A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-Data
<p>Automated finger tapping detection functions. (<b>A</b>): The automated tapping block detection results in two exemplary accelerometer traces containing three 10-s blocks of tapping activity. The function successfully detects repetitive 10-s tapping blocks present in the tri-axial accelerometer data, highlighted as the red blocks. The function performs well for taps with high (left panel) and low (right panel) amplitudes. (<b>B</b>): The automated single tap detection, performed on the tapping block between the dotted lines in the panel above. The blue dots represent the time points that the function detected impacts, which are used to recognize the moment of index finger and thumb closing. (<b>C</b>): Exemplary accelerometer trace snippet highlighting the temporal time points used for single tap feature extraction. Yellow shades indicate index finger opening and light-blue shades indicate index finger closing. The vertical yellow and blue lines indicate the moments of maximum speed within the finger opening and closing, respectively. Finger opening speed increases until the positive peak (in g) crosses 0 (vertical yellow line). Similarly, finger closing (downwards movement) speed increases during the negative acc-peak until the acc-signal crosses 0 g (vertical blue line). The vertical gray dotted lines represent the impact moment detected. The three accelerometer axes are shown in black and gray.</p> "> Figure 2
<p>Prediction of finger tapping scores (UPDRS Part III Item 3.4) in the holdout validation. Left panel: Violin plots (with jittered scatter points representing one tapping block each) demonstrate single predicted tap scores versus true, expert-rated UPDRS Part III Item 3.4 scores. The horizontal lines represent the mean true UPDRS Part III Item 3.4 score per predicted tap score across the holdout validation sample. Middle panel: Multiclass confusion matrix showing prediction results per true UPDRS Part III Item 3.4 tap score during holdout validation. Right panel: Individual Pearson’s coefficients between the expert-rated scores and the ReTap-predicted scores per individual subject within the holdout validation (i.e., for which a correlation coefficient could be calculated). The dot size represents the number of tapping observations included per subject. See <a href="#app1-sensors-23-05238" class="html-app">Figure S2 in the Supplementary Materials</a> for the individual subject-level observations leading to these correlations.</p> "> Figure 3
<p>Exemplary cases of the kinematic features with the highest predictive performance. A total of two subjects from the holdout validation cohort are shown, each in one column. The four features are chosen based on the random forest feature importance (see <a href="#app1-sensors-23-05238" class="html-app">Figure S2</a>). Every thin line represents the feature values during one tapping block. Lines have various lengths of observations due to the various number of detected taps per tapping block. The thick lines represent the mean values of detected taps within tapping blocks of the same expert-rated score (i.e., mean value of first tap values in blocks with score 1, mean value of second tap values in blocks with score 1, etc.). Line colors indicate the expert-rated tapping score; olive green: 0, dark green: 1, blue: 2, purple: 3. ITI: inter-tap-interval.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Accelerometer Data Recording Protocol
2.3. Clinical Motor Symptom Assessment
2.4. ReTap Algorithm
2.4.1. Raw Accelerometer Data Preprocessing
2.4.2. Active Tapping Block Detection
2.4.3. Single Tap Event Detection
2.4.4. Kinematic Feature Extraction per Tapping Block
2.4.5. Development and Validation of Tapping Score Prediction Model
2.5. Statistical Evaluation
2.6. Software
2.7. Code and Data Availability
3. Results
3.1. Study Population and Recorded Data
3.2. Automated Tapping Block and Single Tap Detection
3.3. Finger Tapping Score Prediction
3.4. Feature Extraction
4. Discussion
4.1. Predictive Performance of ReTap
4.2. Clinical Relevance and Potential Future Implementation of ReTap
4.3. Importance of the Model’s Fully Automated and Open-Source Nature
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s Disease. Lancet Lond. Engl. 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Bach, J.-P.; Ziegler, U.; Deuschl, G.; Dodel, R.; Doblhammer-Reiter, G. Projected Numbers of People with Movement Disorders in the Years 2030 and 2050. Mov. Disord. 2011, 26, 2286–2290. [Google Scholar] [CrossRef] [PubMed]
- Statistics|Parkinson’s Foundation. Available online: https://www.parkinson.org/understanding-parkinsons/statistics (accessed on 19 May 2023).
