Radar/INS Integration and Map Matching for Land Vehicle Navigation in Urban Environments
<p>Flow chart of the developed radar/INS/map-matching integration technique during GNSS outage.</p> "> Figure 2
<p>The proposed method for estimating the vehicle’s ego-motion.</p> "> Figure 3
<p>The relative motion between the radar unit and a static object (<math display="inline"><semantics> <mi>i</mi> </semantics></math>).</p> "> Figure 4
<p>Map-matching technique.</p> "> Figure 5
<p>Angular velocity measurements.</p> "> Figure 6
<p>The four UMRR-11 Type 132 radar units used to collect the data in Calgary.</p> "> Figure 7
<p>The reference system and the Xsens unit in the Calgary test.</p> "> Figure 8
<p>The estimated average forward speed from the radar unit versus the reference forward speed for the Calgary data.</p> "> Figure 9
<p>The OSM for Calgary data. The black line is the reference trajectory.</p> "> Figure 10
<p>The estimated trajectory from radar/INS integration with map matching during a 90 s simulated GNSS outage in Calgary data.</p> "> Figure 11
<p>The estimated average forward speed from the radar unit versus the forward reference speed for Toronto data.</p> "> Figure 12
<p>The OSM for Toronto data. The black line is the reference trajectory.</p> "> Figure 13
<p>The estimated trajectory from radar/INS integration with map matching during three minutes of a simulated GNSS signal outage in Toronto data.</p> "> Figure 14
<p>Another example of the estimated trajectory from radar/INS integration with map matching during three minutes of a simulated GNSS signal outage using Toronto data.</p> "> Figure 15
<p>Radar/INS integrated solution at the intersection (<b>a</b>) with map matching and (<b>b</b>) without map matching.</p> "> Figure 15 Cont.
<p>Radar/INS integrated solution at the intersection (<b>a</b>) with map matching and (<b>b</b>) without map matching.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Radar for Ego-Motion Estimation
2.2. Estimating the Vehicle’s Forward Speed
2.3. Radar/INS Integration
2.4. Map Matching
3. Experimental Work and Results
3.1. Calgary Data
3.2. Toronto Data
3.3. Enable and Disable Map Matching
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabbou, M.A.; El-Rabbany, A. Integration of GPS Precise Point Positioning and MEMS-Based INS Using Unscented Particle Filter. Sensors 2015, 15, 7228–7245. [Google Scholar] [CrossRef] [PubMed]
- Chiang, K.W.; Duong, T.T.; Liao, J.K. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination. Sensors 2013, 13, 10599–10622. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, U.; Georgy, J.; Korenberg, M.J.; Noureldin, A. Augmenting Kalman Filtering with Parallel Cascade Identification for Improved 2D Land Vehicle Navigation. In Proceedings of the 2010 IEEE 72nd Vehicular Technology Conference-Fall, Ottawa, ON, Canada, 6–9 September 2010; pp. 1–5. [Google Scholar]
- Al Bitar, N.; Gavrilov, A.I. Comparative Analysis of Fusion Algorithms in a Loosely-Coupled Integrated Navigation System on the Basis of Real Data Processing. Gyroscopy Navig. 2019, 10, 231–244. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.; Niu, X.; Gao, Z. Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance. Sensors 2017, 17, 2462. [Google Scholar] [CrossRef] [PubMed]
- Falco, G.; Pini, M.; Marucco, G. Loose and Tight GNSS/INS Integrations: Comparison of Performance Assessed in Real Urban Scenarios. Sensors 2017, 17, 255. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xiong, L.; Xia, X.; Lu, Y.; Yu, Z.; Khajepour, A. Improved Vehicle Localization Using On-Board Sensors and Vehicle Lateral Velocity. IEEE Sens. J. 2022, 22, 6818–6831. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, S.; Atia, M.M.; Noureldin, A. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm. Sensors 2015, 15, 23286–23302. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Sun, Q.; Chen, L.; Nie, B.; Li, Q. A Comparative Analysis of LiDAR SLAM-Based Indoor Navigation for Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6907–6921. [Google Scholar] [CrossRef]
