Ultra-Wideband Compact Fractal Antenna for WiMAX, WLAN, C and X Band Applications
<p>(<b>a</b>) The front plane, and (<b>b</b>) the ground plane of the suggested antenna.</p> "> Figure 2
<p>Steps taken to achieve the ultimate design of the suggested antenna.</p> "> Figure 3
<p>Comparison of the S11 at different design stages.</p> "> Figure 4
<p>Parametric analysis of radius (R).</p> "> Figure 5
<p>Parametric analysis (Lg1).</p> "> Figure 6
<p>Parametric analysis (WL).</p> "> Figure 7
<p>Surface current distribution at (<b>a</b>) 2.8 GHz, (<b>b</b>) 3.51 GHz, (<b>c</b>) 6.53 GHz, and (<b>d</b>) 9.37 GHz.</p> "> Figure 8
<p>Front and rear face of the fabricated antenna.</p> "> Figure 9
<p>Comparison of simulated and measured S11.</p> "> Figure 10
<p>Suggested antenna measurement setup inside the anechoic chamber.</p> "> Figure 11
<p>Peak gain measurements and simulations for the suggested antenna.</p> "> Figure 12
<p>Radiation efficiency measurements and simulations for the suggested antenna.</p> "> Figure 13
<p>2D radiation pattern at (<b>a</b>) 2.8 GHz, (<b>b</b>) 3.51 GHz, (<b>c</b>) 6.53 GHz, and (<b>d</b>) 9.37 GHz.</p> ">
Abstract
:1. Introduction
2. Antenna Design
2.1. Antenna Dimensions
2.2. Design Evolution Methodology
2.3. Analysis of the Suggested Antenna Parametric
- A.
- Effect of the rayon, R
- B.
- Effect of the position of Lg1
- C.
- Effect of the position Lg1
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, S.; Ijaz, U.; Naseer, S.; Ghaffar, A.; Qasim, M.A.; Abrar, F.; Parchin, N.O.; See, C.H.; Abd-Alhameed, R. A Jug-Shaped CPW-Fed Ultra-Wideband Printed Monopole Antenna for Wireless Communications Networks. Appl. Sci. 2022, 12, 821. [Google Scholar] [CrossRef]
- Nej, S.; Ghosh, A.; Ahmad, S.; Ghaffar, A.; Hussein, M. Compact Quad Band MIMO Antenna Design with Enhanced Gain for Wireless Communications. Sensors 2022, 22, 7143. [Google Scholar] [CrossRef] [PubMed]
- Al-Gburi, A.J.A.; Zakaria, Z.; Alsariera, H.; Akbar, M.F.; Ibrahim, I.M.; Ahmad, K.S.; Ahmad, S.; Al-Bawri, S.S. Broadband Circular Polarised Printed Antennas for Indoor Wireless Communication Systems: A Comprehensive Review. Micromachines 2022, 13, 1048. [Google Scholar] [CrossRef]
- Al-Gburi, A.J.A.; Zakaria, Z.; Palandoken, M.; Ibrahim, I.M.; Althuwayb, A.A.; Ahmad, S.; Al-Bawri, S.S. Super Compact UWB Monopole Antenna for Small IoT Devices. Comput. Mater. Contin. 2022, 73, 2785–2799. [Google Scholar] [CrossRef]
- Benkhadda, O.; Saih, M.; Ahmad, S.; Al-Gburi, A.J.A.; Zakaria, Z.; Chaji, K.; Reha, A. A Miniaturized Tri-Wideband Sierpinski Hexagonal-Shaped Fractal Antenna for Wireless Communication Applications. Fractal Fract. 2023, 7, 115. [Google Scholar] [CrossRef]
- Kiran, D.V.; Sankaranarayanan, D.; Mukherjee, B. Compact Embedded Dual-Element Rectangular Dielectric Resonator Antenna Combining Sierpinski and Minkowski Fractals. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 786–791. [Google Scholar] [CrossRef]
- Tripathi, S.; Mohan, A.; Yadav, S. A Compact Koch Fractal UWB MIMO Antenna with WLAN Band-Rejection. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1565–1568. [Google Scholar] [CrossRef]
- Minervino, D.R.; D’Assuncao, A.G.; Peixeiro, C. Mandelbrot Fractal Microstrip Antennas. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 2163–2166. [Google Scholar] [CrossRef]
- Mishra, G.P.; Maharana, M.S.; Modak, S.; Mangaraj, B. Study of Sierpinski Fractal Antenna and Its Array with Different Patch Geometries for Short Wave Ka Band Wireless Applications. Procedia Comput. Sci. 2017, 115, 123–134. [Google Scholar] [CrossRef]
