Exploring the Limits of Early Predictive Maintenance in Wind Turbines Applying an Anomaly Detection Technique
Abstract
:1. Introduction
2. State of the Art
3. Materials and Methods
3.1. The Dataset
3.2. The Proposed Technique
- Selection of the input features for a temperature prediction model that sufficiently represented the influence of external factors on the gearbox bearing temperature when the turbine components were in a healthy state.
- Selection of the machine learning model to solve the temperature prediction task with a minimized regression error.
- Proposal of a technique for anomaly detection threshold selection when the predicted temperatures were compared with the actual measured ones.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Portugal, E.D. Wind Turbine Failure Detection. 2019. Available online: https://opendata.edp.com/pages/challenges/#description (accessed on 1 June 2022).
- Guo, P.; Infield, D.; Yang, X. Wind turbine generator condition-monitoring using temperature trend analysis. IEEE Trans. Sustain. Energy 2012, 3, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Becker, E.; Poste, P. Keeping the blades turning: Condition monitoring of wind turbine gears. Refocus 2006, 7, 26–32. [Google Scholar] [CrossRef]
- El-Thalji, I.; Liyanage, J.P. On the operation and maintenance practices of wind power asset: A status review and observations. J. Qual. Maint. Eng. 2012, 18, 232–266. [Google Scholar] [CrossRef]
- Energy in Europe: 2021 Statistics, W. The Outlook for 2022–2026. The Inside of a Wind Turbine. 2021. Available online: https://windeurope.org (accessed on 1 June 2022).
- Gonzalez, E.; Reder, M.; Melero, J.J. SCADA alarms processing for wind turbine component failure detection. J. Physics: Conf. Ser. 2016, 753, 072019. [Google Scholar] [CrossRef]
- Tautz-Weinert, J.; Watson, S.J. Using SCADA data for wind turbine condition monitoring—A review. IET Renew. Power Gener. 2017, 11, 382–394. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Du, J.; Ye, Z.S. A Condition Monitoring and Fault Isolation System for Wind Turbine based on SCADA Data. IEEE Trans. Ind. Inform. 2021, 18, 986–995. [Google Scholar] [CrossRef]
- Turnbull, A.; Carroll, J.; McDonald, A. Combining SCADA and vibration data into a single anomaly detection model to predict wind turbine component failure. Wind Energy 2021, 24, 197–211. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Z.; Wang, X. Research on fault diagnosis of wind turbine based on SCADA data. IEEE Access 2020, 8, 185557–185569. [Google Scholar] [CrossRef]
- El-Fouly, T.H.M.; El-Saadany, E.F.; Salama, M.M.A. One Day Ahead Prediction of Wind Speed and Direction. IEEE Trans. Energy Convers. 2008, 23, 191–201. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, X. Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network. Energy 2020, 201, 117693. [Google Scholar] [CrossRef]
- Kusiak, A.; Zheng, H.; Song, Z. On-line monitoring of power curves. Renewable Energy 2009, 34, 1487–1493. [Google Scholar] [CrossRef]
- Garan, M.; Tidriri, K.; Kovalenko, I. A Data-Centric Machine Learning Methodology: Application on Predictive Maintenance of Wind Turbines. Energies 2022, 15, 826. [Google Scholar] [CrossRef]
- Eriksson, J. Machine Learning for Predictive Maintenance on Wind Turbines—Using SCADA Data and the Apache Hadoop Ecosystem (Behovsstyrt Underhåll av Vindkraftverk med Maskininlärning i Apache Hadoop). Master’s Thesis, Linköping University, Linköping, Sweden, 2020. [Google Scholar]
- Hameed, Z.; Hong, Y.S.; Cho, Y.M.; Ahn, S.H.; Song, C.K. Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renew. Sustain. Energy Rev. 2009, 13, 1–39. [Google Scholar] [CrossRef]
- Stetco, A.; Dinmohammadi, F.; Zhao, X.; Robu, V.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, G. Machine learning methods for wind turbine condition monitoring: A review. Renew. Energy 2019, 133, 620–635. [Google Scholar] [CrossRef]
- Serrato, R.; Maru, M.M.; Padovese, L.R. Effect of lubricant viscosity grade on mechanical vibration of roller bearings. Tribol. Int. 2007, 40, 1270–1275. [Google Scholar] [CrossRef]
- Iorgulescu, M.; Beloiu, R. Vibration and Current Monitoring for Fault’s Diagnosis of Induction Motors. 2008. Available online: https://elth.ucv.ro/fisiere/anale/2008/3_3.pdf (accessed on 20 April 2023).
