Artificial Intelligence Distinguishes Pathological Gait: The Analysis of Markerless Motion Capture Gait Data Acquired by an iOS Application (TDPT-GT)
<p>The markerless motion capture was recorded while the participants walked in a circle about 1 m in diameter and about 3 m away from the gait trail so that their whole body fit within the frame.</p> "> Figure 2
<p>The receiver operating characteristic (ROC) curves and the area under the curve (AUC) obtained by the five machine learning models.</p> "> Figure 3
<p>Applying model 1, the test was performed to distinguish each individual’s gait, whether pathological or not, resulting in an AUC of 0.719. The cut-off value (specificity and sensitivity) is shown near the curve.</p> "> Figure 4
<p>High feature importance scores in the discrimination of pathological gait.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Gait Data
2.3. Deep Learning for the Distinction of Gait
2.4. Test
2.5. Hardware, Software, and Statistics
2.6. Ethical Considerations
3. Results
3.1. Clinical Characteristics
3.2. Results of the Five Learning Models
3.2.1. Discrimination of Pathological Gait
3.2.2. Feature Importance
4. Discussion
4.1. Usage of the Present AI Model
4.2. Gait Analysis by TDPT-GT
Discoveries Made by AI
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AUC | Area under the curve |
PD | Parkinson’s disease |
ROC | Receiver opening characteristics |
TDPT-GT | Three-Dimensional Pose Tracker for Gait Test |
References
- Al-Amri, M.; Nicholas, K.; Button, K.; Sparkes, V.; Sheeran, L.; Davies, J. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity. Sensors 2019, 18, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorton, G.E., 3rd; Hebert Da Fau-Gannotti, M.E.; Gannotti, M.E. Assessment of the kinematic variability among 12 motion analysis laboratories. Gait Posture 2009, 29, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Palermo, M.; Lopes, J.M.; André, J.; Matias, A.C.; Cerqueira, J.; Santos, C.P. A multi-camera and multimodal dataset for posture and gait analysis. Sci. Data 2022, 9, 603. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R.J. Age-dependent cognitive impairment, hydrocephalus and leukocyte infiltration in transgenic mice with endothelial expression of human EPHX2. NPJ Aging 2022, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Eltoukhy, M.; Oh, J.; Kuenze, C.; Signorile, J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture 2023, 51, 77–83. [Google Scholar] [CrossRef]
- Long, J.T.; Eastwood Dc Fau-Graf, A.R.; Graf Ar Fau-Smith, P.A.; Smith Pa Fau-Harris, G.F.; Harris, G.F. Repeatability and sources of variability in multi-center assessment of segmental foot kinematics in normal adults. Gait Posture 2010, 31, 32–36. [Google Scholar] [CrossRef]
- Slemenšek, J.; Fister, I.; Geršak, J.; Bratina, B.; van Midden, V.M.; Pirtošek, Z.; Šafaricˇ, R. Human Gait Activity Recognition Machine Learning Methods. Sensors 2023, 23, 745. [Google Scholar] [CrossRef]
- Tsuchida, W.; Kobayashi, Y.; Inoue, K.; Horie, M.; Yoshihara, K.; Ooie, T. Kinematic characteristics during gait in frail older women identified by principal component analysis. Sci. Rep. 2022, 12, 1676. [Google Scholar] [CrossRef]
- Clark, R.A.; Pua, Y.H.; Bryant, A.L.; Hunt, M.A. Validity of the Microsoft Kinect for providing lateral trunk lean feedback during gait retraining. Gait Posture 2013, 38, 1064–1066. [Google Scholar] [CrossRef]