- Marras, C.; Beck, J.C.; Bower, J.H.; Roberts, E.; Ritz, B.; Ross, G.W.; Abbott, R.D.; Savica, R.; Van Den Eeden, S.K.; Willis, A.W.; et al. Prevalence of Parkinson’s Disease across North America. NPJ Park. Dis. 2018, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Kalia, L.V.; Lang, A.E. Parkinson’s Disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Hariz, G.-M.; Forsgren, L. Activities of Daily Living and Quality of Life in Persons with Newly Diagnosed Parkinson’s Disease According to Subtype of Disease, and in Comparison to Healthy Controls. Acta Neurol. Scand. 2011, 123, 20–27. [Google Scholar] [CrossRef]
- Dauer, W.; Przedborski, S. Parkinson’s Disease: Mechanisms and Models. Neuron 2003, 39, 889–909. [Google Scholar] [CrossRef]
- de Bie, R.M.A.; Clarke, C.E.; Espay, A.J.; Fox, S.H.; Lang, A.E. Initiation of Pharmacological Therapy in Parkinson’s Disease: When, Why, and How. Lancet Neurol. 2020, 19, 452–461. [Google Scholar] [CrossRef]
- Tödt, I.; Al-Fatly, B.; Granert, O.; Kühn, A.A.; Krack, P.; Rau, J.; Timmermann, L.; Schnitzler, A.; Paschen, S.; Helmers, A.-K.; et al. The Contribution of Subthalamic Nucleus Deep Brain Stimulation to the Improvement in Motor Functions and Quality of Life. Mov. Disord. Off. J. Mov. Disord. Soc. 2022, 37, 291–301. [Google Scholar] [CrossRef]
- Wirdefeldt, K.; Odin, P.; Nyholm, D. Levodopa-Carbidopa Intestinal Gel in Patients with Parkinson’s Disease: A Systematic Review. CNS Drugs 2016, 30, 381–404. [Google Scholar] [CrossRef]
- Jankovic, J.; Tan, E.K. Parkinson’s Disease: Etiopathogenesis and Treatment. J. Neurol. Neurosurg. Psychiatry 2020, 91, 795–808. [Google Scholar] [CrossRef]
- Morgan, C.; Rolinski, M.; McNaney, R.; Jones, B.; Rochester, L.; Maetzler, W.; Craddock, I.; Whone, A.L. Systematic Review Looking at the Use of Technology to Measure Free-Living Symptom and Activity Outcomes in Parkinson’s Disease in the Home or a Home-like Environment. J. Park. Dis. 2020, 10, 429–454. [Google Scholar] [CrossRef] [PubMed]
- Espay, A.J.; Bonato, P.; Nahab, F.B.; Maetzler, W.; Dean, J.M.; Klucken, J.; Eskofier, B.M.; Merola, A.; Horak, F.; Lang, A.E.; et al. Technology in Parkinson’s Disease: Challenges and Opportunities. Mov. Disord. 2016, 31, 1272–1282. [Google Scholar] [CrossRef]
- Virmani, T.; Lotia, M.; Glover, A.; Pillai, L.; Kemp, A.S.; Iyer, A.; Farmer, P.; Syed, S.; Larson-Prior, L.J.; Prior, F.W. Feasibility of Telemedicine Research Visits in People with Parkinson’s Disease Residing in Medically Underserved Areas. J. Clin. Transl. Sci. 2022, 6, e133. [Google Scholar] [CrossRef] [PubMed]
- Warmerdam, E.; Hausdorff, J.M.; Atrsaei, A.; Zhou, Y.; Mirelman, A.; Aminian, K.; Espay, A.J.; Hansen, C.; Evers, L.J.; Keller, A. Long-Term Unsupervised Mobility Assessment in Movement Disorders. Lancet Neurol. 2020, 19, 462–470. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- de Deus Fonticoba, T.; Santos García, D.; Macías Arribí, M. Inter-Rater Variability in Motor Function Assessment in Parkinson’s Disease between Experts in Movement Disorders and Nurses Specialising in PD Management. Neurol. Engl. Ed. 2019, 34, 520–526. [Google Scholar] [CrossRef]
- Post, B.; Merkus, M.P.; de Bie, R.M.A.; de Haan, R.J.; Speelman, J.D. Unified Parkinson’s Disease Rating Scale Motor Examination: Are Ratings of Nurses, Residents in Neurology, and Movement Disorders Specialists Interchangeable? Mov. Disord. Off. J. Mov. Disord. Soc. 2005, 20, 1577–1584. [Google Scholar] [CrossRef]