- Chang, L.; Niu, X.; Liu, T.; Tang, J.; Qian, C. GNSS/INS/LiDAR-SLAM Integrated Navigation System Based on Graph Optimization. Remote Sens. 2019, 11, 1009. [Google Scholar] [CrossRef]
- Song, K.-T.; Chiu, Y.-H.; Kang, L.-R.; Song, S.-H.; Yang, C.-A.; Lu, P.-C.; Ou, S.-Q. Navigation Control Design of a Mobile Robot by Integrating Obstacle Avoidance and LiDAR SLAM. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 1833–1838. [Google Scholar]
- Hide, C.; Botterill, T.; Andreotti, M. Low Cost Vision-Aided IMU for Pedestrian Navigation. In Proceedings of the 2010 Ubiquitous Positioning Indoor Navigation and Location Based Service, Kirkkonummi, Finland, 14–15 October 2010; pp. 1–7. [Google Scholar]
- Panahandeh, G.; Jansson, M. Vision-Aided Inertial Navigation Based on Ground Plane Feature Detection. IEEE/ASME Trans. Mechatron. 2014, 19, 1206–1215. [Google Scholar] [CrossRef]
- Borenstein, J.; Feng, L. Measurement and Correction of Systematic Odometry Errors in Mobile Robots. IEEE Trans. Robot. Autom. 1996, 12, 869–880. [Google Scholar] [CrossRef]
- Dissanayake, G.; Sukkarieh, S.; Nebot, E.; Durrant-Whyte, H. The Aiding of a Low-Cost Strapdown Inertial Measurement Unit Using Vehicle Model Constraints for Land Vehicle Applications. IEEE Trans. Robot. Autom. 2001, 17, 731–747. [Google Scholar] [CrossRef]
- Liu, C.Y.; Lin, C.A.; Chiang, K.W.; Huang, S.C.; Chang, C.C.; Cai, J.M. Performance Evaluation of Real-Time MEMS INS/GPS Integration with ZUPT/ZIHR/NHC for Land Navigation. In Proceedings of the 2012 12th International Conference on ITS Telecommunications, ITST 2012, Taipei, Taiwan, 5–8 November 2012; pp. 584–588. [Google Scholar]
- Elkholy, M.; Elsheikh, M.; El-Sheimy, N. Radar-Based Localization Using Visual Feature Matching. In Proceedings of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+ 2021, St. Louis, MO, USA, 20–24 September 2021; pp. 2353–2362. [Google Scholar] [CrossRef]
- Elkholy, M.; Elsheikh, M.; El-Sheimy, N. Radar/IMU Integration Using Visual Feature Matching. In Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, Co, USA, 19–23 September 2022; pp. 1999–2010. [Google Scholar] [CrossRef]
- Elkholy, M.; Elsheikh, M.; El-Sheimy, N. Radar/INS Integration for Pose Estimation in GNSS-Denied Environments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B1-2022, 137–142. [Google Scholar] [CrossRef]
- Rashed, M.A.; Abosekeen, A.; Ragab, H.; Noureldin, A.; Korenberg, M.J. Leveraging FMCW-Radar for Autonomous Positioning Systems: Methodology and Application in Downtown Toronto. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+ 2019, Miami, FL, USA, 16–20 September 2019; pp. 2659–2669. [Google Scholar] [CrossRef]
- Abosekeen, A.; Noureldin, A.; Korenberg, M.J. Utilizing the ACC-FMCW Radar for Land Vehicles Navigation. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium, PLANS 2018-Proceedings, Monterey, CA, USA, 23–26 April 2018; pp. 124–132. [Google Scholar]
- Nießner, M.; Dai, A.; Fisher, M. Combining Inertial Navigation and ICP for Real-Time 3D Surface Reconstruction. Eurographics (Short Pap.) 2014, 13–16. [Google Scholar] [CrossRef]
- Xu, X.; Luo, M.; Tan, Z.; Zhang, M. Improved ICP Matching Algorithm Based on Laser Radar and IMU. In Proceedings of the 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), Nanjing, China, 23–25 November 2018; pp. 517–520. [Google Scholar]
