Wideband SiGe-HBT Low-Noise Amplifier with Resistive Feedback and Shunt Peaking
<p>Conventional structures of wideband LNAs: (<b>a</b>) common-base stage with a feedforward amplifier; (<b>b</b>) common-emitter stage with a filter network; (<b>c</b>) common-emitter stage with a negative feedback loop.</p> "> Figure 2
<p>Schematic of the proposed wideband SiGe-HBT LNA.</p> "> Figure 3
<p>(<b>a</b>) Simplified small-signal equivalent circuit of the proposed LNA; (<b>b</b>) small-signal equivalent circuit with a broken loop for open-loop analysis.</p> "> Figure 4
<p>Simplified small-signal noise-equivalent circuit used for analysis.</p> "> Figure 5
<p>(<b>a</b>) Chip micrograph of the proposed wideband SiGe-HBT LNA. The core area of the LNA consumes 0.17 mm<sup>2</sup>. (<b>b</b>) On-wafer measurement setup.</p> "> Figure 6
<p>Simulated and measured (<b>a</b>) scattering parameters (s-parameters); (<b>b</b>) S<sub>11</sub>, S<sub>22</sub>, and S<sub>12</sub> (reverse isolation) versus frequency.</p> "> Figure 7
<p>Simulated and measured noise figure (NF) versus frequency. The measurement was conducted up to 26.5 GHz.</p> "> Figure 8
<p>Measured input 1-dB compression point (IP1dB) of the proposed LNA.</p> ">
Abstract
:1. Introduction
2. Review of Wideband LNA Core Topology
3. Design of the Proposed SiGe-HBT LNA
Performance Analysis of the Proposed Wideband LNA
4. Simulation and Measurement Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Larson, L.E. Integrated circuit technology options for RFICs-present status and future directions. IEEE J. Solid-State Circuits 1998, 33, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Jamil, S.; Usman, M.; Atiq, H.; Ramzan, R. 28–32 GHz Wideband LNA for 5G Applications. In Proceedings of the 2021 1st International Conference on Microwave, Antennas & Circuits (ICMAC), Islamabad, Pakistan, 21–22 December 2021; pp. 1–4. [Google Scholar]
- Inanlou, F.; Coen, C.T.; Cressler, J.D. A 1.0 V, 10–22 GHz, 4 mW LNA Utilizing Weakly Saturated SiGe HBTs for Single-Chip, Low-Power, Remote Sensing Applications. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 890–892. [Google Scholar] [CrossRef]
- Qin, P.; Xue, Q. Compact Wideband LNA With Gain and Input Matching Bandwidth Extensions by Transformer. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 657–659. [Google Scholar] [CrossRef]
- Yuan, J.; Cressler, J.D. Enhancing the Speed of SiGe HBTs Using fT-Doubler Techniques. In Proceedings of the 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Orlando, FL, USA, 23–25 January 2008; pp. 50–53. [Google Scholar]
- Kanar, T.; Rebeiz, G.M. X- and K-Band SiGe HBT LNAs With 1.2- and 2.2-dB Mean Noise Figures. IEEE Trans. Microw. Theory Tech. 2014, 62, 2381–2389. [Google Scholar] [CrossRef]
- Howard, D.C.; Li, X.; Cressler, J.D. A low power 1.8–2.6 dB noise figure, SiGe HBT wideband LNA for multiband wireless applications. In Proceedings of the 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Capri, Italy, 12–14 October 2009; pp. 55–58. [Google Scholar]
- Arshad, S.; Zafar, F.; Ramzan, R.; Wahab, Q. Wideband and multiband CMOS LNAs: State-of-the-art and future prospects. Microelectron. J. 2023, 44, 774–786. [Google Scholar] [CrossRef]