- Galna, B.; Barry, G.; Jackson, D.; Mhiripiri, D.; Olivier, P.; Rochester, L.; Rochester, L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 2014, 39, 1062–1068. [Google Scholar] [CrossRef] [Green Version]
- Nishiguchi, S.; Yorozu, A.; Adachi, D.; Takahashi, M.; Aoyama, T. Association between mild cognitive impairment and trajectory-based spatial parameters during timed up and go test using a laser range sensor. J. Neuroeng. Rehabil. 2017, 14, 78. [Google Scholar] [CrossRef] [Green Version]
- Jensen, R.R.; Paulsen, R.R.; Larsen, R. Analyzing gait using a time-of-flight camera. In Image Analysis: 16th Scandinavian Conference, SCIA 2009, Oslo, Norway, 15–18 June 2009. Proceedings 16; Springer: Berlin/Heidelberg, Germany, 2009; pp. 21–30. [Google Scholar]
- Saho, K.; Fujimoto, M.; Kobayashi, Y.; Matsumoto, M. Experimental Verification of Micro-Doppler Radar Measurements of Fall-Risk-Related Gait Differences for Community-Dwelling Elderly Adults. Sensors 2022, 22, 930. [Google Scholar] [CrossRef]
- Mündermann, L.; Corazza, S.; Andriacchi, T.P. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J. Neuroeng. Rehabil. 2006, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Wade, L.; Needham, L.; McGuigan, P.; Bilzon, J. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. Peer. J. 2022, 10, e12995. [Google Scholar] [CrossRef]
- Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [Green Version]
- Kawai, H.; Obuchi, S.; Hirayama, R.; Watanabe, Y.; Hirano, H.; Fujiwara, Y.; Ihara, K.; Kim, H.; Kobayashi, Y.; Mochimaru, M.; et al. Intra-day variation in daily outdoor walking speed among community-dwelling older adults. BMC Geriatr. 2021, 21, 417. [Google Scholar] [CrossRef]
- Yamada, S.; Aoyagi, Y.; Yamamoto, K.; Ishikawa, M. Quantitative Evaluation of Gait Disturbance on an Instrumented Timed Up-and-go Test. Aging Dis. 2019, 10, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Aoyagi, Y.; Yamada, S.; Ueda, S.; Iseki, C.; Kondo, T.; Mori, K.; Kobayashi, Y.; Fukami, T.; Hoshimaru, M.; Ishikawa, M.; et al. 360 Development of Smartphone Application for Markerless Three-Dimensional Motion Capture Based on Deep Learning Model. Sensors 2022, 22, 5282. [Google Scholar] [CrossRef]
- Yamada, S.; Aoyagi, Y.; Iseki, C.; Kondo, T.; Kobayashi, Y.; Ueda, S.; Mori, K.; Fukami, T.; Tanikawa, M.; Mase, M.; et al. Quantitative Gait Feature Assessment on Two-Dimensional Body Axis Projection Planes Converted from Three-Dimensional Coordinates Estimated with a Deep Learning Smartphone App. Sensors 2023, 23, 617. [Google Scholar] [CrossRef]
- di Biase, L.; Di Santo, A.; Caminiti, M.L.; De Liso, A.; Shah, S.A.; Ricci, L.; Di Lazzaro, V. Gait Analysis in Parkinson’s Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring. Sensors 2020, 20, 3529. [Google Scholar] [CrossRef]
- MacWilliams, B.A.; Carroll, K.L.; Stotts, A.K.; Kerr, L.M.; Schwartz, M.H. Discrimination between hereditary spastic paraplegia and cerebral palsy based on gait analysis data: A machine learning approach. Gait Posture 2020, 98, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Zhan, A.; Mohan, S.; Tarolli, C.; Schneider, R.B.; Adams, J.L.; Sharma, S.; Elson, M.J.; Spear, K.L.; Glidden, A.M.; Little, M.A.; et al. Using Smartphones and Machine Learning to Quantify Parkinson Disease Severity: The Mobile Parkinson Disease Score. JAMA Neurol. 2018, 75, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Casiez, G.; Roussel, N.; Vogel, D. 1 € Filter: A Simple Speed-Based Low-Pass Filter for Noisy Input in Interactive Systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TA, USA, 5–10 May 2012; pp. 2527–2530. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3149–3157. [Google Scholar]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. arXiv 2019, arXiv:1907.10902. [Google Scholar]