- Harbaji, M.M.O.; Zahed, A.H.; Habboub, S.A.; AlMajidi, M.A.; Assaf, M.J.; El-Hag, A.H.; Qaddoumi, N.N. Design of Hilbert Fractal Antenna for Partial Discharge Classification in Oil-Paper Insulated System. IEEE Sens. J. 2017, 17, 1037–1045. [Google Scholar] [CrossRef]
- Kumar, A.; Pharwaha, A.P.S. Design and Analysis of Modified Pythagorean Fractal Tree Patch Antenna for Multiband Applications. In Proceedings of the 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 17–19 October 2019; pp. 638–642. [Google Scholar] [CrossRef]
- Masroor, I.; Ansari, J.A.; Saroj, A.K. Inset-fed cantor set fractal multiband antenna design for wireless applications. In Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 7–10. [Google Scholar] [CrossRef]
- Li, W.; Xia, Z.; You, B.; Liu, Y.; Liu, Q.H. Dual-Polarized H-Shaped Printed Slot Antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1484–1487. [Google Scholar] [CrossRef]
- Chen, H.; Shao, Y.; Zhang, Y.; Zhang, C.; Zhang, Z. A Low-Profile Broadband Circularly Polarized mmWave Antenna with Special-Shaped Ring Slot. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1492–1496. [Google Scholar] [CrossRef]
- Lu, L.; Jiao, Y.-C.; Zhang, H.; Wang, R.; Li, T. Wideband Circularly Polarized Antenna with Stair-Shaped Dielectric Resonator and Open-Ended Slot Ground. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1755–1758. [Google Scholar] [CrossRef]
- Liu, L.; Liu, C.; Li, Z.; Yin, X.; Chen, Z.N. Slit-Slot Line and Its Application to Low Cross-Polarization Slot Antenna and Mutual-Coupling Suppressed Tripolarized MIMO Antenna. IEEE Trans. Antennas Propag. 2019, 67, 4–15. [Google Scholar] [CrossRef]
- Wong, K.-L.; Chang, H.-J.; Wang, C.-Y.; Wang, S.-Y. Very-Low-Profile Grounded Coplanar Waveguide-Fed Dual-Band WLAN Slot Antenna for On-Body Antenna Application. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 213–217. [Google Scholar] [CrossRef]
- Locker, C.; Vaupel, T.; Eibert, T.F. Radiation efficient unidirectional low-profile slot antenna elements for X-band application. Adv. Radio Sci. 2005, 3, 143–146. [Google Scholar] [CrossRef]
- Marzouk, M.; Nejdi, I.H.; Rhazi, Y.; Saih, M. A new multi-band fractal antenna using a triangular measured on the 1 GHz to 6 GHz band. In Proceedings of the 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Meknes, Morocco, 3–4 March 2022; pp. 4–8. [Google Scholar] [CrossRef]
- Marzouk, M.; Nejdi, I.H.; Rhazi, Y.; Saih, M. Multiband and Wide Band Octagonal Fractal Antenna for Telecommunication Applications. In Proceedings of the 2022 8th International Conference on Optimization and Applications (ICOA), Genoa, Italy, 6–7 October 2022. [Google Scholar] [CrossRef]
- Branco, H.E.A.C.; de Andrade, H.D.; Paiva, J.L.d.S.; Fontgalland, G.; Junior, I.D.S.Q.; Sousa, M.E.T. Simulation and Performance of a Fractal Microstrip Antenna on the Influence of EBG to ISM Band Application. In Proceedings of the 2019 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Aveiro, Portugal, 10–14 November 2019; pp. 2019–2021. [Google Scholar] [CrossRef]
- Madi, M.; Moussa, M.; Kabalan, K.Y. Inward Fractal Dual Band High Gain Compact Antenna. In Proceedings of the 2019 International Conference on High Performance Computing & Simulation (HPCS), Dublin, Ireland, 15–19 July 2019; pp. 595–599. [Google Scholar] [CrossRef]
- Garhwal, A.; Ahmad, M.R.; Ahmad, B.H.; Rawat, S.; Singh, P.; Ray, K.; Bandyopadhyay, A. Circular and elliptical shaped fractal patch antennas for multiple applications. Int. J. Eng. Adv. Technol. 2019, 8, 114–120. [Google Scholar]