- Li, Z.; Liu, B.; Duan, Y.; Wang, Z.; Li, Z.; Zhuang, Y. Flat-High-Gain Design and Noise Optimization in SiGe Low-Noise Amplifier for S–K Band Applications. Circuits Syst. Signal Process. 2021, 40, 2720–2740. [Google Scholar] [CrossRef]
- Kim, J.; Hoyos, S.; Silva-Martinez, J. Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback with Simultaneous Noise, Gain, and Bandwidth Optimization. IEEE Trans. Microw. Theory Tech. 2010, 58, 2340–2351. [Google Scholar] [CrossRef]
- Galante-Sempere, D.; Khemchandani, S.L.; Pino, J. A 2-V 1.4-dB NF GaAs MMIC LNA for K-Band Applications. Sensors 2023, 23, 867. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Schmalz, K.; Borngräber, J.; Scheytt, J.C. A 245 GHz CB LNA in SiGe. In Proceedings of the 2011 6th European Microwave Integrated Circuit Conference, Manchester, UK, 10–11 October 2011; pp. 224–227. [Google Scholar]
- Shekhar, S.; Li, X.; Allstot, D.J. A CMOS 3.1–10.6 GHz UWB LNA employing stagger-compensated series peaking. In Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, San Francisco, CA, USA, 10–13 June 2006; p. 4. [Google Scholar]
- Barras, D.; Ellinger, F.; Jackel, H.; Hirt, W. A low supply voltage SiGe LNA for ultra-wideband frontends. IEEE Microw. Wirel. Compon. Lett. 2004, 14, 469–471. [Google Scholar] [CrossRef]
- Lin, Y.S.; Wang, C.C.; Lee, G.L.; Chen, C.C. High-Performance Wideband Low-Noise Amplifier Using Enhanced π-Match Input Network. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 200–202. [Google Scholar] [CrossRef]
- Razavi, B. Cognitive Radio Design Challenges and Techniques. IEEE J. Solid-State Circuits 2010, 45, 1542–1553. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, S.; Zhang, C.; Zhuang, Y. A 2–20 GHz SiGe HBT single-stage cascode LNA with linearity enhancement. Microelectron. J. 2019, 86, 130–139. [Google Scholar] [CrossRef]
- Aditi, M.B. A high linearity and low noise shunt resistive feedback UWB LNA. In Proceedings of the 2017 Conference on Information and Communication Technology (CICT), Gwalior, India, 3–5 November 2017; pp. 1–5. [Google Scholar]
- Wu, J.; Liu, Z. A 40 nm CMOS Ultra-Wideband Low Noise Amplifier Design. In Proceedings of the 2019 International Conference on Wireless Communication, Guilin, China, 21–22 April 2019; pp. 36–40. [Google Scholar]
- Joo, S.; Choi, T.Y.; Jung, B. A 2.4-GHz Resistive Feedback LNA in 0.13 um CMOS. IEEE J. Solid-State Circuits 2009, 44, 3019–3029. [Google Scholar] [CrossRef]
- Gray, P.R.; Hurst, P.J.; Lewis, S.H.; Meyer, R.G. Analysis and Design of Analog Integrated Circuits, 4th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2001; pp. 563–569. [Google Scholar]
- Jang, J.; Kim, H.; Lee, G.; Kim, T.W. Two-Stage Compact Wideband Flat Gain Low-Noise Amplifier Using High-Frequency Feedforward Active Inductor. IEEE Trans. Microw. Theory Tech. 2019, 67, 4803–4811. [Google Scholar] [CrossRef]
- He, Q.; Feng, M. Low-power, high-gain, and high-linearity SiGe BiCMOS wide-band low-noise amplifier. IEEE J. Solid-State Circuits 2004, 39, 956–959. [Google Scholar]