- Jason, A.C.; Verghese, J. Chapter 22—Gait and dementia. In Geriatric Neurology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 167, pp. 419–427. [Google Scholar]
- Verghese, J.; Wang, C.; Allali, G.; Holtzer, R.; Ayers, E. Modifiable Risk Factors for New-Onset Slow Gait in Older Adults. J. Am. Med. Dir. Assoc. 2016, 17, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Allali, G.; Ayers, E.I.; Verghese, J. Multiple modes of assessment of gait are better than one to predict incident falls. Arch. Gerontol. Geriatr. 2015, 60, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Killane, I.; Donoghue, O.A.; Savva, G.M.; Cronin, H.; Kenny, R.A.; Reilly, R.B. Relative association of processing speed, short-term memory and sustained attention with task on gait speed: A study of community-dwelling people 50 years and older. BMC Geriatr. 2018, 18, 1471–2318. [Google Scholar] [CrossRef] [Green Version]
- Martin, K.L.; Blizzard, L.; Fau-Wood, A.G.; Wood, A.g.; Fau-Srikanth, V.; Srikanth, V.; Fau-Thomson, R.; Thomson, R.; Fau-Sanders, L.M.; Sanders, L.m.; et al. Cognitive function, gait, and gait variability in older people: A population-based study. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 726–732. [Google Scholar] [CrossRef]
- Beauchet, O.; Allali, G.; Thiery, S.; Gautier, J.; Fantino, B.; Annweiler, C. Association between high variability of gait speed and mild cognitive impairment: A cross-sectional pilot study. J. Am. Geriatr. Soc. 2011, 59, 1973–1974. [Google Scholar] [CrossRef]
- Beauchet, O.; Annweiler, C.; Callisaya, M.L.; De Cock, A.-M.; Helbostad, J.L.; Kressig, R.W.; Srikanth, V.; Steinmetz, J.-P.; Blumen, H.M.; Verghese, J.; et al. Poor Gait Performance and Prediction of Dementia: Results From a Meta-Analysis. J. Am. Med. Dir. Assoc. 2016, 17, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Tien, I.; Glaser, S.D.; Aminoff, M.J. Characterization of gait abnormalities in Parkinson’s disease using a wireless inertial sensor system. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010. [Google Scholar] [CrossRef]
- Arora, S.; Venkataraman, V.; Donohue, S.; Biglan, K.M.; Dorsey, E.R.; Little, M.A. High accuracy discrimination of Parkinson’s disease participants from healthy controls using smartphones. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014. [Google Scholar] [CrossRef] [Green Version]
- Barth, J.; Klucken, J.; Kugler, P.; Kammerer, T.; Steidl, R.; Winkler, J.; Hornegger, J.; Eskofier, B. Biometric and mobile gait analysis for early diagnosis and therapy monitoring in Parkinson’s disease. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011. [Google Scholar] [CrossRef]
- Yoneyama, M.; Kurihara, Y.; Watanabe, K.; Mitoma, H. Accelerometry-Based Gait Analysis and Its Application to Parkinson’s Disease Assessment—Part 2: A New Measure for Quantifying Walking Behavior. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 999–1005. [Google Scholar] [CrossRef]
- Djurić-Jovičić, M.; Belić, M.A.-O.; Stanković, I.; Radovanović, S.; Kostić, V.S. Selection of gait parameters for differential diagnostics of patients with de novo Parkinson’s disease. J. Mov. Disord. 2017, 10, 1–17. [Google Scholar] [CrossRef]
