Optical Frequency-Domain Reflectometry Based Distributed Temperature Sensing Using Rayleigh Backscattering Enhanced Fiber
<p>(<b>a</b>) OFDR system; (<b>b</b>) Distribution of scattering intensity in RBEF measured by OFDR.</p> "> Figure 2
<p>Distributed temperature sensing demodulation principle and procedures using RBEF.</p> "> Figure 3
<p>Desk temperature chamber and temperature analyzer for sensing and calibration experiments.</p> "> Figure 4
<p>Results of temperature calibration experiments. (<b>a</b>) Relationship between displacement of high RBS peaks and corresponding positions along the RBEF under different temperatures; (<b>b</b>) Relationship between total displacement of temperature-influenced RBS peaks and temperature variations.</p> "> Figure 5
<p>Accurately locating the temperature-influenced fiber segment using the high RBS peak displacement data measured at 40.19 °C in <a href="#sensors-23-05748-f004" class="html-fig">Figure 4</a>a.</p> "> Figure 6
<p>Relationship between displacements and positions of high RBS peaks from the temperature sensing validation experiment.</p> "> Figure 7
<p>Relationship between displacement of RBS peaks in RBEF and fiber position under constant temperature conditions.</p> ">
Abstract
:1. Introduction
2. Experimental System and Principles
2.1. OFDR System and RBEF
2.2. Temperature Demodulation Principle Based on RBEF
3. Experimental Results and Discussion
3.1. Calibration of RBEF Distributed Temperature Sensing
3.2. Temperature Sensing Verification Experiment
3.3. Temperature Sensing Resolution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Bao, X.; Chen, L. Recent progress in distributed fiber optic sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashry, I.; Mao, Y.; Wang, B.; Hveding, F.; Bukhamsin, A.Y.; Ng, T.K.; Ooi, B.S. A Review of Distributed Fiber–Optic Sensing in the Oil and Gas Industry. J. Light. Technol. 2022, 40, 1407–1431. [Google Scholar] [CrossRef]
- Feng, T.; Shang, Y.L.; Wang, X.C.; Wu, S.; Khomenko, A.; Chen, X.; Yao, X.S. Distributed polarization analysis with binary polarization rotators for the accurate measurement of distance-resolved birefringence along a single-mode fiber. Opt. Express 2018, 26, 25989–26002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, T.; Zhou, J.; Shang, Y.; Chen, X.; Steve Yao, X. Distributed transverse-force sensing along a single-mode fiber using polarization-analyzing OFDR. Opt. Express 2020, 28, 31253–31271. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Miao, T.; Lu, Z.; Yao, X.S. Clamping-force induced birefringence in a single-mode fiber in commercial V-grooves investigated with distributed polarization analysis. Opt. Express 2022, 30, 5347–5359. [Google Scholar] [CrossRef]
- Kingsley, S.; Davies, D. OFDR diagnostics for fibre and integrated optic systems. Electron. Lett. 1985, 21, 434–435. [Google Scholar] [CrossRef]
- Uttam, D.; Culshaw, B. Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique. J. Light. Technol. 1985, 3, 971–977. [Google Scholar] [CrossRef]
- MacDonald, R.I.; Ahlers, H. Swept wavelength reflectometer for integrated-optic measurements. Appl. Opt. 1987, 26, 114–117. [Google Scholar] [CrossRef]
- Kreger, S.T.; Gifford, D.K.; Froggatt, M.E.; Soller, B.J.; Wolfe, M.S. High resolution distributed strain or temperature measurements in single-and multi-mode fiber using swept-wavelength interferometry. In Optical Fiber Sensors; Optica Publishing Group: Washington, DC, USA, 2006; p. ThE42. [Google Scholar]
- Froggatt, M.; Moore, J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter. Appl. Opt. 1998, 37, 1735–1740. [Google Scholar] [CrossRef]
- Gifford, D.K.; Froggatt, M.E.; Kreger, S.T. High precision, high sensitivity distributed displacement and temperature measurements using OFDR-based phase tracking. In Proceedings of the 21st International Conference on Optical Fiber Sensors, Ottawa, ON, Canada, 15–19 May 2011; pp. 77533I-1–77533I-4. [Google Scholar]
- Li, J.; Gan, J.; Zhang, Z.; Heng, X.; Yang, C.; Qian, Q.; Xu, S.; Yang, Z. High spatial resolution distributed fiber strain sensor based on phase-OFDR. Opt. Express 2017, 25, 27913–27922. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lu, P.; Gao, S.; Xiang, D.; Mihailov, S.; Bao, X. Optical fiber random grating-based multiparameter sensor. Opt. Lett. 2015, 40, 5514–5517. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Mihailov, S.J.; Coulas, D.; Ding, H.; Bao, X. Low-Loss Random Fiber Gratings Made With an fs-IR Laser for Distributed Fiber Sensing. J. Light. Technol. 2019, 37, 4697–4702. [Google Scholar] [CrossRef]