- Tidriri, K.; Braydi, A.; Kazmi, H. Data-driven Decision-Making Methodology for Prognostic and Health Management of Wind Turbines*. In Proceedings of the 2021 Australian and New Zealand Control Conference, ANZCC 2021, Gold Coast, Australia, 25–26 November 2021; pp. 104–109. [Google Scholar] [CrossRef]
- Apostol, E.S.; Truică, C.O.; Pop, F.; Esposito, C. Change point enhanced anomaly detection for iot time series data. Water 2021, 13, 1633. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Z.; Jiang, G.; He, Q.; Xie, P. Detecting Wind Turbine Blade Icing with a Multiscale Long Short-Term Memory Network. Energies 2022, 15, 2864. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, D.; Yang, T. Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost. Reliab. Eng. Syst. Saf. 2022, 222, 108445. [Google Scholar] [CrossRef]
- Morrison, R.; Liu, X.; Lin, Z. Anomaly detection in wind turbine SCADA data for power curve cleaning. Renew. Energy 2022, 184, 473–486. [Google Scholar] [CrossRef]
- Khan, P.W.; Yeun, C.Y.; Byun, Y.C. Fault detection of wind turbines using SCADA data and genetic algorithm-based ensemble learning. Eng. Fail. Anal. 2023, 148, 107209. [Google Scholar] [CrossRef]
- Liu, J.H.; Corbita, N.T.; Lee, R.M.; Wang, C.C. Wind Turbine Anomaly Detection Using Mahalanobis Distance and SCADA Alarm Data. Appl. Sci. 2022, 12, 8661. [Google Scholar] [CrossRef]
- Wen, W.; Liu, Y.; Sun, R.; Liu, Y. Research on Anomaly Detection of Wind Farm SCADA Wind Speed Data. Energies 2022, 15, 5869. [Google Scholar] [CrossRef]
- McKinnon, C.; Carroll, J.; McDonald, A.; Koukoura, S.; Infield, D.; Soraghan, C. Comparison of new anomaly detection technique for wind turbine condition monitoring using gearbox SCADA data. Energies 2020, 13, 5152. [Google Scholar] [CrossRef]
- Campoverde-Vilela, L.; Feijóo, M.C.; Vidal, Y.; Sampietro, J.; Tutivén, C. Anomaly-based fault detection in wind turbine main bearings. Wind Energy Sci. 2023, 8, 557–574. [Google Scholar] [CrossRef]
- Roelofs, C.M.; Lutz, M.A.; Faulstich, S.; Vogt, S. Autoencoder-based anomaly root cause analysis for wind turbines. Energy AI 2021, 4, 100065. [Google Scholar] [CrossRef]
- Miele, E.S.; Bonacina, F.; Corsini, A. Deep anomaly detection in horizontal axis wind turbines using Graph Convolutional Autoencoders for Multivariate Time series. Energy AI 2022, 8, 100145. [Google Scholar] [CrossRef]
- Gruhl, C.; Hannan, A.; Huang, Z.; Nivarthi, C.; Vogt, S. The Problem with Real-World Novelty Detection—Issues in Multivariate Probabilistic Models. In Proceedings of the 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion, ACSOS-C 2021, Virtual, 19–23 September 2022; pp. 204–209. [Google Scholar] [CrossRef]
Component | T01 | T06 | T07 | T09 | T11 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | |
Gearbox | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
Generator | 0 | 0 | 5 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
Generator Bearing | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 1 | 0 | 0 |
Transformer | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
Hydraulic Group | 0 | 0 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 2 |
Descriptor | Description | Component |
---|---|---|
Gen_RPM_Max [rpm] | Maximum generator rpm in latest average period | Generator |