- Ishikawa, M.; Yamada, S.; Yamamoto, K. Agreement study on gait assessment using a video-assisted rating method in patients with idiopathic normal-pressure hydrocephalus. PLoS ONE 2019, 14, e0224202. [Google Scholar] [CrossRef] [Green Version]
- Musolf, A.M.; Holzinger, E.R.; Malley, J.D.; Bailey-Wilson, J.E. What makes a good prediction? Feature importance and beginning to open the black box of machine learning in genetics. Hum. Genet. 2022, 141, 1515–1528. [Google Scholar] [CrossRef]
- Sasahara, K.; Shibata, M.; Sasabe, H.; Suzuki, T.; Takeuchi, K.; Umehara, K.; Kashiyama, E. Feature importance of machine learning prediction models shows structurally active part and important physicochemical features in drug design. Drug. Metab. Pharmacokinet. 2021, 39, 100401. [Google Scholar] [CrossRef]
- Naqvi, S.A.A.; Tennankore, K.; Vinson, A.; Roy, P.C.; Abidi, S.S.R. Predicting Kidney Graft Survival Using Machine Learning Methods: Prediction Model Development and Feature Significance Analysis Study. J. Med. Internet. Res. 2021, 23, e26843. [Google Scholar] [CrossRef]
- Noamani, A.; Nazarahari, M.; Lewicke, J.; Vette, A.H.; Rouhani, H. Validity of using wearable inertial sensors for assessing the dynamics of standing balance. Med. Eng. Phys. 2020, 77, 53–59. [Google Scholar] [CrossRef]
- Clark, R.A.; Mentiplay, B.F.; Pua, Y.-H.; Bower, K.J. Reliability and validity of the Wii Balance Board for assessment of standing balance: A systematic review. Gait Posture 2018, 61, 40–54. [Google Scholar] [CrossRef]
- Abujaber, S.; Gillispie, G.; Marmon, A.; Zeni, J., Jr. Validity of the Nintendo Wii Balance Board to assess weight bearing asymmetry during sit-to-stand and return-to-sit task. Gait Posture 2015, 41, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Kegelmeyer, D.A.; Kostyk, S.K.; Fritz, N.E.; Fiumedora, M.M.; Chaudhari, A.; Palettas, M.; Young, G.; Kloos, A.D. Quantitative biomechanical assessment of trunk control in Huntington’s disease reveals more impairment in static than dynamic tasks. J. Neurol. Sci. 2017, 376, 29–34. [Google Scholar] [CrossRef]
- Schmidle, S.; De Crignis, A.C.; Stürzer, M.; Hermsdörfer, J.; Jahn, K.; Krewer, C. Influence of stance width on standing balance in healthy older adults. J. Neurol. 2022, 41, 6228–6236. [Google Scholar] [CrossRef]
- Wolke, R.; Kuhtz-Buschbeck, J.P.; Deuschl, G.; Margraf, N.G. Insufficiency of trunk extension and impaired control of muscle force in Parkinson’s disease with camptocormia. Clin. Neurophysiol. 2020, 131, 2621–2629. [Google Scholar] [CrossRef] [PubMed]
- Jehu, D.; Nantel, J. Fallers with Parkinson’s disease exhibit restrictive trunk control during walking. Gait Posture 2018, 65, 246–250. [Google Scholar] [CrossRef]
- Thomas, J.C.; Odonkor, C.; Griffith, L.; Holt, N.; Percac-Lima, S.; Leveille, S.; Ni, P.; Latham, N.K.; Jette, A.M.; Bean, J.F. Reconceptualizing balance: Attributes associated with balance performance. Exp. Gerontol. 2014, 57, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Merchant, R.A.; Banerji, S.; Singh, G.; Chew, E.; Poh, C.L.; Tapawan, S.C.; Guo, Y.R.; Pang, Y.W.; Sharma, M.; Kambadur, R.; et al. Is Trunk Posture in Walking a Better Marker than Gait Speed in Predicting Decline in Function and Subsequent Frailty? J. Am. Med. Dir. Assoc. 2016, 17, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Takakusaki, K. Functional Neuroanatomy for Posture and Gait Control. J. Mov. Disord. 2017, 10, 1–17. [Google Scholar] [CrossRef]
