Saliency Map and Deep Learning in Binary Classification of Brain Tumours
<p>Evaluation framework of saliency methods.</p> "> Figure 2
<p>Brain image examples.</p> "> Figure 3
<p>Scheme of the architectures used in the research.</p> "> Figure 4
<p>Confusion matrices for considered networks.</p> "> Figure 5
<p>Training and validation accuracy of the proposed models.</p> "> Figure 6
<p>Binary comparison of IoU for all combinations of trained networks for the CAM method.</p> "> Figure 7
<p>Matrix showing the average difference of Cartesian distance for four neural network architectures (the CAM method); (<b>a</b>) case: all test images, (<b>b</b>) case: all test images containing the brain tumour.</p> "> Figure 8
<p>Binary comparison of IoU for all combinations of trained networks for the Grad-CAM method.</p> "> Figure 9
<p>Matrix showing the average difference of Cartesian distance for four neural network architectures (Grad-CAM method); (<b>a</b>) case: all test images, regardless of whether they contain brain tumour (<b>b</b>) case: only test images that contain brain tumour.</p> "> Figure 10
<p>Comparison of CAM and Grad-CAM methods.</p> "> Figure 11
<p>Examples of saliency maps obtained by CAM and Grad-CAM.</p> ">
Abstract
:1. Introduction
1.1. Related Work
1.2. Contribution
1.3. Framework of Research
1.4. Structure
2. Methods
2.1. Architectures of Deep Neural Networks
- input layer, which processes the spatial data of the image;
- feature-extracting layers—they are arranged in a general sequence containing a convolutional layer that uses numerous filters to learn various features of data received from the input layer (the obtained result is transformed using the ReLU activation function), and a pooling layer (the task is to gradually reduce the spatial size of the data representation);
- classification layers or output layer (in most cases, it is a fully connected layer) used to compute class scores as a result of network operation.
2.2. Saliency Maps
2.2.1. Class Activation Mapping
2.2.2. Grad-CAM Method
3. Results of Experiments and Discussion
3.1. Metrics
3.2. Comparison of Convolutional Networks
3.3. Results Obtained by the CAM and Grad-CAM Methods
- -
- denotes the percentage average value of the difference between the average Cartesian distance of CoM for the CAM and Grad-CAM methods,
- -
- denotes the percentage average value of the difference between the average IoU value for the CAM and Grad-CAM methods.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAM | Class Activation Mapping |
Grad-CAM | Gradient-based Class Activation Mapping |
CNN | Convolutional Neural Network |
IoU | Intersection over Union |
CoM | Center of Mass |
ResNet | Residual Network |
VGG | Visual Geometry Group |
MRI | Magnetic Resonance Image |
CaD | Cartesian Distance of CoM |
References
- McFaline-Figueroa, J.R.; Lee, E.Q. Brain tumors. Am. J. Med. 2018, 131, 874–882. [Google Scholar] [CrossRef] [PubMed]
- White, B.J.; Berg, D.J.; Kan, J.Y.; Marino, R.A.; Itti, L.; Munoz, D.P. Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video. Nat. Commun. 2017, 8, 14263. [Google Scholar] [CrossRef] [PubMed]
- Saporta, A.; Gui, X.; Agrawal, A.; Pareek, A.; Truong, S.Q.H.; Nguyen, C.D.T.; Ngo, V.-D.; Seekins, J.; Blankenberg, F.G.; Ng, A.Y.; et al. Benchmarking saliency methods for chest X-ray interpretation. Nat. Mach. Intell. 2022, 4, 867–878. [Google Scholar] [CrossRef]
- Wang, Z.J. Probing an AI regression model for hand bone age determination using gradient-based saliency mapping. Sci. Rep. 2021, 11, 10610. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; D’Angelo, G.; Glover, A.; Iacono, M.; Niebur, E.; Bartolozzi, C. Event-driven proto-object based saliency in 3D space to attract a robot’s attention. Sci. Rep. 2022, 12, 7645. [Google Scholar] [CrossRef]
- Amorim, J.P.; Abreu, P.H.; Santos, J.; Cortes, M.; Vila, V. Evaluating the faithfulness of saliency maps in explaining deep learning models using realistic perturbations. Inf. Process. Manag. 2023, 60, 103225. [Google Scholar] [CrossRef]
- Ayhan, M.S.; Kümmerle, L.B.; Kühlewein, L.; Inhoffen, W.; Aliyeva, G.; Ziemssen, F.; Berens, P. Clinical validation of saliency maps for understanding deep neural networks in ophthalmology. Med. Image Anal. 2022, 77, 102364. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, S.; Rezayi, S.; Keshavarz, H.; Kalhori, S.R.N. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Med. Inform. Decis. Mak. 2023, 23, 16. [Google Scholar] [CrossRef] [PubMed]