- Wegmuller, M.; Oberson, P.; Guinnard, O.; Huttner, B.; Guinnard, L.; Vinegoni, C.; Gisin, N. Distributed gain measurements in Er-doped fibers with high resolution and accuracy using an optical frequency domain reflectometer. J. Light. Technol. 2000, 18, 2127–2132. [Google Scholar] [CrossRef]
- Westbrook, P.S.; Feder, K.S.; Ortiz, R.M.; Kremp, T.; Monberg, E.M.; Wu, H.; Simoff, D.A.; Shenk, S. Kilometer length, low loss enhanced back scattering fiber for distributed sensing. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Republic of Korea, 24–28 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Loranger, S.; Gagné, M.; Lambin Iezzi, V.; Kashyap, R. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre. Sci. Rep. 2015, 5, 11177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulot, P.; Bernard, R.; Cieslikiewicz-Bouet, M.; Laffont, G.; Douay, M. Performance study of a Zirconia-Doped fiber for distributed temperature sensing by OFDR at 800 C. Sensors 2021, 21, 3788. [Google Scholar] [CrossRef]
- Mihailov, S.J. Fiber Bragg grating sensors for harsh environments. Sensors 2012, 12, 1898–1918. [Google Scholar] [CrossRef]
- Du, Y.; Liu, T.; Ding, Z.; Han, Q.; Liu, K.; Jiang, J.; Chen, Q.; Feng, B. Cryogenic temperature measurement using Rayleigh backscattering spectra shift by OFDR. IEEE Photonics Technol. Lett. 2014, 26, 1150–1153. [Google Scholar]
- Fu, G.; Cao, J.; Li, W.; Zhang, Z.; Fu, X.; Jin, W.; Bi, W. A novel positioning and temperature measurement method based on optical domain demodulation in the BOTDR system. Opt. Commun. 2021, 480, 469–474. [Google Scholar] [CrossRef]
- Zhang, L.; Correa-Mena, A.G.; Yang, Z.; Sauser, F.; Le Floch, S.; Thévenaz, L. Closed-loop technique based on gain balancing for real-time Brillouin optical time-domain analysis. Opt. Lett. 2022, 47, 4299–4302. [Google Scholar] [CrossRef]
- Wu, H.; Du, H.; Zhao, C.; Tang, M. 24 km high-performance Raman distributed temperature sensing using low water peak fiber and optimized denoising neural network. Sensors 2022, 22, 2139. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Q.; Chen, D.; He, Z. Centimeter Spatial Resolution Distributed Temperature Sensor Based on Polarization-Sensitive Optical Frequency Domain Reflectometry. J. Light. Technol. 2021, 39, 2594–2602. [Google Scholar] [CrossRef]
Temperature Variation/°C | Measured Position 1/m | Calculated Position 1/m | Error/m | Measured Position 2/m | Calculated Position 2/m | Error/m |
---|---|---|---|---|---|---|
4.61 | 1.86 | 1.99 | −0.13 | 11.12 | 10.99 | 0.13 |
8.11 | 1.89 | −0.03 | 11.01 | 0.11 | ||
12.10 | 1.79 | 0.07 | 11.05 | 0.07 | ||
16.23 | 1.86 | 0.00 | 11.11 | 0.01 | ||
20.19 | 1.85 | 0.01 | 11.09 | 0.03 | ||
24.21 | 1.85 | 0.01 | 11.13 | −0.01 |
Measured Temperature/°C | Sensing Temperature/°C | Relative Error/% |
---|---|---|
24.48 | 24.03 | −1.84 |
28.41 | 27.90 | −1.80 |
32.27 | 32.07 | −0.62 |
36.08 | 35.88 | −0.55 |
40.09 | 39.76 | −0.82 |
44.05 | 43.56 | −1.11 |
Average | −1.12 |
Technique | Temperature Resolution/°C | Positioning Error/m | Sensing Distance/m | Algorithm Efficiency |
---|---|---|---|---|
BOTDR with optical domain demodulation [22] | 0.08 | 0.37 | 8170 | Medium |
BOTDA with closed-loop servo control [23] | 0.10 | 2 | 5000 | High |
ROTDR with denoising neural network [24] | 1.77 | 1 | 24,000 | Medium |
OFDR with polarization-maintaining fiber [25] | 0.8 | 0.013 | 94 | Low |
This work | 0.418 | 0.02 | 100 | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Feng, T.; Li, F.; Yao, X.S. Optical Frequency-Domain Reflectometry Based Distributed Temperature Sensing Using Rayleigh Backscattering Enhanced Fiber. Sensors 2023, 23, 5748. https://doi.org/10.3390/s23125748
Lu Z, Feng T, Li F, Yao XS. Optical Frequency-Domain Reflectometry Based Distributed Temperature Sensing Using Rayleigh Backscattering Enhanced Fiber. Sensors. 2023; 23(12):5748. https://doi.org/10.3390/s23125748
Chicago/Turabian StyleLu, Ziyi, Ting Feng, Fang Li, and Xiaotian Steve Yao. 2023. "Optical Frequency-Domain Reflectometry Based Distributed Temperature Sensing Using Rayleigh Backscattering Enhanced Fiber" Sensors 23, no. 12: 5748. https://doi.org/10.3390/s23125748
APA StyleLu, Z., Feng, T., Li, F., & Yao, X. S. (2023). Optical Frequency-Domain Reflectometry Based Distributed Temperature Sensing Using Rayleigh Backscattering Enhanced Fiber. Sensors, 23(12), 5748. https://doi.org/10.3390/s23125748