- Shawen, N.; O’Brien, M.K.; Venkatesan, S.; Lonini, L.; Simuni, T.; Hamilton, J.L.; Ghaffari, R.; Rogers, J.A.; Jayaraman, A. Role of Data Measurement Characteristics in the Accurate Detection of Parkinson’s Disease Symptoms Using Wearable Sensors. J. Neuroeng. Rehabil. 2020, 17, 52. [Google Scholar] [CrossRef]
- Habets, J.G.V.; Herff, C.; Kubben, P.L.; Kuijf, M.L.; Temel, Y.; Evers, L.J.W.; Bloem, B.R.; Starr, P.A.; Gilron, R.; Little, S. Rapid Dynamic Naturalistic Monitoring of Bradykinesia in Parkinson’s Disease Using a Wrist-Worn Accelerometer. Sensors 2021, 21, 7876. [Google Scholar] [CrossRef]
- Oyama, G.; Burq, M.; Hatano, T.; Marks, W.J.; Kapur, R.; Fernandez, J.; Fujikawa, K.; Furusawa, Y.; Nakatome, K.; Rainaldi, E.; et al. Analytical and Clinical Validity of Wearable, Multi-Sensor Technology for Assessment of Motor Function in Patients with Parkinson’s Disease in Japan. Sci. Rep. 2023, 13, 3600. [Google Scholar] [CrossRef]
- van Rheede, J.J.; Feldmann, L.K.; Busch, J.L.; Fleming, J.E.; Mathiopoulou, V.; Denison, T.; Sharott, A.; Kühn, A.A. Diurnal Modulation of Subthalamic Beta Oscillatory Power in Parkinson’s Disease Patients during Deep Brain Stimulation. NPJ Park. Dis. 2022, 8, 88. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Kirkby, L.; Kotzev, M.; Song, P.; Gilron, R.; Pepin, B. The Role of Large-Scale Data Infrastructure in Developing Next-Generation Deep Brain Stimulation Therapies. Front. Hum. Neurosci. 2021, 15, 494. [Google Scholar] [CrossRef] [PubMed]
- Chandrabhatla, A.S.; Pomeraniec, I.J.; Ksendzovsky, A. Co-Evolution of Machine Learning and Digital Technologies to Improve Monitoring of Parkinson’s Disease Motor Symptoms. NPJ Digit. Med. 2022, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Powers, R.; Etezadi-Amoli, M.; Arnold, E.M.; Kianian, S.; Mance, I.; Gibiansky, M.; Trietsch, D.; Alvarado, A.S.; Kretlow, J.D.; Herrington, T.M.; et al. Smartwatch Inertial Sensors Continuously Monitor Real-World Motor Fluctuations in Parkinson’s Disease. Sci. Transl. Med. 2021, 13, eabd7865. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Martín, D.; Cabestany, J.; Pérez-López, C.; Pie, M.; Calvet, J.; Samà, A.; Capra, C.; Català, A.; Rodríguez-Molinero, A. A New Paradigm in Parkinson’s Disease Evaluation With Wearable Medical Devices: A Review of STAT-ONTM. Front. Neurol. 2022, 13, 912343. [Google Scholar] [CrossRef] [PubMed]
- Vanmechelen, I.; Haberfehlner, H.; De Vleeschhauwer, J.; Van Wonterghem, E.; Feys, H.; Desloovere, K.; Aerts, J.-M.; Monbaliu, E. Assessment of Movement Disorders Using Wearable Sensors during Upper Limb Tasks: A Scoping Review. Front. Robot. AI 2022, 9, 1068413. [Google Scholar] [CrossRef]
- Akram, N.; Li, H.; Ben-Joseph, A.; Budu, C.; Gallagher, D.A.; Bestwick, J.P.; Schrag, A.; Noyce, A.J.; Simonet, C. Developing and Assessing a New Web-Based Tapping Test for Measuring Distal Movement in Parkinson’s Disease: A Distal Finger Tapping Test. Sci. Rep. 2022, 12, 386. [Google Scholar] [CrossRef]
- Trager, M.H.; Wilkins, K.B.; Koop, M.M.; Bronte-Stewart, H. A Validated Measure of Rigidity in Parkinson’s Disease Using Alternating Finger Tapping on an Engineered Keyboard. Park. Relat. Disord. 2020, 81, 161–164. [Google Scholar] [CrossRef]