Gen_RPM_Min [rpm] | Minimum generator rpm in latest average period | Generator |
Gen_RPM_Avg [rpm] | Average generator rpm in latest average period | Generator |
Gen_RPM_Std [rpm] | Std generator rpm in latest average period | Generator |
Rtr_RPM_Max [rpm] | Maximum rotor rpm in latest average period | Rotor |
Rtr_RPM_Min [rpm] | Minimum rotor rpm in latest average period | Rotor |
Rtr_RPM_Avg [rpm] | Average rotor rpm in latest average period | Rotor |
Amb_WindSpeed_Max [m/s] | Maximum wind speed within average timebase | Ambient |
Amb_WindSpeed_Min [m/s] | Minimum wind speed within average timebase | Ambient |
Amb_WindSpeed_Avg [m/s] | Average wind speed within average timebase | Ambient |
Amb_WindSpeed_Std [m/s] | Std wind speed within average timebase | Ambient |
Amb_WindDir_Relative_Avg [] | Average wind relative direction | Ambient |
Amb_WindDir_Abs_Avg [] | Average wind absolute direction | Ambient |
Amb_Temp_Avg [C] | Average ambient temperature | Ambient |
Prod_LatestAvg_ActPweGen0 [Wh] | Active power: generator disconnected (yaw motor, hydraulic motor, etc.) | Production |
Prod_LatestAvg_TotActPwr [Wh] | Total active power | Production |
Prod_LatestAvg_ReactPwrGen0 [VArh] | Reactive power: generator disconnected (yaw motor, hydraulic motor, etc.) | Production |
Prod_LatestAvg_TotReactPwe [VArh] | Total reactive power | Production |
Model | RMSE | Std | Min | Max | Training Time |
---|---|---|---|---|---|
LSTM | 1.91 | 1.49 | 0.0012 | 11.58 | 09:22 |
bi-LSTM | 1.79 | 1.34 | 0.0033 | 10.27 | 06:47 |
GRU | 1.85 | 1.33 | 0.0058 | 10.42 | 05:41 |
LSTM + LSTM | 1.69 | 1.09 | 0.0027 | 7.04 | 08:06 |
bi-LSTM + bi-LSTM | 1.61 | 1.10 | 0.0021 | 7.17 | 11.10 |
Component Failure | Model with Two | Model with Two | ||
---|---|---|---|---|
LSTM Layers | bi-LSTM Layers | |||
THD Estimation Method | THD Estimation Method | |||
Mean + 3*STD | Moving Median | Mean + 3*STD | Moving Median | |
Gearbox | 14 | 22 | 22 | 32 |
Generator | 15 | 24 | 26 | 37 |
Generator Bearing | 13 | 24 | 22 | 36 |
Transformer | 23 | 22 | 24 | 35 |
Hydraulic Group | 12 | 22 | 20 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankauskas, M.; Serackis, A.; Šapurov, M.; Pomarnacki, R.; Baskys, A.; Hyunh, V.K.; Vaimann, T.; Zakis, J. Exploring the Limits of Early Predictive Maintenance in Wind Turbines Applying an Anomaly Detection Technique. Sensors 2023, 23, 5695. https://doi.org/10.3390/s23125695
Jankauskas M, Serackis A, Šapurov M, Pomarnacki R, Baskys A, Hyunh VK, Vaimann T, Zakis J. Exploring the Limits of Early Predictive Maintenance in Wind Turbines Applying an Anomaly Detection Technique. Sensors. 2023; 23(12):5695. https://doi.org/10.3390/s23125695
Chicago/Turabian StyleJankauskas, Mindaugas, Artūras Serackis, Martynas Šapurov, Raimondas Pomarnacki, Algirdas Baskys, Van Khang Hyunh, Toomas Vaimann, and Janis Zakis. 2023. "Exploring the Limits of Early Predictive Maintenance in Wind Turbines Applying an Anomaly Detection Technique" Sensors 23, no. 12: 5695. https://doi.org/10.3390/s23125695
APA StyleJankauskas, M., Serackis, A., Šapurov, M., Pomarnacki, R., Baskys, A., Hyunh, V. K., Vaimann, T., & Zakis, J. (2023). Exploring the Limits of Early Predictive Maintenance in Wind Turbines Applying an Anomaly Detection Technique. Sensors, 23(12), 5695. https://doi.org/10.3390/s23125695