- Manckoundia, P.; Mourey, F.; Pérennou, D.; Pfitzenmeyer, P. Backward disequilibrium in elderly subjects. Clin. Interv. Aging 2008, 3, 667–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granacher, U.; Gollhofer, A.; Hortobágyi, T.; Kressig, R.W.; Muehlbauer, T. The Importance of Trunk Muscle Strength for Balance, Functional Performance, and Fall Prevention in Seniors: A Systematic Review. Sports Med. 2013, 43, 627–641. [Google Scholar] [CrossRef]
- Macpherson, T.W.; Taylor, J.; McBain, T.; Weston, M.; Spears, I.R. Real-time measurement of pelvis and trunk kinematics during treadmill locomotion using a low-cost depth-sensing camera: A concurrent validity study. J. Biomech. 2016, 49, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.-Y.; Shin, J.; Hasan, M.A.M.; Liaw, J.-J.; Yuichi, O.; Tomioka, Y. Fitness Movement Types and Completeness Detection Using a Transfer-Learning-Based Deep Neural Network. Sensors 2022, 22, 5700. [Google Scholar] [CrossRef]
Training | Validation | Test | Total | |||||
---|---|---|---|---|---|---|---|---|
Control | Disease | Control | Disease | Control | Disease | Control | Disease | |
Dataset 1 | 103 | 72 | 25 | 19 | 32 | 23 | 160 | 114 |
Dataset 2 | 102 | 73 | 26 | 18 | 32 | 23 | 160 | 114 |
Dataset 3 | 103 | 72 | 25 | 19 | 32 | 23 | 160 | 114 |
Dataset 4 | 104 | 71 | 24 | 20 | 32 | 23 | 160 | 114 |
Dataset 5 | 104 | 72 | 24 | 19 | 32 | 23 | 160 | 114 |
Pathological Gait n = 114 | Controls n = 160 | p | |
---|---|---|---|
Age (average ± SD *) | 74.5 ± 7.8 | 72.9 ± 11.1 | 0.141 |
Sex (male/female) | 52/62 | 91/69 | 0.076 |
Cut-off | AUC (95%CI) | Sensitivity | Specificity | Accuracy | |
---|---|---|---|---|---|
Model 1 | 0.466 | 0.882 [0.875–0.890] | 0.740 | 0.898 | 0.833 |
Model 2 | 0.415 | 0.932 [0.926–0.937] | 0.852 | 0.878 | 0.868 |
Model 3 | 0.279 | 0.921 [0.915–0.926] | 0.861 | 0.836 | 0.824 |
Model 4 | 0.273 | 0.820 [0.812–0.829] | 0.798 | 0.723 | 0.716 |
Model 5 | 0.472 | 0.774 [0.764–0.784] | 0.635 | 0.785 | 0.722 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iseki, C.; Hayasaka, T.; Yanagawa, H.; Komoriya, Y.; Kondo, T.; Hoshi, M.; Fukami, T.; Kobayashi, Y.; Ueda, S.; Kawamae, K.; et al. Artificial Intelligence Distinguishes Pathological Gait: The Analysis of Markerless Motion Capture Gait Data Acquired by an iOS Application (TDPT-GT). Sensors 2023, 23, 6217. https://doi.org/10.3390/s23136217
Iseki C, Hayasaka T, Yanagawa H, Komoriya Y, Kondo T, Hoshi M, Fukami T, Kobayashi Y, Ueda S, Kawamae K, et al. Artificial Intelligence Distinguishes Pathological Gait: The Analysis of Markerless Motion Capture Gait Data Acquired by an iOS Application (TDPT-GT). Sensors. 2023; 23(13):6217. https://doi.org/10.3390/s23136217
Chicago/Turabian StyleIseki, Chifumi, Tatsuya Hayasaka, Hyota Yanagawa, Yuta Komoriya, Toshiyuki Kondo, Masayuki Hoshi, Tadanori Fukami, Yoshiyuki Kobayashi, Shigeo Ueda, Kaneyuki Kawamae, and et al. 2023. "Artificial Intelligence Distinguishes Pathological Gait: The Analysis of Markerless Motion Capture Gait Data Acquired by an iOS Application (TDPT-GT)" Sensors 23, no. 13: 6217. https://doi.org/10.3390/s23136217
APA StyleIseki, C., Hayasaka, T., Yanagawa, H., Komoriya, Y., Kondo, T., Hoshi, M., Fukami, T., Kobayashi, Y., Ueda, S., Kawamae, K., Ishikawa, M., Yamada, S., Aoyagi, Y., & Ohta, Y. (2023). Artificial Intelligence Distinguishes Pathological Gait: The Analysis of Markerless Motion Capture Gait Data Acquired by an iOS Application (TDPT-GT). Sensors, 23(13), 6217. https://doi.org/10.3390/s23136217