- Lin, Y.S.; Chen, C.Z.; Yang, H.Y.; Chen, C.C.; Lee, J.H.; Huang, G.W.; Lu, S.S. Analysis and Design of a CMOS UWB LNA With Dual-RLC-Branch Wideband Input Matching Network. IEEE Trans. Microw. Theory Tech. 2010, 58, 287–296. [Google Scholar]
- Chen, C.C.; Lee, J.H.; Lin, Y.S.; Chen, C.Z.; Huang, G.W.; Lu, S.S. Low Noise-Figure P+ AA Mesh Inductors for CMOS UWB RFIC Applications. IEEE Trans. Electron Devices 2008, 55, 3542–3548. [Google Scholar] [CrossRef]
- Chen, H.K.; Lin, Y.S.; Lu, S.S. Analysis and Design of a 1.6–28-GHz Compact Wideband LNA in 90-nm CMOS Using a -Match Input Network. IEEE Trans. Microw. Theory Tech. 2010, 58, 2092–2104. [Google Scholar] [CrossRef]
- Liu, Z.; Boon, C.C.; Yu, X.; Li, C.; Yang, K.; Liang, Y. A 0.061-mm2 1–11-GHz Noise-Canceling Low-Noise Amplifier Employing Active Feedforward with Simultaneous Current and Noise Reduction. IEEE Trans. Microw. Theory Tech. 2021, 69, 3093–3106. [Google Scholar] [CrossRef]
- Davulcu, M.; Çalışkan, C.; Kalyoncu, İ.; Gurbuz, Y. An X-Band SiGe BiCMOS Triple-Cascode LNA With Boosted Gain and P1dB. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 994–998. [Google Scholar] [CrossRef]
Component | Size/Value | Component | Size/Value |
---|---|---|---|
LC | 900 pH | Cout | 2.2 pF |
LB | 150 pH | RSP | 69 Ω |
LE | 20 pH | RF | 240 Ω |
CF | 360 fF | Q1 | 3 × (0.12 × 8) μm2 |
Cin | 2 × 3.1 pF | Q2 | 3 × (0.12 × 8) μm2 |
Spec. | This Work | [17] | [23] | [24] | [25] | [26] | [27] | [28] |
---|---|---|---|---|---|---|---|---|
Technology (nm) | SiGe 130 | SiGe 180 | SiGe | CMOS 180 | CMOS 180 | CMOS 90 | CMOS 40 | SiGe 130 |
Vcc (V) | 3.3 | 3.3 | 3.6 | 1.8 | N/A | 1.2 | 1.2 | 4.8 |
S21 (dB) | 9.7–12.4 | 16.1–18.1 | 16–18 | 11.6–12.6 | 10.6–11.8 | 8.5–10.7 | 14–17 | 17.5–20.5 |
S11 (dB) | <−10 | <−10 | <−9 | <−8.6 | <−9.84 | <−10 | <−10 | <−10 |
BW (GHz) | 2–29.2 | 2–20 | 0.1–23 | 1.5–11.7 | 2–12 | 1.6–28 | 1–11 | 7.5–11.8 |
FBW (%) | 174.4 | 163.6 | 198.3 | 154.5 | 142.9 | 178.4 | 166.7 | 47.8 |
* NF (dB) | 3.6 | 3.7 | 5 | 4.24 | 3.36 | 3.66 | 4.2 | 1.65 (aver) |
Pdc (mW) | 23.1 | 55 | 54 | 10.34 | 22.7 | 21.6 | 9 | 100 |
IP1dB (dBm) | −5.42 | −11.7 | −8 * | −22 | −8.4 | −9 | −12 | −0.75 |
+ Area (mm2) | 0.462 | 0.435 | 0.184 * | 0.536 | 0.447 | 0.139 | 0.061 | 0.72 |
FoMI | 1132 | 442 | 353 | 753 | 444 | 991 | 1159 | 190 |
FoMII | 481 | 150 | 261 | 7 | 209 | 182 | 110 | 1781 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, I.; Ryu, G.; Jung, S.H.; Cressler, J.D.; Cho, M.-K. Wideband SiGe-HBT Low-Noise Amplifier with Resistive Feedback and Shunt Peaking. Sensors 2023, 23, 6745. https://doi.org/10.3390/s23156745
Song I, Ryu G, Jung SH, Cressler JD, Cho M-K. Wideband SiGe-HBT Low-Noise Amplifier with Resistive Feedback and Shunt Peaking. Sensors. 2023; 23(15):6745. https://doi.org/10.3390/s23156745
Chicago/Turabian StyleSong, Ickhyun, Gyungtae Ryu, Seung Hwan Jung, John D. Cressler, and Moon-Kyu Cho. 2023. "Wideband SiGe-HBT Low-Noise Amplifier with Resistive Feedback and Shunt Peaking" Sensors 23, no. 15: 6745. https://doi.org/10.3390/s23156745
APA StyleSong, I., Ryu, G., Jung, S. H., Cressler, J. D., & Cho, M.-K. (2023). Wideband SiGe-HBT Low-Noise Amplifier with Resistive Feedback and Shunt Peaking. Sensors, 23(15), 6745. https://doi.org/10.3390/s23156745