng, Kang An, Xiaojuan Yan, Hongxia Xi, and Yuli Wang. 2023. "User Pairing for Delay-Limited NOMA-Based Satellite Networks with Deep Reinforcement Learning" Sensors 23, no. 16: 7062. https://doi.org/10.3390/s23167062
APA StyleZhang, Q., An, K., Yan, X., Xi, H., & Wang, Y. (2023). User Pairing for Delay-Limited NOMA-Based Satellite Networks with Deep Reinforcement Learning. Sensors, 23(16), 7062. https://doi.org/10.3390/s23167062