- Censi, A. An ICP Variant Using a Point-to-Line Metric. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 19–25. [Google Scholar]
- Biber, P.; Strasser, W. The Normal Distributions Transform: A New Approach to Laser Scan Matching. In Proceedings of the Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, NV, USA, 27–31 October 2003; IEEE: New York, NY, USA; Volume 3, pp. 2743–2748. [Google Scholar]
- Levinson, J.; Thrun, S. Robust Vehicle Localization in Urban Environments Using Probabilistic Maps. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 4372–4378. [Google Scholar]
- Haklay, M.; Weber, P. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef]
- Park, Y.; Kim, J.; Kim, A. Radar Localization and Mapping for Indoor Disaster Environments via Multi-modal Registration to Prior LiDAR Map. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 1307–1314. [Google Scholar] [CrossRef]
- Greenfeld, J.S. Matching GPS Observations to Locations on a Digital Map. Transp. Res. Board 2002, 22, 576–582. [Google Scholar]
- Scott, C. Improved GPS Positioning for Motor Vehicles through Map Matching. Proc. ION GPS 1994, 2, 1391–1400. [Google Scholar]
- Syed, S.; Cannon, M.E. Fuzzy Logic Based-Map Matching Algorithm for Vehicle Navigation System in Urban Canyons. Proc. Natl. Tech. Meet. Inst. Navig. 2004, 2004, 982–993. [Google Scholar]
- Liu, W.; Xia, X.; Xiong, L.; Lu, Y.; Gao, L.; Yu, Z. Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic. IEEE Sens. J. 2021, 21, 21675–21687. [Google Scholar] [CrossRef]
- Radar UMRR-11 Type 132 Data Sheet. Available online: https://autonomoustuff.com/products/sms-automotive-radar-umrr-11 (accessed on 24 April 2023).
- Xsens MTi-G-710 Data Sheet. Available online: https://www.xsens.com/hubfs/Downloads/Leaflets/MTi-G-710.pdf (accessed on 24 April 2023).
- Radar UMRR-96 Type 153 Data Sheet. Available online: https://autonomoustuff.com/products/smartmicro-automotive-radar-umrr-96 (accessed on 23 April 2023).
- u-blox ZED-F9R module-Data Sheet. Available online: https://www.u-blox.com/en/product/zed-f9r-module (accessed on 17 May 2023).
Outage Duration (s) | Mean Error (m) | RMSE (m) | Traveled Distance (m) | Percentage RMS Error (%) |
---|---|---|---|---|
30 | 2.22 | 2.69 | 259.34 | 1.04 |
60 | 7.56 | 8.40 | 599.70 | 1.40 |
90 | 13.25 | 22.89 | 929.82 | 2.46 |
Outage Duration (s) | Mean Error (m) | RMSE (m) | Traveled Distance (m) | Percentage RMS Error (%) |
---|---|---|---|---|
30 | 1.13 | 1.19 | 63.22 | 1.88 |
60 | 0.90 | 1.25 | 204.18 | 0.61 |
90 | 1.85 | 2.50 | 290.92 | 0.86 |
120 | 2.40 | 3.08 | 304.15 | 1.01 |
180 | 2.06 | 2.72 | 611.69 | 0.44 |
Outage Duration (s) | Mean Error (m) | RMSE (m) | Traveled Distance (m) | Percentage RMS Error (%) |
---|---|---|---|---|
30 | 3.08 | 3.49 | 211.54 | 1.65 |
60 | 3.35 | 3.51 | 495.16 | 0.71 |
90 | 3.15 | 3.35 | 524.50 | 0.64 |
120 | 3.45 | 4.11 | 679.49 | 0.61 |
180 | 3.88 | 4.47 | 845.74 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkholy, M.; Elsheikh, M.; El-Sheimy, N. Radar/INS Integration and Map Matching for Land Vehicle Navigation in Urban Environments. Sensors 2023, 23, 5119. https://doi.org/10.3390/s23115119
Elkholy M, Elsheikh M, El-Sheimy N. Radar/INS Integration and Map Matching for Land Vehicle Navigation in Urban Environments. Sensors. 2023; 23(11):5119. https://doi.org/10.3390/s23115119
Chicago/Turabian StyleElkholy, Mohamed, Mohamed Elsheikh, and Naser El-Sheimy. 2023. "Radar/INS Integration and Map Matching for Land Vehicle Navigation in Urban Environments" Sensors 23, no. 11: 5119. https://doi.org/10.3390/s23115119
APA StyleElkholy, M., Elsheikh, M., & El-Sheimy, N. (2023). Radar/INS Integration and Map Matching for Land Vehicle Navigation in Urban Environments. Sensors, 23(11), 5119. https://doi.org/10.3390/s23115119