- Gangwar, S.P.; Gangwar, K.; Kumar, A. Dual-band modified circular slot antenna for WLAN and WIMAX applications. Prog. Electromagn. Res. C 2018, 85, 247–257. [Google Scholar] [CrossRef]
- Chu, H.B.; Shirai, H. A compact metamaterial quad-band antenna based on asymmetric E-CRLH unit cell. Prog. Electromagn. Res. C 2018, 81, 171–179. [Google Scholar] [CrossRef]
- Ali, W.A.E.; Ashraf, M.I.; Salamin, M.A. A dual-mode double-sided 4 × 4 MIMO slot antenna with distinct isolation for WLAN/WiMAX applications. Microsyst. Technol. 2021, 27, 967–983. [Google Scholar] [CrossRef]
- Gangwar, S.P.; Gangwar, K.; Kumar, A. Dual band modified circular ring shaped slot antenna for GSM and WiMAX applications. Microw. Opt. Technol. Lett. 2019, 61, 2752–2759. [Google Scholar] [CrossRef]
- Faouri, Y.; Ahmad, S.; Naseer, S.; Alhammami, K.; Awad, N.; Ghaffar, A.; Hussein, M.I. Compact Super Wideband Frequency Diversity Hexagonal Shaped Monopole Antenna with Switchable Rejection Band. IEEE Access 2022, 10, 42321–42333. [Google Scholar] [CrossRef]
- Shirazi, M.; Li, T.; Huang, J.; Gong, X. A reconfigurable dual-polarization slot-ring antenna element with wide bandwidth for array applications. IEEE Trans. Antennas Propag. 2018, 66, 5943–5954. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, Z.; Zhang, F.; Chen, A. L/S Multiband Frequency-Reconfigurable Antenna for Satellite Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2617–2621. [Google Scholar] [CrossRef]
- Jin, G.; Li, M.; Liu, D.; Zeng, G. A Simple Planar Pattern-Reconfigurable Antenna Based on Arc Dipoles. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1664–1668. [Google Scholar] [CrossRef]
- Mark, R.; Mishra, N.; Mandal, K.; Sarkar, P.P.; Das, S. Hexagonal ring fractal antenna with dumb bell shaped defected ground structure for multiband wireless applications. AEU-Int. J. Electron. Commun. 2018, 94, 42–50. [Google Scholar] [CrossRef]
- Zahraoui, I.; Zbitou, J.; Errkik, A.; Abdelmounim, E.; Mediavilla Sánchez, Á. A novel printed multiband low cost antenna for WLAN and WiMAX applications. Int. J. Microw. Opt. Technol. 2016, 11, 131–136. [Google Scholar]
- Liu, S.; Wu, W.; Fang, D.-G. Single-Feed Dual-Layer Dual-Band E-Shaped and U-Slot Patch Antenna for Wireless Communication Application. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 468–471. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Du, Z. A broadband dual-antenna system operating at the WLAN/WiMax bands for laptop computers. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1060–1063. [Google Scholar] [CrossRef]
- Huang, C.; Ji, C.; Wu, X.; Song, J.; Luo, X. Combining FSS and EBG Surfaces for High-Efficiency Transmission and Low-Scattering Properties. IEEE Trans. Antennas Propag. 2018, 66, 1628–1632. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Tu, Z.-H. Compact Differential Band-Notched Stepped-Slot UWB-MIMO Antenna with Common-Mode Suppression. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 593–596. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Z. Performance enhancement of cross dipole circularly polarized antenna using parasitic éléments. Microw. Opt. Technol. Lett. 2021, 63, 3054–3059. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory Analysis and Design, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1997. [Google Scholar]
Parameter | Ws | Ls | Wg | Eg | R | T | P | Lg | Lg1 | WL |
---|---|---|---|---|---|---|---|---|---|---|
Values(mm) | 34 | 40 | 2.6 | 1 | 12 | 3.33 | 1 | 15 | 12.25 | 17 |