- Park, K.W.; Lee, E.-J.; Lee, J.S.; Jeong, J.; Choi, N.; Jo, S.; Jung, M.; Do, J.Y.; Kang, D.-W.; Lee, J.-G.; et al. Machine Learning-Based Automatic Rating for Cardinal Symptoms of Parkinson Disease. Neurology 2021, 96, e1761–e1769. [Google Scholar] [CrossRef]
- Zhan, A.; Mohan, S.; Tarolli, C.; Schneider, R.B.; Adams, J.L.; Sharma, S.; Elson, M.J.; Spear, K.L.; Glidden, A.M.; Little, M.A.; et al. Using Smartphones and Machine Learning to Quantify Parkinson Disease Severity: The Mobile Parkinson Disease Score. JAMA Neurol. 2018, 75, 876–880. [Google Scholar] [CrossRef]
- Morinan, G.; Dushin, Y.; Sarapata, G.; Rupprechter, S.; Peng, Y.; Girges, C.; Salazar, M.; Milabo, C.; Sibley, K.; Foltynie, T.; et al. Computer Vision Quantification of Whole-Body Parkinsonian Bradykinesia Using a Large Multi-Site Population. NPJ Park. Dis. 2023, 9, 10. [Google Scholar] [CrossRef]
- Teshuva, I.; Hillel, I.; Gazit, E.; Giladi, N.; Mirelman, A.; Hausdorff, J.M. Using Wearables to Assess Bradykinesia and Rigidity in Patients with Parkinson’s Disease: A Focused, Narrative Review of the Literature. J. Neural Transm. Vienna 2019, 126, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Stegemöller, E.L.; Uzochukwu, J.; Tillman, M.D.; McFarland, N.R.; Subramony, S.; Okun, M.S.; Hass, C.J. Repetitive Finger Movement Performance Differs among Parkinson’s Disease, Progressive Supranuclear Palsy, and Spinocerebellar Ataxia. J. Clin. Mov. Disord. 2015, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Habets, J.G.V. ReTap. Available online: www.github.com/jgvhabets/ReTap (accessed on 19 May 2023).
- Okuno, R.; Yokoe, M.; Fukawa, K.; Sakoda, S.; Akazawa, K. Measurement System of Finger-Tapping Contact Force for Quantitative Diagnosis of Parkinson’s Disease. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007. [Google Scholar] [CrossRef]
- Lonini, L.; Dai, A.; Shawen, N.; Simuni, T.; Poon, C.; Shimanovich, L.; Daeschler, M.; Ghaffari, R.; Rogers, J.A.; Jayaraman, A. Wearable Sensors for Parkinson’s Disease: Which Data Are Worth Collecting for Training Symptom Detection Models. NPJ Digit. Med. 2018, 1, 64. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, J.; Ambroise, J.; Crémers, J.; Sharei, H.; Delvaux, V.; Macq, B.; Garraux, G. Finger Tapping Clinimetric Score Prediction in Parkinson’s Disease Using Low-Cost Accelerometers. Comput. Intell. Neurosci. 2013, 2013, 717853. [Google Scholar] [CrossRef] [PubMed]
- Liljequist, D.; Elfving, B.; Skavberg Roaldsen, K. Intraclass Correlation—A Discussion and Demonstration of Basic Features. PLoS ONE 2019, 14, e0219854. [Google Scholar] [CrossRef] [PubMed]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756. [Google Scholar]
- Scornet, E. Trees, Forests, and Impurity-Based Variable Importance in Regression. Ann. Inst. Henri Poincaré Probab. Stat. 2023, 59, 21–52. [Google Scholar] [CrossRef]
- Perez, F.; Granger, B.E. IPython: A System for Interactive Scientific Computing. Comput. Sci. Eng. 2007, 9, 21–29. [Google Scholar] [CrossRef]
- Reback, J.; Van den Bossche, J.; Gorelli, M.E.; Roeschke, M.; MeeseeksMachine; Sarang, N.; Pandas Development Team; Hoefler, P.; Hawkins, S.; Pitters, T.; et al. Pandas 1.4.4 2022. Available online: https://pandas.pydata.org/pandas-docs/version/1.4/whatsnew/index.html (accessed on 19 May 2023).