- Humayun, M.; Khalil, M.I.; Alwakid, G.; Jhanjhi, N.Z. Superlative Feature Selection Based Image Classification Using Deep Learning in Medical Imaging. J. Healthc. Eng. 2020, 2022, 7028717. [Google Scholar] [CrossRef] [PubMed]
- Saida, D.; Premchand, P. Brain Tumor Identification using Dilated U-Net based CNN. Int. J. Comput. Commun. Control 2022, 17. [Google Scholar] [CrossRef]
- Khan, M.A.; Ashraf, I.; Alhaisoni, M.; Damaševicius, R.; Scherer, R.; Rehman, A.; Bukhari, S.A.C. Multimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologists. Diagnostics 2020, 10, 565. [Google Scholar] [CrossRef] [PubMed]
- Amin, J.; Sharif, M.; Gul, N.; Yasmin, M.; Shad, S.A. Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network. Pattern Recognit. Lett. 2020, 129, 115–122. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, S.; Muhammad, K.; Wu, W.; Ullah, A.; Baik, S.W. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J. Comput. Sci. 2019, 30, 174–182. [Google Scholar] [CrossRef]
- Kokkalla, S.; Kakarla, J.; Venkateswarlu, I.B.; Singh, M. Three-class brain tumor classification using deep dense inception residual network. Soft Comput. 2021, 25, 8721–8729. [Google Scholar] [CrossRef] [PubMed]
- Alsubai, S.; Khan, H.U.; Alqahtani, A.; Sha, M.; Abbas, S.; Mohammad, U.G. Ensemble deep learning for brain tumor detection. Front. Comput. Neurosci. 2022, 16, 1005617. [Google Scholar] [CrossRef] [PubMed]
- Brain Tumor Dataset. Available online: https://www.kaggle.com/datasets/preetviradiya/brian-tumor-dataset (accessed on 11 October 2022).
- Varga, D. No-Reference Image Quality Assessment with Convolutional Neural Networks and Decision Fusion. Appl. Sci 2022, 12, 101. [Google Scholar] [CrossRef]
- Simonyan., K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, Y.; Li, H. VSI: A visual saliency induced index for perceptual image quality assessment. IEEE Trans. Image Process. 2014, 128, 4270–4281. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yue, G.; Zhang, R.; Qin, Y.; Li, H. Reduced-reference quality assessment of point clouds via content-oriented saliency projection. IEEE Signal Process. Lett. 2023, 30, 354–358. [Google Scholar] [CrossRef]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar] [CrossRef]
- Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks. In Proceeding of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 839–847. [Google Scholar]
- Bany Muhammad, M.; Yeasin, M. Eigen-CAM: Visual explanations for deep convolutional neural networks. SN Comput. Sci. 2021, 2, 336–359. [Google Scholar] [CrossRef]
Architecture | Layers Number | Total Parameters | Trainable Parameters | Train Accuracy | Test Accuracy | Recall | Precision |
---|---|---|---|---|---|---|---|
VGG16 | 16 + 3 | 14,978,370 | 263,682 | ||||
ResNet50 | 50 + 3 | 25,947,394 | 2,359,682 | ||||
EfficientNet | 813 + 3 | 67,047,193 | 2,949,506 | ||||
CNN | 10 | 97,458 | 97,458 |
Intersection over Union (IoU) | Cartesian Distance (CaD) of CoM | |||||
---|---|---|---|---|---|---|
CAM | Grad-CAM | (%) | CAM | Grad-CAM | (%) | |
CNN + EfficientNet | 0.635 | 0.627 | 1.26 | 0.2121 | 0.2496 | −17.72 |
CNN + VGG | 0.447 | 0.562 | −25.73 | 0.2893 | 0.2913 | −0.69 |
CNN + ResNet | 0.618 | 0.602 | 2.59 | 0.2229 | 0.2626 | −17.78 |
ResNet + EfficientNet | 0.854 | 0.851 | 0.35 | 0.0916 | 0.1208 | −31.92 |
ResNet + VGG | 0.572 | 0.699 | −22.20 | 0.2396 | 0.1398 | 41.65 |
VGG + EfficientNet | 0.579 | 0.711 | −22.80 | 0.2156 | 0.1067 | 50.50 |
Avr | 0.618 | 0.675 | 0.2118 | 0.1951 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmiel, W.; Kwiecień, J.; Motyka, K. Saliency Map and Deep Learning in Binary Classification of Brain Tumours. Sensors 2023, 23, 4543. https://doi.org/10.3390/s23094543
Chmiel W, Kwiecień J, Motyka K. Saliency Map and Deep Learning in Binary Classification of Brain Tumours. Sensors. 2023; 23(9):4543. https://doi.org/10.3390/s23094543
Chicago/Turabian StyleChmiel, Wojciech, Joanna Kwiecień, and Kacper Motyka. 2023. "Saliency Map and Deep Learning in Binary Classification of Brain Tumours" Sensors 23, no. 9: 4543. https://doi.org/10.3390/s23094543
APA StyleChmiel, W., Kwiecień, J., & Motyka, K. (2023). Saliency Map and Deep Learning in Binary Classification of Brain Tumours. Sensors, 23(9), 4543. https://doi.org/10.3390/s23094543