Iterations | Frequency Number | Loss Return dB | Bandwidth GHZ |
---|---|---|---|
The initiator | 1 | −13.2 | 0.48 [5.87, 6.35] |
Iteration 1 | 1 | −20.43 | 2.46 [2.9, 5.36] |
Iteration 2 | 1 | −32.64 | 2.15 [2.69, 4.84] |
Iteration 3 | 4 | −13.12 | 0.29 [1.84, 2.13] |
−13.83 | 1.06 [4.49, 5.55] | ||
−11.47 | 0.39 [5.98, 6.37] | ||
−21.9 | 2.09 [8.95, 11.04] | ||
Iteration 4 | 2 | −18 | 1.11 [2.43, 3.54] |
−16.31 | 3.34 [7.45, 10.79] | ||
The proposed antenna | 4 | −27.08 | 1.84 [2.26, 4.10] |
−26.60 | |||
−20.38 | 3.9 [6.10, 10] | ||
−16.28 |
Ref. | Size mm2 | Substrate | Frequency Range (GHz) | Bandwidth (GHz) | Resonant Frequency (GHz) | Peak Gain (dB) | Methods | Applications |
---|---|---|---|---|---|---|---|---|
[21] | 46.6 × 53.4 | FR4 | 2.42–2.49 | 0.7 | 2.45 | 1.67–1.87 | Electromagnetic bandgap structures | Wi-Fi |
[22] | 50 × 40 | FR4 | 2.24–2.79 3.05–3.25 | 0.55 0.2 | 2.45 - | 3.75–10 | Reducing antenna size and increasing gain through fractal design | Wi-Fi |
[23] | 60 × 63 | FR4 | - | 0.22 0.71 2.44 1.93 | 1.62/2.45 4.37/5.56 6.0/8.81 | 2.18–5.79 | Using fractal geometry to achieve multiband operation | Wi-Fi and C band |
[24] | 40 × 40 | FR4 | 2.88–3.92 5.26–6.28 | 1.04 1.02 | 3.38 5.86 | 0.8–6 | Modifying the antenna design to achieve dual-band operation | WiMax and WLAN |
[25] | 57.2 × 31.2 | FR4 | 0.77–0.83 2.35–2.55 3.05–3.71 4.88–5.81 | 0.06 0.2 0.65 0.93 | 0.81 2.45 3.5 5.5 | - | Using an asymmetric E-CRLH unit cell design | GSM, WLAN and WiMAX |
[26] | 60 × 60 | FR4 | 2.4–2.485 3.4–3.6 | 0.085 0.2 | 2.46 3.5 | - | Incorporating double-sided MIMO | WiMAX and WLAN |
[27] | 48 × 48 | FR4 | 1.69–1.94 3.64–3.88 | 0.25 0.24 | 1.775 3.725 | 0–7.5 | Modifying the antenna design to achieve dual-band operation | GSM and WiMAX |
[32] | 40 × 32 | FR4 | 1.69–1.88 2.34–2.52 3.07–3.59 4.17–6.26 | 0.19 0.18 0.52 2.45 | 1.7 2.4 3.1 4.5 6 | 1.6–3.8 | Incorporating a dumbbell-shaped defected ground structure | GSM, WLAN, and WiMAX |
[33] | 50 × 50 | FR4 | 2.35–2.44 3.42–3.59 4.82–5.28 | 0.09 0.17 0.46 | 2.4 3.5 5.2 | - | Using printed circuit board technology | WLAN, and WiMAX |
[34] | 60 × 45 | FR4 | 2.25–2.95 3.35–3.61 | 0.7 0.26 | 2.6, 3.5 | - | Using a dual-layer design with an E-shaped and U-slot patch | WLAN and WiMAX |
Our Antenna | 40 × 34 | FR4 | 2.26–4.10 6.0–9.82 | 1.84 3.9 | 2.8 3.51 6.53 9.37 | 2.1–9 | Using fractal geometry, with an ‘L’ shape added to the partial ground plane | Wi-Fi, Bluetooth, WiMAX, WLAN, C and X bands |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzouk, M.; Rhazi, Y.; Nejdi, I.H.; Zerrad, F.-E.; Saih, M.; Ahmad, S.; Ghaffar, A.; Hussein, M. Ultra-Wideband Compact Fractal Antenna for WiMAX, WLAN, C and X Band Applications. Sensors 2023, 23, 4254. https://doi.org/10.3390/s23094254
Marzouk M, Rhazi Y, Nejdi IH, Zerrad F-E, Saih M, Ahmad S, Ghaffar A, Hussein M. Ultra-Wideband Compact Fractal Antenna for WiMAX, WLAN, C and X Band Applications. Sensors. 2023; 23(9):4254. https://doi.org/10.3390/s23094254
Chicago/Turabian StyleMarzouk, Mohamed, Youssef Rhazi, Ibrahime Hassan Nejdi, Fatima-Ezzahra Zerrad, Mohamed Saih, Sarosh Ahmad, Adnan Ghaffar, and Mousa Hussein. 2023. "Ultra-Wideband Compact Fractal Antenna for WiMAX, WLAN, C and X Band Applications" Sensors 23, no. 9: 4254. https://doi.org/10.3390/s23094254
APA StyleMarzouk, M., Rhazi, Y., Nejdi, I. H., Zerrad, F. -E., Saih, M., Ahmad, S., Ghaffar, A., & Hussein, M. (2023). Ultra-Wideband Compact Fractal Antenna for WiMAX, WLAN, C and X Band Applications. Sensors, 23(9), 4254. https://doi.org/10.3390/s23094254