- van der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Regier, D.A.; Narrow, W.E.; Clarke, D.E.; Kraemer, H.C.; Kuramoto, S.J.; Kuhl, E.A.; Kupfer, D.J. DSM-5 Field Trials in the United States and Canada, Part II: Test-Retest Reliability of Selected Categorical Diagnoses. Am. J. Psychiatry 2013, 170, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Van Hilten, J.J.; Hoogland, G.; van der Velde, E.A.; van Dijk, J.G.; Kerkhof, G.A.; Roos, R.A. Quantitative Assessment of Parkinsonian Patients by Continuous Wrist Activity Monitoring. Clin. Neuropharmacol. 1993, 16, 36–45. [Google Scholar] [CrossRef]
- Muir, S.R.; Jones, R.D.; Andreae, J.H.; Donaldson, I.M. Measurement and Analysis of Single and Multiple Finger Tapping in Normal and Parkinsonian Subjects. Park. Relat. Disord. 1995, 1, 89–96. [Google Scholar] [CrossRef]
- Evers, L.J.W.; Krijthe, J.H.; Meinders, M.J.; Bloem, B.R.; Heskes, T.M. Measuring Parkinson’s Disease over Time: The Real-World within-Subject Reliability of the MDS-UPDRS. Mov. Disord. 2019, 34, 1480–1487. [Google Scholar] [CrossRef]
- Bobic, V.; Djuric-Jovicic, M.; Dragasevic, N.; Popovic, M.B.; Kostic, V.S.; Kvascev, G. An Expert System for Quantification of Bradykinesia Based on Wearable Inertial Sensors. Sensors 2019, 19, 2644. [Google Scholar] [CrossRef]
- Butt, A.H.; Rovini, E.; Dolciotti, C.; De Petris, G.; Bongioanni, P.; Carboncini, M.C.; Cavallo, F. Objective and Automatic Classification of Parkinson Disease with Leap Motion Controller. Biomed. Eng. Online 2018, 17, 168. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Ong, J.N.; Kim, R.; Park, S.-M.; Choi, J.; Kim, H.-J.; Jeon, B. Objective Measurement of Limb Bradykinesia Using a Marker-Less Tracking Algorithm with 2D-Video in PD Patients. Park. Relat. Disord. 2020, 81, 129–135. [Google Scholar] [CrossRef]
- Williams, S.; Zhao, Z.; Hafeez, A.; Wong, D.C.; Relton, S.D.; Fang, H.; Alty, J.E. The Discerning Eye of Computer Vision: Can It Measure Parkinson’s Finger Tap Bradykinesia? J. Neurol. Sci. 2020, 416, 117003. [Google Scholar] [CrossRef]
- Heijmans, M.; Habets, J.G.V.; Herff, C.; Aarts, J.; Stevens, A.; Kuijf, M.L.; Kubben, P.L. Monitoring Parkinson’s Disease Symptoms during Daily Life: A Feasibility Study. NPJ Park. Dis 2019, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Spooner, R.K.; Bahners, B.H.; Schnitzler, A.; Florin, E. DBS-Evoked Cortical Responses Index Optimal Contact Orientations and Motor Outcomes in Parkinson’s Disease. NPJ Park. Dis. 2023, 9, 1–11. [Google Scholar] [CrossRef]
- Feldmann, L.K.; Lofredi, R.; Neumann, W.-J.; Al-Fatly, B.; Roediger, J.; Bahners, B.H.; Nikolov, P.; Denison, T.; Saryyeva, A.; Krauss, J.K.; et al. Toward Therapeutic Electrophysiology: Beta-Band Suppression as a Biomarker in Chronic Local Field Potential Recordings. NPJ Park. Dis. 2022, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Page, A.; Yung, N.; Auinger, P.; Venuto, C.; Glidden, A.; Macklin, E.; Omberg, L.; Schwarzschild, M.A.; Dorsey, E.R. A Smartphone Application as an Exploratory Endpoint in a Phase 3 Parkinson’s Disease Clinical Trial: A Pilot Study. Digit. Biomark. 2022, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habets, J.G.V.; Spooner, R.K.; Mathiopoulou, V.; Feldmann, L.K.; Busch, J.L.; Roediger, J.; Bahners, B.H.; Schnitzler, A.; Florin, E.; Kühn, A.A. A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-Data. Sensors 2023, 23, 5238. https://doi.org/10.3390/s23115238
Habets JGV, Spooner RK, Mathiopoulou V, Feldmann LK, Busch JL, Roediger J, Bahners BH, Schnitzler A, Florin E, Kühn AA. A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-Data. Sensors. 2023; 23(11):5238. https://doi.org/10.3390/s23115238
Chicago/Turabian StyleHabets, Jeroen G. V., Rachel K. Spooner, Varvara Mathiopoulou, Lucia K. Feldmann, Johannes L. Busch, Jan Roediger, Bahne H. Bahners, Alfons Schnitzler, Esther Florin, and Andrea A. Kühn. 2023. "A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-Data" Sensors 23, no. 11: 5238. https://doi.org/10.3390/s23115238
APA StyleHabets, J. G. V., Spooner, R. K., Mathiopoulou, V., Feldmann, L. K., Busch, J. L., Roediger, J., Bahners, B. H., Schnitzler, A., Florin, E., & Kühn, A. A. (2023). A First Methodological Development and Validation of ReTap: An Open-Source UPDRS Finger Tapping Assessment Tool Based on Accelerometer-Data. Sensors, 23(11), 5238. https://doi.org/10.3390/s23115238